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There are a number of similarities between black-hole physics and thermodynamics.
Most striking is the similarity in the behaviors of black-hole area and of entropy: Both
quantities tend to increase irreversibly. In this paper we make this similarity the basis of
a thermodynamic approach to black-hole physics. After a brief review of the elements of
the theory of information, we discuss black-hole physics from the point of view of informa-
tion theory. We show that it is natural to introduce the concept of black-hole entropy as the
measure of information about a black-hole interior which is inaccessible to an exterior
observer. Considerations of simplicity and consistency, and dimensional arguments indi-
cate that the black-hole entropy is equal to the ratio of the black-hole area to the square of
the Planck length times a dimensionless constant of order unity. A different approach
making use of the specific properties of Kerr black holes and of concepts from information
theory leads to the same conclusion, and suggests a definite value for the constant. The
physical content of the concept of black-hole entropy derives from the following generalized
version of the second law: When common entropy goes down a black hole, the common
entropy in the black-hole exterior plus the black-hole entropy never decreases. The validity
of this version of the second law is supported by an argument from information theory as
well as by several examples.

I. INTRODUCTION

A black hole' exhibits a remarkable tendency to
increase its horizon surface area when under-
going any transformation. This was first noticed
by Floyd and Penrose' in an example of the extrac-
tion of energy from a Kerr black hole by means of
what has come to be known as a Penrose process. '
They suggested that an increase in area might be
a general feature of black-hole transformations.
Independently, Christodoulou" had shown that no

process whose ultimate outcome is the capture of
a particle by a Kerr black hole can result in the
decrease of a certain quantity which he named the
irreducible mass of the black hole, M. . In fact,
most processes result in an increase in M„. with
the exception of a very special class of limiting
processes, called reversible processes, which
leave Af unchanged. It turns out that M,. is pro-
portional to the square root of the black hole's
area' [see (1)]. Thus Christodoulou's result
implies that the area increases in most processes,
and thus it supports the conjecture of Floyd and
Penrose. Christodoulou's conclusion is also valid
for charged Kerr black holes. '

By an approach radically different from Christo-
doulou's, Hawking' has given a general proof that
the black-hole surface area cannot decrease in
any process. For a system of several black holes
Hawking's theorem implies that the area of each
individual black hole cannot decrease, and more-

over that when two black holes merge, the area of
the resulting black hole {provided, of course, that
one forms) cannot be smaller than the sum of ini-
tial areas.

It is clear that changes of a black hole generally
take place in the direction of increasing area.
This is reminiscent of the second law of thermo-
dynamics which states that changes of a closed
thermodynamic system take place in the direction
of increasing entropy. The above comparison
suggests that it might be useful to consider black-
hole physics from a thermodynamic viewpoint: We
already have the concept of energy in black-hole
physics, and the above observation suggests that
something like entropy may also play a role in it.
Thus, one can hope to develop a thermodynamics
for black holes -at least a rudimentary one. In
this paper we show that it is possible to give a
precise definition of black-hole entropy. Based
on it we construct some elements of a thermo-
dynamics for black holes.

There are some precedents to our considerations.
The idea of making use of thermodynamic methods
in black-hole physics appears to have been first
considered by Greif. He examined the possibility
of defining the entropy of a black hole, but lacking
many of the recent results in black-hole physics,
he did not make a concrete proposal. More re-
cently, Carter' has rederived the result of
Christodoulou ' that the irreducible mass of a
Kerr black hole is unchanged in a reversible trans-
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formation by applying to the black hole the crite-
rion for a thermodynamically reversible trans-
formation of a rigidly rotating star. ' Carter's
example shows the possibilities inherent in the
use of thermodynamic arguments in black-hole
physics.

In this paper we attempt a unification of black-
hole physics with thermodynamics. In Sec. II we

point out a number of analogies between black-hole
physics and thermodynamics, all of which bring
out the parallelism between black-hole area and

entropy. In Sec. III, after a short review of ele-
ments of the theory of information, we discuss
some features of black-hole physics from the point
of view of information theory. We take the area of
a black hole as a measure of its entropy-entropy
in the sense of inaccessibility of information about
its internal configuration. We go further in Sec. IV
and propose a specific expression for black-hole
entropy in terms of black-hole area. Earlier"'
we had proposed this same expression on different
grounds; here we find the value of a previously un-
known constant by means of an argument based on
information theory. In Sec. V we propose a gener-
alization of the second law of thermodynamics
applicable to black-hole physics: When some com-
mon entropy goes down a black hole, the black-
hole entropy plus the common entropy in the black-
hole exterior never decreases

In Secs. VI and VII we construct several exp.mples
which provide support for the generalized second
law. In addition, we analyze in Sec. VII a thought
experiment proposed by Geroch" in which, with
the help of a black hole, heat is apparently con-
verted entirely into work in violation of the second
law. We show that, in fact, due to fundamental
physical limitations the conversion efficiency is
somewhat smaller than unity. Moreover, the effi-
ciency is no greater than the maximum efficiency
allowed by thermodynamics for the heat engine
which is equivalent to the Geroch process, so that
this process cannot be regarded as violating the
second law.

II. ANALOGIES BETWEEN BLACK-HOLE
PHYSICS AND THERMODYNAMICS

We have already mentioned the resemblance be-
tween the tendency of black-hole area to increase,
and the tendency of entropy to increase. Changes
of a black hole or of a system of black holes select
a preferred direction in time: that in which the
black-hole area increases. Likewise, changes of
a closed thermodynamic system select a preferred
direction in time: that in which the entropy
increases. This parallelism between black-hole
area and entropy goes even deeper.

Black-hole area turns out to be as intimately
related to the degradation of energy as is entropy.
In thermodynamics the statement "the entropy has
increased" implies that a certain quantity of ener-
gy has been degraded, i.e. , that it can no longer
be transformed into work. Now, as Christodoulou
has emphasized, "the irreducible mass M of a
Kerr black hole, which is related to the surface

arear'

of the black hole by'

represents energy which cannot be extracted by
means of Penrose processes. ' In this sense it is
inert energy which cannot be transfcrmed into
work. Thus, an increase in A, and hence in I, ,

corresponds to the degradation (in the thermody-
namic sense) of some of the energy of the black
hole.

