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It is verified explicitly to second order in Newton’s constant, G, that the quantum-tree-graph
contribution to the vacuum expectation value of the gravitational field produced by a spherical-
ly symmetric c-number source correctly reproduces the classical Schwarzschild solution. If
the source is taken to be that of a point mass, then even the tree diagrams are divergent, and
it is necessary to use a source of finite extension which, for convenience, is taken to be a per-
fect fluid sphere with uniform density. In this way both the interior and exterior solutions may
be generated. A mass renormalization takes place; the total mass of the source, m, being
related to its bare mass, m;, and invariant radius, ¢,, by the Newtonian-like formula, m
=m,—3Gmy’/5¢,+0(G?, and the infinities in the quantum theory are seen to be a manifesta-
tion of the divergent self-energy problem encountered in classical mechanics.

1. INTRODUCTION

In an attempt to find quantum corrections to
solutions of Einstein’s equations, the question
naturally arises as to whether the 7Z— 0 limit of
the quantum theory correctly reproduces the class-
ical results. Formally, at least, the correspon-
dence between the tree-graph approximation to
quantum field theory and the classical solution of
the field equations is well known,! i.e., the
classical field produced by an external source
serves as the generating functional for the con-
nected Green’s functions in the tree approxima-
tion, the closed-loop contributions vanishing in
the limit #—~0. The purpose of this paper is to
present an explicit calculation of the vacuum ex-
pectation value (VEV) of the gravitational field in
the presence of a spherically symmetric source
and verify, to second order in perturbation theory,
that the result is in agreement with the classical
Schwarzschild solution of the Einstein equations.
This would appear to be the first step towards
tackling the much more ambitious program of in-
cluding the radiative quantum corrections.

Whereas in quantum electrodynamics it is a
comparatively simple matter to obtain the Coulomb
potential by means of the single-photon exchange
from a stationary point charge, the analogous
situation in gravidynamics, where the gauge group
is non-Abelian, proves much more difficult. First-
ly, as has been shown by Arnowitt, Deser, and
Misner? (henceforth referred to as ADM) the
concept of a strictly pointlike source in general
relativity is untenable. There is a minimum in-
variant extension for a particle below which no
solutions of the field equations exist, the space-
time developing an intrinsic singularity at a fi-
nite point in the exterior domain of the particle for
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radii less than this minimum., Moreover, the to-
tal mass of the source would then become negative
and eventually negatively infinite as the point-
mass limit is taken. As we shall see, these dif-
ficulties manifest themselves in the quantum theory
in the guise of divergent tree diagrams when a
point source is used. As a model for the source,
therefore, it is essential to choose a particle of
finite extension.

In their work, ADM pick the simplest model for
such an extended particle, a spherical “shell dis-
tribution” of pressure-free dust for which the
mass density is merely proportional to 5(r - €),
where 7 denotes the radial coordinate and € the
radius of the shell. From the quantum point of
view, however, another dilemma arises. The
quantum-field-theory calculations are most con-
veniently performed in a manifestly Lorentz-co-
variant gauge by employing, for example, the
harmonic coordinate condition of de Donder,?
[(-g)*2g#*] ,= 0. Whereas in the canonical
approach ADM are able to carry out their anal-
ysis in a frame for which the metric is continuous
across the shell, in harmonic coordinates the
usual regularity conditions are violated and the
metric is itself discontinuous. This problem has
been discussed in a previous paper.? One is then
faced with a choice, whether to use the attractive-
ly simple 6-function source and put up with the
attendant problems of discontinuity, or to abandon
the shell in favor of a uniform sphere thus gaining
continuity at the expense of simplicity. In this
paper we shall use the latter.

Finally, there is the question of stability. A
cloud of pressure-free dust for which the inter-
actions are purely gravitational is not a static
configuration. This is clear on physical grounds.
In the absence of phenomenological nongravitational
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pressure terms the cloud of dust under its own
gravitational attraction is unstable and will begin
to collapse. To circumvent this problem we use
a static perfect fluid with uniform mass density.