The irreducible mass of a Schwarzschild black
hole is just equal to its total mass. Thus, no en-
ergy can be extracted from such a black hole by
means of Penrose processes. However, the merg-
er of two Schwarzschild black holes can yield en-
ergy in the form of gravitational waves. ' The only
restriction on the process is that the total black-
hole area must not decrease as a result of the
merger. ' However, the sum of the irreducible
masses of individual black holes may (in fact,
does) decrease. We see that for a system of sev-
eral black holes the degraded energy E„ is more
appropriately given by

than by PM. . According to this formula the de-
graded energy of a system of black holes is small-
er than the sum of degraded energies of the black
holes considered separately. Thus by combining
Schwarzschild black holes which are already
"dead, " one can still obtain energy. ' Analogously,
by allowing two thermodynamic systems which are
separately in equilibrium to interact, one can
obtain work, whereas each system by itself could
have done no work. From the above observations
the parallelism between black-hole area and
entropy is again evident.

We shall now construct the black-hole analog of
the thermodynamic expression

dE = TdS -PdV

For convenience we shall from now on write all
our equations in terms of the "rationalized area"
of a black hole e defined by

(4)
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Consider a Kerr black hole of mass M, charge Q,
and angular momentum L. (3-vectors here refer
to components with respect to the Euclidean frame
at infinity. ) Its rationalized area is given by' '

at black-hole physics from the point of view of the
theory of information.

III. INFORMATION AND BLACK-HOLE ENTROPY

=2Mr, —Q,

where

a = L/M,

r, =M +(M~-Q -a )'

Differentiating (5) and solving for dM we obtain

(7)

The connection between entropy and information
is well known. "'" The entropy of a system mea-
sures one's uncertainty or lack of information
about the actual internal configuration of the sys-
tem. Suppose that all that is known about the in-
ternal configuration of a system is that it may be
found in any of a number of states with probability
p„ for the nth state. Then the entropy associated
with the system is given by Shannon's formula"'"

S = -PP„ inP„ (10)
dM=8dn+0 ~ dL+4dQ, (8)

where

(9a)

(9b)

4 =—Qr, /a. (9c)

In (8) we have the black-hole analog of the ther-
modynamic expression (3): The terms fl dL and4' clearly represent the work done on the black
hole by an external agent who increases the black
hole's angular momentum and charge by dL and
dQ, respectively. Thus 0 dL+ 4 d@ is the analog
of -PdV, the work done on a thermodynamic sys-
tem. Comparing our expression for work with the
expressions for work done on rotating" and
charged~ bodies, we see that 0 and 4 play the
roles of rotational angular frequency and electric
potential of the black hole, respectively. ''9 The
a in (8) resembles the entropy S in (3) as we have
noted before: For any change of the black hole
du ~ 0, ' ' while for any change of a closed ther-
modynamic system dS~ 0. Moreover, it is clear
from (7) and (9a) that e, the black-hole analog of
temperature T, is non-negative just as T is. From
the above observations the formal correspondence
between (3) and (8) is evident.

All the analogies we have mentioned are sugges-
tive of a connection between thermodynamics and
black-hole physics in general, and between entropy
and black-hole area in particular. But so far the
analogies have been of a purely formal nature,
primarily because entropy and area have different
dimensions. We shall remedy this deficiency in
Sec. IV by constructing out of black-hole area an
expression for black-hole entropy with the correct
dimensions. Preparatory to this we shall now look

This formula is uniquely determined by a few very
general requirements which are imposed in order
that S have the properties expected of a measure
of uncertainty. "

It should be noticed that the above entropy is
dimensionless. This simply means that we choose
to measure temperature in units of energy. Boltz-
mann's constant is then dimensionless.

Whenever new information about the system be-
comes available, it may be regarded as imposing
some constraints on the probabilities P„. For ex-
ample, the information may be that several of the
P„are, in fact, zero. Such constraints on the p„
always result in a decrease in the entropy func-
tion. " This property is formalized by the rela-
tion" '

where AI is the new information which corresponds
to a decrease bS in one's uncertainty about the in-
ternal state of the system. Equation (11) is the
basis for Brillouin's identification of information
with negative entropy. " All the above comments
apply to such divers systems as a quantity of gas
in a box or a telegram. A familiar example of the
relation between a gain of information and a de-
crease in entropy is the following. Some ideal gas
in a container is compressed isothermally. It is
well known that its entropy decreases. On the
other hand, one's information about the internal
configuration of the gas increases: After the com-
pression the molecules of the gas are more local-
ized, so that their positions are known with more
accuracy than before the compression.

The second law of thermodynamics is easily
understood in the context of information theory.
The entropy of a thermodynamic system which is
not in equilibrium increases because information
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about the internal configuration of the system is
being lost during its evolution as a result of the
washing out of the effects of the initial conditions.
It is possible for an exterior agent to cause a de-
crease in the entropy of a system by first acquir-
ing information about the internal configuration of
the system. The classic example of this is that of
Maxwell's demon. " But information is never free.
In acquiring information AI about the system, the
agent inevitably causes an increase in the entropy
of the rest of the universe which exceeds LI."
Thus, even though the entropy of the system de-
creases in accordance with (11), the over-all en-
tropy of the universe increases in the process.

The conventional unit of information is the "bit"
which may be defined as the information available
when the answer to a yes-or-no question is pre-
cisely known (zero entropy). According to the
scheme (11) a bit is also numerically equal to the
maximum entropy that can be associated with a
yes-or-no question, i.e. , the entropy when no in-
formation whatsoever is available about the answer.
One easily finds that the entropy function (10) is
maximized when P„=P„,= ~. Thus, in our units,
one bit is equal to ln2 of information.

Let us now return to our original subject, black
holes. In the context of information a black hole
is very much like a thermodynamic system. The
entropy of a thermodynamic system in equilibrium
measures the uncertainty as to which of all its in-
ternal configurations compatible with its macro-
scopic thermodynamic parameters (temperature,
pressure, etc. ) is actually realized. Now, just as
a thermodynamic system in equilibrium can be
completely described macroscopically by a few
thermodynamic parameters, so a bare black hole
in equilibrium (Kerr black hole) can be completely
described (insofar as an exterior observer is con-
cerned) by just three parameters: mass, charge,
and angular momentum. ' Black holes in equilib-
rium having the same set of three parameters may
still have different "internal configurations. " For
example, one black hole may have been formed by
the collapse of a normal star, a second by the col-
lapse of a neutron star, a third by the collapse of
a geon. These various alternatives may be re-
garded as different possible internal configura-
tions of one and the same black hole characterized
by their (common) mass, charge, and angular
momentum. It is then natural to introduce the con-
cept of black-hole entropy as the measure of the
inaccessibility of information (to an exterior ob-
server) as to which particular internal configura-
tion of the black hole is actually realized in a
given case.