In Sec. II, the classical situation is reviewed
using the most general form of the spherically
symmetric time-orthogonal line element. For
the pressure-free dust a coordinate-independent
mass-renormalization formula is derived, valid
at the moment of time symmetry, which relates
the total mass of the source to its bare mass and
invariant size. The generalization involved in
going over to a perfect fluid is straightforward.
To solve the field equations explicitly, of course,
coordinate conditions must be imposed. In the
third section of the paper, the particular features
of de Donder coordinates are exhibited in order
to facilitate a direct comparison with the quantum
theory.

Section IV is devoted to the quantum calculation
of the VEV of the gravitational field to fourth or-
der in the coupling constant, «, (i.e., second or-
der in G). This involves a knowledge of the rather
complicated 3-graviton vertex function. No attempt
is made to compute the four-point graph or higher-
order contributions because of the labor involved.
However, the 3-point diagram in which the source
acts twice will be sufficient to display the intrin-
sic nonlinearity of the theory, and, as we shall
see, the mass-renormalization effects.

II. THE CLASSICAL SITUATION AND
MASS RENORMALIZATION

In this section we shall summarize some of the
classical results needed before making the com-
parison with the quantum theory. To begin with
we confine ourselves to the pressure-free dust
model and postpone discussion of the pressure
effects until later. The Einstein equations

G,F=-3k2T,*, k%=161G (2.1)

describing the interaction of gravitation and mat-
ter, may be divided into two categories: the four
initial value or constraint equations which relate
the Cauchy data of the system at some initial time,
and the time development equations describing the
evolution of these data from their initial value.
ADM have made this particularly clear using a

(3 + 1)-dimensional decomposition of the dynamics.
We refer the reader to Ref. 5 for a detailed dis-
cussion. The four constraint equations are just the
field equations

Gl=-3k2T,°, (2.2)

where for a pressure-free dust the energy-momen-
tum tensor is given by

T * = putu,. (2.3)

. denotes the proper rest-mass density and #* is
a 4-velocity satisfying

g,“,u“u"= -1. (2.4)

Since we are not interested in the time develop-
ment of the system, we shall, for simplicity, con-
centrate on the moment of time symmetry. That
is to say, we imagine the cloud of dust to be ex-
panding at some time during the past, gradually
coming to rest at = 0 under its gravitational
attraction, and then collapsing as we move off the
hypersurface. For static initial data and for co-
ordinate frames with time lines orthogonal to this
3-dimensional hypersurface, it follows that

i,j=1,2,3 (2.5)

initially, which means that the initial surface is a
moment of time symmetry. In this case the initial
constraints now reduce to

o_ _1L 2 0o
Go = -2k To ’

G,°=0.

gi,‘:O;

(2.6a)
(2.6b)

The most general spherically symmetric time-
orthogonal line element may be written in the form

ds? = Fedy® + H?dQ - N2df? 2.7

where d2 is the conventional solid-angle element,
The metric has the form

8= —N?, (2.8a)
H? H?\ x¥x?
85 =57 Mij +<F2-'r_"’>_r"’— (2.8b)

in rectangular coordinates with x* x* =72, F, H,
and N depend only on » and ¢ and F = H = 0 initially
since g;; = 0 initially.

Such a metric depends on only two unknown
functions and the choice of coordinates amounts to
imposing a constraint on F, H, and N. For ex-
ample, the choices F=H/r and H = 7 yield the iso-
tropic and conventional Schwarzschild frames,
respectively. However, for the purposes of ob-
taining a coordinate-independent mass renormali-
zation formula, we shall not resort to a particular
coordinate choice but merely mention that the dif-
ferent frames under consideration are related to
each other by redefinition of the radial coordinate.
Under transformations of this type H and N behave
like scalars and F like a scalar density of unit
weight. One may show that

Gl=3 R

= H—iH—,[H<1 -H?zﬂ , 2.9)
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where 3R is the scalar curvature of the 3-space
and is independent of N. If we now consider a
spherical matter distribution with uniform den-
sity p and radius €, then

_Too= p(r)

= péle = 7). (2.10)

Both » and € are coordinate-dependent quantities.
€ is the radius of the shell as measured in a frame
where 7 is the radial coordinate. For convenience
we have put the origin at the center of the sphere.
Equation (2.6a) now reads

2 H 2 4
0= g (L)

= 161Gpé(e ~7). (2.11)
If we define the invariant quantity

_H

= (2.12)

and use the subscript + (~) to denote the exterior
(interior) forms, Eq. (2.11) yields®

r
K_2= 1-8"—0-‘1f drH2H'
H 0
H%(r)
RE

K,2=1-81C0 f arH?H'
H 0
2Gm
TH(r)
where R? = 3/87Gp and

(2.13a)

=1 (2.13b)

m = 5 mpH 3(€) (2.14)

is to be identified with the total mass of the system
as seen by an outside observer.”