At the outset it should be clear that the black-
hole entropy we are speaking of is not the thermal

entropy inside the black hole. In fact, our black-
hole entropy refers to the equivalence class of all
black holes which have the same mass, charge,
and angular momentum, not to one particular black
hole. What are we to take as a measure of this
black-hole entropy' The discussion of Sec. II pre-
disposes us to single out black-hole area. But to
be more general we shall only assume that the en-
tropy of a black hole, Sbj, , is some monotonically
increasing function of its rationalized area:

(12)

Although our motivating discussion for the intro-
duction of the concept of the black-hole entropy
made use of the specific properties of stationary
black holes, we shall take (12) to be valid for any
black hole, including a dynamically evolving one,
since the surface area is well defined for any black
hole. This choice is supported by the following
observations.

As mentioned earlier, the entropy of an evolving
thermodynamic system increases due to the gradual
loss of information which is a consequence of the
washing out of the effects of the initial conditions.
Now, as a black hole approaches equilibrium, the
effects of the initial conditions are also washed
out (the black hole loses its hair)'; only mass,
charge, and angular momentum are left as deter-
minants of the black hole at late times. We would
thus expect that the loss of information about ini-
tial peculiarities of the hole will be reflected in a
gradual increase in Sbb . And indeed Eq. (12) pre-
dicts just this; by Hawking's theorem Sb~ in-
creases monotonically as the black hole evolves.
This agreement is evidence in favor of the choice
(12).

We mentioned earlier that the possibility of
causing a decrease in the entropy of a thermody-
namic system goes hand in hand with the possi-
bility of obtaining information about its internal
configuration. By contrast, an exterior agent can-
not acquire any information about the interior con-
figuration of a black hole. The one-way membrane
nature of the event horizon prevents him from do-
ing so.' Therefore, we do not expect an exterior
agent to be able to cause a decrease in the black
hole's entropy. Equation (12) is in agreement with
this expectation; by Hawking's theorem S» never
decreases. Here we have a new piece of evidence
in favor of the choice (12).

One possible choice for f in (12), f(o)cc o.'~'
untenable on various grounds. Consider two black
holes which start off very distant from each other.
Since they interact weakly we can take the total
black-hole entropy to be the sum of the Sbj, of each
black hole. The black holes now fall together,
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merge, and form a black hole which settles down

to equilibrium. In the process no information
about the black-hole interior can become available;
on the contrary, much information is lost as the
final black hole "loses its hair. " Thus, we expect
the final black-hole entropy to exceed the initial
one. By our assumption that f(a)~ a'~~, this im-
plies that the irreducible mass [see (1)] of the
final black hole exceeds the sum of irreducible
masses of the initial black holes. Now suppose
that all three black holes are Schwarzschild
(M=M„}. We are then confronted with the pre-
diction that the final black-hole mass exceeds the
initial one. But this is nonsense since the total
black-hole mass can only decrease due to gravita-
tional radiation losses. We thus see that the
choice f(n) ~ a' ' is untenable.

The next simplest choice for f is

(13)

where y is a constant. Repetition of the above ar-
gument for this new f leads to the conclusion that
the final black-hole area must exceed the total ini-
tial black-hole area. But we know this to be true
from Hawking's theorem. ' Thus the choice (13)
leads to no contradiction. Therefore, we shall
adopt (13) for the moment; later on we shall exhib-
it some more positive evidence in its favor.

Comparison of (12} and (13) shows that y must
have the units of (length) . But there is no con-
stant with such units in classical general relativ-
ity. If in desperation we appeal to quantum physics
we find only one truly universal constant with the
correct units'4: 5 ', that is, the reciprocal of the
Planck length squared. (Compton wavelengths are
not universal, but peculiar to this or that particle;
they clearly have no bearing on the problem. ) We
are thus compelled to write (12}as

Sbh ='0~ (14)

where g is a dimensionless constant which we may
expect to be of order unity. This expression was
first proposed by us earlier"'~ from a different
point of view.

We need not be alarmed at the appearance of @

in the expression for black-hole entropy. It is
well known" that 0 also appears in the formulas for
entropy of many thermodynamic systems that are
conventionally regarded as classical, for example,
the Boltzmann ideal gas. This is a reflection of
the fact that entropy is, in a sense, a count of
states of the system, and the underlying states of
any system are always quantum in nature. It is
thus not totally unexpected that 0 appears in (14).
These observations also suggest that it would be

somewhat pretentious to attempt to calculate the
precise value of the constant qk ' without a full
understanding of the quantum reality which under-
lies a "classical" black hole. Since there is no
hope at present of obtaining such an understanding,
we bypass the issue, and in the next section we use
a semiclassical argument to arrive at a value for
gS ' which should be quite close to the correct
one.

IV. EXPRESSION FOR BLACK-HOLE ENTROPY

In our attempt to obtain a value for qS ' we shall
employ the following argument. We imagine that
a particle goes down a Kerr black hole. As it dis-
appears some information is lost with it. Accord-
ing to the discussion of Sec. III we expect the black-
hole entropy, as the measure of inaccessible infor-
mation, to reflect the loss of the information
associated with the particle by increasing by an
appropriate amount. How much information is
lost together with the particles The amount clear-
ly depends on how much is known about the internal
state of the particle, on the precise way in which
the particle falls in, etc. But we can be sure that
the absolute minimum of information lost is that
contained in the answer to the question "does the
particle exist or notV" To start with, the answer
is known to be yes. But after the particle falls in,
one has no information whatever about the answer.
This is because from the point of view of this paper,
one knows nothing about the physical conditions in-
side the black hole, and thus one cannot assess the
likelihood of the particle continuing to exist or
being destroyed. One must, therefore, admit to
the loss of one bit of information (see Sec. IH) at
the very least.

Our plan, therefore, is to compute the minimum
possible increase in the black hole's area which
results from the disappearance of a particle down
the black hole, then to compute the corresponding
minimum possible increase of black-hole entropy
by means of our original formula (12), and finally
to identify this increase in entropy with the loss of
one bit of information in accordanc with the
scheme (11}. If our procedure is reasonable we
should then recover the functional form of f given
by (13), together with a definite value for y.

There are many ways in which a particle can go
down a black hole, all leading to varying increases
in black-hole area. We are interested in that
method for inserting the particle which results in
the smallest increase. This method has already
been discussed by Christodoulou' ' in connection
with his introduction of the concept of irreducible
mass. The essence of Christodoulou's method is
that if a freely falling point particle is captured by



2338 JACOB D. BEKENSTEIN

a Kerr black hole from a turning point in its orbit,
then the irreducible mass and, consequently, the
area of the hole are left unchanged. For reasons
that will become clear presently we wish to allow
the particle to have a nonzero radius. As shown
in Appendix A, Christodoulou's method can be
generalized easily so as to allow for this, as well
a,s for the possibility that the particle is brought to
the horizon by some method other than by free fall.
We find in Appendix A that the increase in area for
the generalized Christodoulou process is no longer
precisely zero. But interestingly enough, the
minimum increase in rationalized area, (ha) .„,
turns out to be independent of the parameters of
the black hole. For a spherical particle of rest
mass p, , and proper radius b,

(n. a) . =2pb. (15)

S»=(-,' ln2)A 'a, (16}

For a point particle (Aa) =0; this is Christo-
min

doulou's result.
Expression (15) gives the minimum possible

increase in black-hole area that results if a given
particle is added to a Kerr black hole. We can try
to make (Aa) smaller by making 5 smaller.
However, we must remember that b can be no
smaller than the particle's Compton wavelength

, or than its gravitational radius 2p. , which-
ever is the larger. The Compton wavelength is the
larger for p. ~2 '~'5' ', and the gravitational radi-
us is the larger for p&2 '~')I' ' (2 ' 'g' ~10 'g)
Thus, if p, ~2 ' 'I' ~, then 2p,b can be as small as
2php '=2@. But if g&2 ' 'K' ', then 2p.b can be
no smaller than 4g'&2k. We conclude that quan-
tum effects set a lower bound of M on the increase
of the rationalized area of a Kerr black hole when
it captures a particle. Moreover, this limit can
be reached only for a particle whose dimension is
given by its Compton wavelength. Of course, only
such an "elementary particle" can be regarded as
having no internal structure. Therefore, the loss
of information associated with the loss of such a
particle should be minimum. And indeed we find
that the increase in b1ack-hole entropy is smallest
for just such a, particle. This supports our view
that 2h is the increase in rationalized area associ-
ated with the loss of one bit of information.

Following our program we shall equate the min-
imum increase in black-hole entropy, (AS») .

=2ffdf/da, with ln2, the entropy increase associ-
ated with the loss of one bit of information. Inte-
gration of the resulting equation gives f(a)
=(—,

' In2)A' 'a. Thus, we have arrived again at (13}
by an alternate route, and have obtained the value
of y into the bargain. We now have

S,„=(-,' In2//4s)kc'g 'G 'A

=(1.46 x 10"erg 'K 'cm ')A

where k is Boltzmann's constant. We see that the
entropy of a black hole is enormous. For exa,mple,
a black hole of one solar mass would have S»=&0
erg'K '. By comparison the entropy of the sun is
S=10~erg'K ', those of a white dwarf or a neu-
tron star of one solar mass even smaller. The
large numerical value of black-hole entropy serves
to dramatize the highly irreversible character of
the process of black-hole formation. We may de-
fine a characteristic tempera, ture for a Kerr black
hole by the relation T» ' =(SSb/Shf)~i e which is
the analog of the thermodynamic relation T '
=(BS/sZ}v. By using (8} and (16) we find

T» =2k(ln2) 'e

=(0.165'Kcm) (r, -r } (r, +a ) ', (18)

where r, and a are to be given in centimeters. We
introduce this Tb„ in anticipation of our discussion
of an example in Sec. VG. But we emphasize that
one should not regard T» as the temperature of
the black hole; such an identification can easily
lead to all sorts of paradoxes, and is thus not use-

full.

which is of the same form as (14). Our argument
has determined the dependence of S» on a in a
straightforward manner. However, our value
q = &ln2 might presumably be challenged on the
grounds that it follows from the assumption that
the smallest possible radius of a particle is pre-
cisely equal to its Compton wavelength whereas
the actual radius is not so sharply defined. Never-
theless, it should be clear that if g is not exactly
—,
' ln2, then it must be very close to this, probably
within a factor of two. This slight uncertainty in
the value of g is the price we pay for not giving our
problem a full quantum treatment. However, in
what follows we shall suppose that g= & ln2. Ex-
amples to be given later will show that this value
leads to no contradictions.

How is the entropy of a system of several black
holes defined& It is natural to define it as the sum
of individual black-hole entropies. Then Hawking's
theorem tells us that the total black-hole entropy
of the system cannot decrease. But this is just
what we would expect since the information lost
down the black holes is unrecoverable. This ob-
servation lends support to our choice.

In conventional units (16) takes the form



BLACK HOLES AND ENTROPY 2339

V. THE GENERALIZED SECOND LAW

Suppose that a body containing some common
entropy goes down a black hole. The entropy of
the visible universe decreases in the process. It
would seem that the second law of thermodynamics
is transcended here in the sense that an exterior
observer can never verify by direct measurement
that the total entropy of the whole universe does
not decrease in 6e process. " However, we know

that the black-hole area "compensates" for the
disappearance of the body by increasing irrevers-
ibly. It is thus natural to conjecture that the second
law is not really transcended provided that it is
expressed in a generalized form: The common
entropy in the black-hole exterior plus the black-
hole entropy never decreases. This statement
means that we must regard black-hole entropy as
a genuine contribution to the entropy content of the
universe.