There are two criteria for measuring the initial
gize of the system. The invariant “circumference”
of the sphere is 2nH(e), H(r) being the coefficient
of the solid-angle element dQ in the line element.
Henceforth H(e) is denoted by €,. There is also
the invariant “radius, ” €,, defined by

€, = fo (&) 2D (2.15)

For a shell distribution space is flat in the interior
and €,=€,. In general, however, they are dis-
tinet, and in our case we have

€, =[“F_ar

0o

= in~! S‘-
R sin <R > (2.16)
from Eq. (2.13a). The total mass, m, is clearly
an invariant. We now wish to relate this total
mass to the unrenormalized mass, m,.

The standard form of the Einstein equation (2.11)

is to be compared with the one obtained in the

(3 + 1)-dimensional formalism of ADM by varying
(with respect to N) the Lagrangian describing the
coupling of the gravitational field to a neutral
particle of bare mass m,.® This bare mass is the
inertial mass of the particle in the limit of zero

coupling (G = 0). There we have
(23R = k2pyr), r<e. (2.17)

’g=(FH?/r®) is the determinant of g;;. The bare-
mass density p,(r) is related to m, by the equation

mo=fpod3'r, (2.18)

the dynamical equations determining p, uniquely
and in such a way that m, remains constant. Com-
parison of (2.11) and (2.17) gives

po= p(g)*" (2.19)
and therefore
m, =fp(3g)1/2d3r. (2.20)

Treating H as a radial coordinate we could now
write

m:fp_dsH (2.21)
and
d*H
mo =fu, K (2.22)
_ s € —&< _€a>1/2]
27pR [sm (R) R 1 R
(2.23)
=3 3\1 3¢ ) 2.24
=3 TpE, *10RE * (2.24)
3 Gm?
=m +§ ec + (2.25)
Turning this equation around, we obtain
2
m=m,-3 0 L oG (2.26)
c

This formula, valid at the moment of time sym-
metry, relates the total mass of the system to its
bare mass and invariant extension. It resembles
the Newtonian self-energy formula for a massive
sphere in classical mechanics,® and was derived
without resorting to a particular coordinate choice
using the energy-momentum tensor of a dust
cloud given in Eq. (2.3).

The argument is now easily extended to the case
of a perfect fluid with

T} =(u+p)utu, +p6 ", (2.27)

p denoting the pressure. The important point is
that, for constant mass density, the constraint
equation (2.6a) and hence the mass renormaliza-
tion formula remain unchanged even when pressure
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terms are introduced. Now, however, the other
equations G,'=-3«*T,' may describe a truly static'
situation and Eq. (2.26) holds not merely at the
moment of time symmetry but for all time. More-
over, we may now express the remaining metric
component N and the pressure p in terms of K. We
omit here the algebra and state the results

N_=3K_(€)-3K (), N.=K., (2.28)
p'p(sx_(e)_x_(r)) ole=7). (2.29)

Note that all the metric components F, H, and N
and the pressure p are continuous across the
boundary. As far as derivatives of the metric are
concerned H’ and N’ are continuous; F’ may or
may not be, according to the choice of coordinates.

IIIl. THE DE DONDER GAUGE

In the previous section the mass formula was
derived in a coordinate independent fashion. To
solve the Einstein equations explicitly, of course,
coordinate conditions must be imposed. Moreover,
having solved the equations in a particular frame,
the invariant size €_ and hence the total mass may
be expressed in terms of the coordinate dependent
radius €, The quantum-theory calculations will be
performed in the harmonic gauge of de Donder. In
these coordinates the metric satisfies the four Lo-
rentz-covariant equations

[(-g)"%g*], , =0 (3.1)

in analogy with the Lorentz gauge condition A* , =0
in electrodynamics. (Here g denotes the determi-
nant of the four-dimensional metric g,,.) In con-
trast to the isotropic and Schwarzschild conditions,
the above relation is a differential constraint which
involves not only g, but g,; and N also. Once again
choosing time lines orthogonal to the three-dimen-
sional hypersurface we have g° =0 and in the static
case the de Donder condition reduces to