Support for the above version of the second law
comes from the following argument. Suppose that
a body carrying entropy S goes down a black hole
(which may have existed previously or may be
formed by the collapse of the body). The S is the
uncertainty in one's knowledge of the internal con-
figuration of the body. So long as the body was
still outside the black hole, one had the option of
removing this uncertainty by carrying out mea-
surements and obtaining information up to the
amount S. But once the body has fallen in, this
option is lost; the information about the internal
configuration of the body becomes truly inaccessi-
ble. We thus expect the black-hole entropy, as
the measure of inaccessible information, to in-
crease by an amount S. Actually, the increase in
S» may be even larger because any information
that was available about the body to start with will
also be lost down the black hole. Therefore, if we
denote by b,S, the change in common entropy in the
black-hole exterior (AS, = -S), then we expect that

there are two ways by which the black-hole entropy
can undergo statistical decreases. One of them
depends on the quantum fluctuations of the metric
of the black hole which one has reasons to expect. '
Such fluctuations would be reflected in small ran-
dom fluctuations in the area, and thus in the en-
tropy of the black hole, and some of these fluctu-
ations would be expected to be decreases in entro-
py. However, even if one regards a black hole as
a purely classical object, it is still possible for
its area and entropy to undergo small decreases
when the black hole absorbs a single quantum
under certain conditions. " However, the proba-
bility of such an event occurring in any given trial
is very small. Therefore, the decrease in area
and entropy is of a statistical nature, and is quite
analogous to the decrease in entropy of a thermo-
dynamic system due to statistical fluctuations.
This discussion serves us warning that the law
(19) is expected to hold only insofar as statistical
fluctuations are negligible.

We noticed earlier (Sec. IV) the very large mag-
nitude of black-hole entropy. In fact, one can say
that the black-hole state is the maximum entropy
state of a given amount of matter. The point is
that in the gravitational collapse of a body into a
black hole, the loss of information down the black
hole is the maximum allowed by the laws of physics.
Thus if the body collapses to form a Kerr black
hole, all information about it is lost with the
exception of mass, charge, and angular momen-
tum. ' These quantities are given in terms of
Gaussian integrals, ~ and so information about them
cannot be lost. But all other information about the
body is eventually lost. Therefore, the resulting
black hole must correspond to the maximum (gen-
eralized) entropy which can be associated with ihe
given body.

VI. EXAMPLES OF THE GENERALIZED
SECOND LAW AT WORK

d.Sb„+AS, = h(Sb„+S, ))0. (19)

This is just the generalized second law which we
proposed above: The generalized entropy S»+S,
never decreases. Examples supporting this law
will be given in Sec. VI-VII.

This is a good place to mention the question of
fluctuations. We know that the common entropy of
a closed thermodynamic system can decrease
spontaneously as a result of statistical fluctuations,
i.e. , the second law, being a statistical law, is
meaningful only if statistical fluctuations are small.
Is black-ho)e entropy also subject to decreases of
a statistical nature 7 Not classically —Hawking's
theorem guarantees that. Quantum mechanically

In the examples which follow we endeavor to
subject the generalized second law to the most
stringent test possible in each case by maximizing
the entropy going down the black hole with a given
body while minimizing the associated increase in
black -hole entropy.

A. Harmonic Oscillator

As a first example we take an harmonic oscilla-
tor composed of two particles of rest mass yn
each connected by a nearly massless spring of
spring constant K. We imagine the oscillator to
be enclosed in a spherical box and to be main-
tained at temperature T. %'e assume for sim-
plicity that conditions are such that the oscillator
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is nonrelativistic (T«m}. Let ru be the vibrational
frequency of the oscillator. Then the (normalized)
probability that the oscillator is in its nth quantum

state is given by the canonical distribution

d(S +S.)& 5 '"(I+()[-'+(e*-I) ']»2

-x(e*-1) '+ ln(1-e *), (24)

P„=(1-e *) 'e "*, «=I(g/T. (20)

The entropy of the oscillator as computed from
(10}is

where we have introduced the notation $ =—m(E)
and used Eqs. (21) and (22) for S and (E) . We
now show that 4(Sb„+S,}&0as required by the
generalized second law. The expression in (24)
regarded as a function of x for given $ has a
single minimum at

S=x(e* —1) ' -ln(1-e *), (21)

and the mean vibrational energy, ~2 (1+ () ln2

(E) =—QP„(n+ a)g&u, which has the value

is —,'x +in[1-exp(-x )] .

(22)

h&(E) I/2m-1/2+-1

Remembering that p &m+(E) (because the box it-
self must have some mass) we obtain

dS „&(E)' m (k(u) '(m+(E)) ln2. (23)

We assume that the entropy given by (21) is the
only contribution to the entropy in the box. This
amounts to neglecting the contribution of the black
body radiation in the box, etc. , a sensible proce-
dure if T is not very high. Then AS, = -S and we
have

We remark that the thermal distribution (20) max-
imizes the entropy of the oscillator for given (E),
and is thus ideally suited to our plan for subject-
ing the generalized second law to the most strin-
gent test possible.

Suppose that the box goes down a Kerr black hole.
The corresponding increase in black-hole entropy
cannot be smaller than the lowest limit derived by
the method of Appendix A. From (15) and (16) we
have h,S»- p,bk ' ln2, where 5 is the outer radius
of the box and p. is its total rest mass. Clearly &

must be at least as large as half of the mean val-
ue (y) of the separation of the two masses y. And

(y) in turn must clearly be larger than dy, the
root mean square of the thermal oscillation of
y [(d,y)' =—((y-(y)))], so that y will always be posi-
tive. Now according to the (quantum) virial theo-
rem a(E) is equal to the mean potential energy of
the oscillator —,'K(Ey)'. Since the reduced mass of
the oscillator is 4m, we heve K=~ n@u . We thus
find from all the above that

Our assumption that the oscillator is nonrelativ-
istic means that f»1, and hence that x»2ln2.
Under these conditions the minimum is positive
(in fact, it is positive for $&1). It follows imme-
diately that 6(Sb„+S,} is positive for all x and all (
which are compatible with the requirement of a
nonrelativistic oscillator. The generalized second
law is obeyed over the entire regime for which our
treatment is valid.

B. Beam of Light

As a second example we consider a beam of light
which is aimed at a Kerr black hole. This example
is particularly interesting because it shall bring
us face to face with the issue of fluctuations as a
limitation on the applicability of the second law.
We shall restrict our attention only to those
cases for which geometrical optics is a valid ap-
proximation. We shall thus represent the path of
the beam by a null geodesic in the Kerr background.

We shall take it that the beam is thermalized at
a certain temperature T. This implies that its en-
tropy is a maximum for given energy. The entropy
is easily calculated; in fact, the entropy and ener-
gy for each mode in the beam are given by the same
expressions (21) and (22) which apply to a, harmon-
ic oscillator, except that one must omit the zero-
point energy term 2k'. The total entropy S and
mean energy (E) of the beam are obtained by in-
tegrating these expressions weighed by the con-
ventional density of states

p=2uP (2w} ' VdA

over all v. In (25) V is the volume of the beam
and dQ is the solid angle it subtends. Integrating
by parts the expression for S, one easily obtains
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the relation

(26)

which, not surprisingly, is identical to that for
radiation inside a black-body cavity of tempera-
ture T." [In Ref. 12 (26) was given with an incor-
rect numerical factor. ]

As the beam nears the black hole, it is deflec-
ted by the gravitational field. Insofar as its effects
on electromagnetic radiation are concerned, a
stationary gravitational field can be mocked up by
an appropriate nonabsorbing refractive medium in
flat spacetime. " But the propagation of a beam of
light through such a medium is a reversible pro-
cess." We infer from this that the entropy of the
beam will remain unchanged as the beam nears the
black hole. Thus the entropy change of the visible
universe when the beam goes down the hole is just

(27)

What is the increase in black-hole entropy asso-
ciated with the process? From (8) we see that
the increase in n is minimized when the angular
momentum that the hole gains from the beam is
maximized for given (E) . Now, the gain in angu-
lar momentum is limited because the beam will
not be captured if it carries too much angular mo-
mentum. In Appendix B we take this into account
in calculating (in the geometrical optics limit} the
minimum possible increase in a for given (E) of
the beam. We find that hn&PM(E) where P ranges
from 8 for the case of a Schwarzschild hole to
4(I-v 3/2) for the case of an extreme Kerr hole,
this last value being the smallest possible P. From
(16) it follows that

turned out to be impossible for ~d, S, ~
to exceed

4S», and so a violation of the second law was
ruled out. But there is a way to circumvent the
restriction on T. One simply selects the temper-
ature T (arbitrarily) to be as small as one pleases,
and arranges for all frequencies e&~,' to be fil-
tered out of the beam. Here ~,'»M ' is a definite
frequency unrelated to T. It should be clear that
geometrical optics will be a valid approximation
for this case also, so that we may take over the
result (28). But the result (27) must be modified
since we are here dealing with a truncated fre-
quency spectrum. We are mostly interested in
the regime T«ke,'. Then for all frequencies in
the beam x=k&u/T» 1. It follows from (21) and
(22) that for each mode the entropy to energy ratio
is T ' (S=xe *, (E) =if&ye '). Therefore instead
of (27}we have

gS, =-(E) T '.

It now appears that if

T & T, =—K(—'PM ln2) ',

then AS»+AS, will be negative in contradiction
with the generalized second law.

The resolution of the above paradox is that in
the regime 7& 7, statistical fluctuations are al-
ready dominant so that our entire picture of the
process is invalid. To verify the importance of
fluctuations we calculate the mean number of
quanta N in the beam by integrating the mean num-
ber of quanta per mode, (e*-1) ', weighed by the
density of states (25) over all ~&&u,'. For T = T,
we get (recall that /f&u,'/T, » 1 by our assumptions)

aS,„& (-', P ln2)M g '(E) . (28)
N=, —5 '( 6M &u,

' )' exp(- t M u&,
' ),M 4m

(31)

Our assumption (Appendix B) that geometrical
optics is always applicable means that the bulk of
wavelengths in the beam are much shor ter than
the characteristic dimension of the hole =M. Thus,
if cu, is some characteristic frequency in the beam,
then we require that (,»M '. From the form of
the Planck spectrum (22) we see that II~, ~T;
therefore (27) tells us that

(29)

Comparison of (28) and (29) shows that a violation
of the generalized second law (19) cannot arise in
the regime under consideration.

In the above discussion the condition that geo-
metrical optics be applicable prevented us from
taking T to be arbitrarily small. As a result it

where 6=—2 p ln2 (0.2 -5&2.8). It is clear that for
any beam aimed at the black hole dQ/4g«1. Re-
calling that M~,'»1 by assumption, we see from
(31) that each quantum occupies a mean volume
much larger than M'. But the cross section of the
beam must be smaller than -M2 if the beam is to
go down the black hole. Thus the mean separation
between quanta is much larger than M, the char-
acteristic dimension of the black hole. In case
T& T, the above effect is even more accentuated.

We conclude that in the regime T&T, for which
the second law (19}appears to break down, our
description of the process as a continuous beam
going down the black hole is invalidated by the
large fluctuations in the concentration of energy
in the beam (or equivalently, the large fluctuations
in the energy of each section of the beam). In this
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regime (E) is no longer a good measure of the

actual energy. It appears, therefore, that statis-
tical fluctuations are responsible for the break-
down of the second law in the context in which we

have applied it here. But we can demonstrate that
the law has not lost all its meaning by adopting a
point of view more suitable to the circumstances
at hand than the one used above.

We take the point of view that quanta are going
down the black hole one at a time, rather than in
a continuous stream. Thus we must check the
validity of the generalized second law for the infall
of each quantum. The analysis of Appendix B
still leads to formula (28) for the increase in black-
hole entropy except that (E) is replaced by Nor,

the energy of the quantum. To compute the
common entropy going down the black hole we
reason as follows. From our point of view a quan-
tum of definite frequency is going down the black
hole. Thus we are no longer dealing with the prob-
ability distribution (20); instead we shall ascribe
probability 2 to each of the two possible polar-
izations of the quantum. Then according to (10)
the entropy associated with the quantum is ln2.
Therefore,

E =2pbe,

where 6 is defined by (9a). It follows that in low-
ering the box from infinity to the horizon, the
agent obtains only work g(l-2b6) rather than p.
After the box has radiated into the black hole, its
rest mass becomes p, —b, p and according to (33)
its energy at the horizon is just 2(p-b. g)b6.
Thus the agent must do work (p, —b, g) (1-2b6) to
retrieve the box to infinity where its energy is

Therefore, in the over-all process the
agent obtains net work b, p(1-2b6) in exchange for
the expenditure of heat hp, . The efficiency of
conversion is

e = 1-2be, (34)

The box under consideration must have a non-

zero radius (see below). Because of this its en-
ergy as measured from infinity is never quite zero
when it is as close to the horizon as it can possibly
be. We shall assume that the box is in the shape
of a sphere of radius b. Then according to the
analysis of Appendix C the minimum value of the
energy is

hS~„+b,S, & (aP ln2)M&u —ln2. (32)

Since ~P ~ 0.268, and since we are assuming that
Me»1, we see that AS»+AS, is in fact positive:
The generalized second law is upheld for the infall
of each quantum.