((-g)"2g*], ;=0 (3.2)
The relevant quantities are
H2
(-g)"’=Fer , (3.32)
2 .. (1 7 > i
ij i —_——— )| X
g —}72'71 T+ (Fz ") 72 (3.3b)
and Eq. (3.2) becomes
2xr\?
(HFN> =27FN. (3.4)

It is worthwhile noting that this implies the con-
tinuity of F’ so that in de Donder coordinates all
the components of the metric and their first deriv-

DUFF
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atives are continuous across the boundary of the
sphere.!’ This is in contrast to the shell situation
where there are severe problems with discontinu-
ity.*

The exterior solutions of the Einstein equations
subject to the constraint (3.4) are

_r+Gm

H,=r+Gm, F,’= 2 L=Cm

¥-Gm’' ' r+Gm

(3.5)

where 7 is now the harmonic radial coordinate.
The invariant size of the sphere €_ is merely

€.=H(e)=€+Gm. (3.6)

So from Eq. (2.25)
2
m:mo—%c—rgo—+0(62). 3.7

An explicit form for the interior solutions is
harder to find but to lowest order we have

3 13
Hoere (3535 )om, (6.8
31 172
F =1+(§Z—-2—?>Gm’ (3.8b)
3 Gm 1 Gm»r?
N-=§<1’T>'§(1' T). e
with
P(r)=gpi’p?(€® = *)6(e - 7) . (3.9)

Finally the metric in harmonic coordinates is ex-
hibited in the form which we will attempt to repro-
duce from the quantum tree graphs.

2
gm=—1_r—— — +0(G®), r>e (3.10a)
2Gm  3G*m?
g"=(1 4 r"’m > N
2,2 i d .
-E5 EE Lo, r>e (3100
and
g°°=-1-3G€—’”+G’€’§72 0, r<e (3.11a)

with

g° =0 everywhere.

IV. THE QUANTUM THEORY

The action integral required for the perturba-
tion expansion

A=fd4x £(x) (4.1)
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will be written as the sum of three terms with gauge. Firstly, we examine the explicit form for
A=Ag+A +A, L6 whlc.h‘may be expressed in terms of the ten-
sor densities
- fd4x[£c(x)+£¢(x)+£‘,(x)], (4.2) g’w=(—g)1/2g‘w’ ﬂpu=(“g)-”2guu9 gupg“o =5g
. . (4.3)
£, is the familiar Einstein Lagrangian for the
gravitational field, and £; is the additional term in the very convenient form given by Goldberg.!?
describing the interaction of gravity with the mat- It differs from'® x~%(-g)'/?® by a total divergence
ter source. The part £, which breaks general and contains no derivatives of ¢*” higher than the
covariance, is added to specify the “graviton” first:
J
1
£e =8_K2(29p09>\1 8cr =87 81k Brr —45g5€\9,7)9“(, PgXTv o (4.4)

Our quantization procedure is now to set
BR =t 1 kP, PFY =gV, (4.5)

and to expand £, in powers of k. Terms independent of x represent the free Lagrangian while the remain-
der gives the interaction Lagrangian. Thus, we have

Lo(P) =EQ+ k€Y + 2L 4+ | (4.6)
‘E(g) =%(2npdn aTr _nponu(n AT T 45?5{;\7’”)&)1K' pé)\.r, o (4-7)
£X) =5 (=4nP1 3 Mee 1 + 207 N30 oM 1 + 2080 M, My = O508MM o, + 4080l 1g) POEPX AT . (4.8)

To implement the de Donder gauge condition

g ,=0, (4.9)

we add the noncovariant'* term

1
£o=53Muw8" 8" 5

=%npy&)ya, u&)us, B (4'10)

in accordance with rules given by Fradkin and Tyutin.!® (Since we intend to restrict ourselves to tree
graphs only, the difficulties of fictitious particles occuring in closed loops may be ignored.) By choosing
the density g"” as the interpolating field, the additional £, modifies only the free Lagrangian. The free
propagator of ¢*” may easily be calculated from £ +£,. It is given by the time-ordered product