VII. A PERPETUAL MOTION MACHINE
USING A BLACK HOLE?

Geroch" has described a procedure using a black
hole which appears to violate the second law of
thermodynamics by converting heat into work with
unit efficiency. He envisages a box filled with
black-body radiation which is slowly lowered by
means of a string from far away down to the hori-
zon of a black hole, at which point its energy as
measured from infinity vanishes. Therefore, if
the box's rest mass is p. , then the agent lowering
the string obtains work equal to p. out of the pro-
cess. The box is then allowed to emit into the
black-hole radiation of (proper) energy Ap. . Fi-
nally, the agent retrieves the box; since its rest
mass is now p, -6p. , he must do work p, -Ap to
accomplish this. Therefore, in the whole process
the agent obtains net work 6p, at the expense of
heat 6p, —conversion with unit efficiency. We
shall now show that, in fact, due to fundamental
physical limitations, the efficiency of the Geroch
process is slightly smaller than unity, so that no
violation of the second law is entailed here.

which is smaller than unity. In practical situations
b«x, so that be«1 and the efficiency can be quite
near to unity. But the departure of ~ from unity,
albeit small, serves to resolve the problem raised
by Geroch's example: There is no violation of the
Kelvin statement of the second law. "

We must now explain why b cannot be arbitrarily
small. Physically the reason is that the box must
be large enough for the wavelengths characteristic
of radiation of some temperature T to fit into
it. More formally we can argue as follows. The
frequency of the photon ground state associated
with the box, coo, cannot exceed that frequency co~

at which the Planck photon-number spectrum

ccJ' [exp (her/T) I]-
peaks. Otherwise the frequencies of all photon
states would lie in the exponential tail of the spec-
trum, the occupation number of each state would
be small, and the resulting large fluctuations
would make the concept of temperature meaning-
less. We have the conventional relation w,b'= w,
where b' is the interior radius of the box (b'& b),
and we easily find that h(d~&2T. Therefore, cu,& ~~
implies that b& wk/2T. It is thus clear that there
is a lower limit for b.

We may write the efficiency (34) in a more trans-
parent form by recalling that 6 = a T „ In2/5 [see
(18)], where T~„ is the characteristic temperature
associated with the black hole. Since b&wh/2T we
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find that

e « I T»-/T . (35}

We now recall that the efficiency of a heat engine
operating between two reservoirs, one at temper-
ature T and the second at temperature T»& T, is
restricted by e &1-T»/T. We thus see that the
Geroch process is no more efficient than its
"equivalent reversible heat engine. " This obser-
vation makes it evident again that Geroch's pro-
cess is not in violation of the second law of thermo-
dynamics. Finally, we wish to remark that since
our primary formula (33}is valid only when the
box is small compared to the black hole (be«1),
we can vouch for the validity of (35) only when

T»«T. However, due to the smallness of T» this
condition will be satisfied in all cases of practical
interest.

We now verify that the Geroch process is in
accord with the generalized second law (19). We
mentioned earlier that the agent obtains work
a p(1-259) for a decrease A p in the rest mass of
the box. This means that the black hole's mass
must increase by 2A pb8 in the complete process.
According to (6) and (16) the corresponding in-
crease in black hole entropy is AS»=h, p.M ln2
(angular momentum is not added to the hole; see
Appendix C). But since 5& vg/2T we have that

ds' =g«dt'+2g, edtdg+geedp'+g«dr +geed8'.

For later reference we give g„„:

g„„=(r'+ a' cos' 8}A ', (A2)

where

increase incidental to the process of bringing the

particle to black-hole horizon. For example,
there is some circumstantial evidence for believ-
ing that when the particle is lowered into the
black hole by a string, there occurs an increase
in black-hole area even as the particle is being
lowered. " Furthermore, the area will experience
an additional increase due to the gravitational
waves radiated into the black hole by the string as
it relaxes when the particle is dropped. " Similar-
ly, if the particle falls freely to the horizon )t
emits gravitational waves into the hole even before
it falls in; the amount of radiation may even be
significant. '4 This radiation will also result in an
increase in area. Here we shall ignore all these
incidental effects and concentrate on the increase
in area caused by the particle all by itself.

We assume that the particle is neutral so that it
follows a geodesic of the Kerr geometry when fall-
ing freely. We shall employ Boyer -Lindquist
coordinates for the charged Kerr metric"

AS» & (—,
' v 1n2) d. p/ T . (36)

AS, = -n, p/T . (37)

On the other hand, the decrease in entropy of the
box is clearly n. p/T (heat/temperature) Thus.

A —=r'-2Mr+a'+Q (A3)

The event horizon is located at r =r, where r, are
defined by (7}. We have

From (36) and (37) it follows that A(S»+S, ) & 0 as
required by the generalized second law.

6=(r r) (r-r, ) . - (A4)
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APPENDIX A

Here we shall calculate the minimum possible
increase in black-hole area which must result
when a spherical particle of rest mass p, and
proper radius b is captured by a Kerr black ho)e.
We are interested in the increase in area ascrib-
able to the particle itself, as contrasted with any

First integrals for geodesic motion in the Kerr
background have been given by Carter. 2' Christo-
doulou' uses the first integral

E' [r'+a' (r'+ 2Mr —Q')] —2E (2Mr —Q') aP e

(A5)

as a starting point of his analysis. In (A5) E = -p,
is the conserved energy, p& is the conserved com-
ponent of angular momentum in the direction of the
axis of symmetry, q is Carter's fourth constant of
the motion, "p, is the rest mass of the particle,
and p„ is its covariant radial momentum.

Following Christodoulou we solve (A5) for E:
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E =Bape+([B'a'+A '(r' 2-Mr+@')]pe'

+A '[(p,'r'+q)A+(P, &)']}' ',

where

A -=r'+a'(r'+2Mr —Q'),

B —= (2My- Q')A ' .

(A6)

(A8)

scribe the motion of the particle's center of mass
at the moment of capture.

It should be clear that to generalize Christo-
doulou's result to the present case one should
evaluate (A6} not at r=r, , but at r=r, +6, where
5 is determined by

r +5
~~2' = b

Y+

(r=r, +5 is a point a proper distance b outside
the horizon). Using (A2} we find

At the event horizon b, =0 [see (A4)] so that there

A =A, = (r+'+a~/,

B =B,=(r,*+a*) '. (A9}

Furthermore, at the horizon Ba =Q [see (9b)],
and the coefficients of Pe and g~rl+q in (A6) van
ish. However,

p„n, =(y +a' cos'8) p'

does not vanish at the horizon in general. If the
particle's orbit intersects the horizon, then we
have from (A6) that

E =Qpg+A+ IPr &I+ ~

E =Op~. (A 10)

As a result of the capture, the black hole's mass
increases by E and its component of angular mo-
mentum in the direction of the symmetry axis in-
creases by Pe. Therefore, according to (8) the
black hole's rationalized area will increase by
e-'A, -' * (P„a,~

. As pointed out by Christodoulou
this increase vanishes only if the particle is cap-
tured from a turning point in its orbit in which
case ( p, n. (,=0. In this case we have

(y ~+a cos28) ~ (y y ) &/2 (All)

To obtain this we have assumed that r, -x»6
(black hole not nearly extreme). Expanding the
argument of the square root in (A6) in powers of
5, replacing 5 by its value given by (A11), and
keeping only terms to O(b) we get

E =Qp, +[(r,*-a*)(y, '+a*) 'pe'+ i 'r, '+q]'~*

x —,'b(r, r)(r,-+a ) (r, '+a cos 8) ' '

q ~ cos'8[a' (p' E') +P e'/sin-'8]; (A13)

the equality holds when Pe=0 at the point in ques-
tion. If we replace E in (A13) by Qpe [see (A12)]
we obtain

Here v-e have already assumed that the particle
reaches a turning point as it is captured since we
know that this minimizes the increase in black-
hole area. Equation (A12} is the generalization to
0(b} of the Christodoulou condition (A10).

What is q in (A12}'P We can obtain a lower bound
for it as follows. From the requirement that the
8 momentum Pe be real it follows that "

The above analysis shows that it is possible for
a black hole to capture a point particle without in-
creasing its area. How is this conclusion changed
if the particle has a nonzero proper radius b?
First we note that regardless of the manner in
which the particle arrives at the horizon (being
lowered by a string, splitting off from a second
particle which then escapes, etc ), it mus. t clearly
acquire its parameters E, p&, and q while every
part of it is still outside the horizon, i.e. , while
it is not yet part of the black hole. Moreover, as
the particle is captured, it must already be de-
tached from whatever system brought it to the
horizon, so that it may be regarded as falling
freely. Therefore, Eq. (A6) should always de-

q ~ cos'8[a'P. '+Pe'(1/sin*8 -a*Q*)],

which is correct to zeroth order in b. We know
that 1/sin'8~1; it is easily shown that a'Q' & —,

'
for a charged Kerr black hole. Therefore
q ~ ampm cos28. Substituting this into (A12) we
find

E&Qpg+g gb(r, -r )(r, '+a') ' (A14)

which is correct to 0(b). By retracing our steps
we see that the equality sign in (A14) corresponds
to the case p&=pe=p" = 0 at the point of capture.
The increase in black-hole area, computed by
means of (8), (9a), and (A14), is
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AQ +~ 2)b . (A15)

This gives the fundamental lower bound on the in-
crease in black-hole area. We note that it is in-
dependent of M, Q, and I.

monotonically with a for fixed M. The limit of
(Aa)~ as a-M may be computed analytically
because in this limit one can find the height of the
potential analytically with sufficient accuracy. One
finds

APPENDIX 8 (Aa) -4(1--,'&3)ME as a-M. (B3)

Here we shall calculate the minimum possible
increase in black-hole area which must result
when a light beam of energy E &0 coming from
infinity is captured by a Kerr black hole. If the
black hole is nonrotating the increase is simply
obtained by setting dM=E in (8):

It is clear that for q&0 the potential peak will be
higher and the increase in area will be larger than
the one given by (B3). Thus we find that the min-
imum increase in area results when the beam is
captured by an extreme Kerr black hole from a
purely equatorial orbit.

b, o. = Bled~ for a =0. APPENDIX C

If the black hole is rotating, A, 0. can be minimized
by maximizing the angular momentum P which is
brought in by the beam [see (8)]. To accomplish
this we consider the effective potential V for the
motion of a massless particle in a Kerr back-
ground.

This V is just the value of E given by (A6) re-
garded as a function of r for p=0 and P, =0
(E equals V at a turning point). This potential
starts off at a value QPz at r=r+ (see Appendix A),
increases with r, reaches a maximum, and then
falls off to zero as r-~. For the beam to be cap-
tured by the hole it is necessary that p& be small
enough for the peak of the potential barrier to be
smaller than E of the beam. The optimum case
we seek corresponds to the peak being just equal
to E so that P& has its largest possible value.

It is clear that we must take q in (A6) as small
as possible in order to have the lowest possible
potential peak for given p&. Let us first take q & 0.
Then according to Carter" there are solutions to
the geodesic equation only if (pz(& aE. From (8)
it follows that

n, n= 8 '(E-Qp~)

&8 E(1-Qa).

But since Aa & ~ and 6 ' & &M it follows that

Here we compute the value of the energy (as
measured from infinity} of a particle of rest mass
p and proper radius b which is hanging from a
string just outside the horizon of a Kerr black hole.
It is clear that the particle will not be moving in
the r or 8 directions; hence P" =Pe=0 for it. We
cannot claim that the particle does not move in the

Q direction. In fact, since it will be within the
ergosphere in general, it cannot avoid moving in
the P direction. ' our intuitive notion that the par-
ticle is "not moving" must be applied only in a
locally nonrotating (Bardeen) frame. ~' The particle
is at rest in such a frame if for it

It follows that

dt dy
Pft= 9 ggy d +gyyd

If the particle were to be dropped, it would
clearly keep its energy E and it would still have

p~ =p' = pe = 0, at least momentarily. We may thus
compute E for the particle hanging in the string
at a proper distance b from the horizon by setting
P&=0 in (A12). For q we take the value given by
(A13) with the equality sign (pe =0) p& = 0, and
E= 0 [since for P &

= 0, E is of O(b)] . Thus

6a & 4MF. for q& 0. (B2)
q= p, 'a' cos'8

Next we take q =0. Two cases are possible ':
Either (p&~ &aE as above so that (B2) is again
applicable, or else the orbit is purely equatorial.
In the second case one may calculate the peak of
the barrier numerically and then find the optimum
increase in a. It turns out that (Acf) decreases

E = -,' pb(r, r}(r,*+a') '-
= 2pbe.
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