(0] T{¢""(x) P (x")}| 0y =GH*°(x - x") , (4.11)

where, in momentum space,
1
Guvpo(kz)=duvpak_2 , (4.12)

dFIPO =Py L o P _ Vo (4.13)

A knowledge is also required of the bare vertex function, fal By apBy a8, (¥, 4, ¥°) describing the 3-graviton

interaction. This is most easily computed using DeWitt’s'® method of repeated functional differentiation of
the Einstein action Ag:

- 534

Faupaspaasss( 4 ) = guammiorys g o 276 4708y I,m o 4.19)
(A bhas a vanishing 3rd derivative since £, is bilinear in the field g"*.) Writing

A(é)=fd4x.ﬁ(al)(x) , (4.15)

Eq. (4.14) may be written
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- 5340)
r“181%52ﬂ353=5¢°‘1 15 ¢ °2P25 p*3Ps -

1=3

(4.16)

Using Eq. (4.8) a straightforward calculation gives, in momentum space,

faleluzﬂzasﬁs(kly k27 ka) = - SYmPe%(-4na3azn52dln838lk2 * k3 + ZnazﬂznasulnﬂaﬂlkZ - k3 - n%ﬂgn%ﬁskZUlkSBl

+2M o, 0,8, 8520, 38, + Maye,M848,R20R38,) - (4.17)

The “sym” standing in front of this expression in-
dicates that a symmetrization is to be carried out

on each index pair «,8,, @,8,, and o,;8,. The sym-

bol P, means that a summation is to be performed
over all six permutations of the momentum index
triplets a,B,k,, @,B,k,, a;B,k,. In the above equa-
tion we have omitted an over-all § function ex-
pressing conservation of momentum.

So far, the density g*” has been chosen as the
interpolating field rather than g*” because £, and
£ and hence the 3-point function of (4.17) are
much simpler in this form.'” In computing the
VEV of the gravitational field, however, we pre-
fer to use the more familiar g"” for reasons which
will become clear later. Setting

& =" + k", (4.18)

the Einstein Lagrangian may again be expanded in
a fashion similar to Eq. (4.6),

Lo(9)=L2 + k&Y +2L2 4+ -+ . (4.19)

However, the explicit forms for £J and £3’ are
rather complicated and we shall not write them
down. In the de Donder gauge (though not in gen-
eral), the free propagator for ¢*’ field is the
same as that for ¢**. The higher-order vertex
functions, however, are different.

We now turn to the rather delicate problem of
choosing the source term £,. First of all we de-
fine

Juu = (_g)1/2 Tuu ’ (4~20)
where T, is the energy-momentum tensor given
in Eq. (2.27). If we now insert the interior form
of g*” known from the classical theory [Eq.
(3.11)], into the above equation, then to order «?,
J,, is simply

Joo’_‘“-(r)’ J”=P(‘V)'fh, 5 (4.21)
where 1 and p are given by Eqs. (2.10) and (3.9).
Next, we note that if the Einstein equations

1

7(—g)”26“,,+§J”,, =0 (4.22)
are to be obtained by functional differentiation of

the action (A; +A,), then we must have

6A
Py p =3d (4.23a)

since
6A,. 1
gg—u% =5 (-8)'"*G,, . (4.23b)

Unfortunately, in gravity theory (as in all non-
Abelian gauge theories), the introduction of a
purely inert external source is complicated by
the fact that the source itself depends on the field.
The components of the matter tensor 7"’ are not
all independent but satisfy the divergence condi-
tion

T ,=0. (4.24)

However, by adding the noncovariant piece £, to
the Lagrangian the gauge symmetry (general co-
variance) is broken and the above constraint no
longer holds. If we now choose A, to be

A, =% [ atsg 0 (4.25)

and regard J,, as being a known classical func-
tion of x [Eq. (4.21)], and no longer a functional
of the metric, then functional differentiation with
respect to g"” yields the correct term in the Ein-
stein equation (4.23a). We may now proceed to
calculate the VEV of the gravitational field in the
presence of the external classical source J,, in
the usual way.

The S matrix is given by the Feynman-Dyson
expression

S,:Texp(ifd‘x[£in,(x)+£,(x)]> R (4.26)

where £, describes the self-interaction of the
gravitational field and subscript J reminds us of
the presence of the external source. The VEV of

+ &ﬂ —{—q{-
(b) © (c)}

FIG. 1. Feynman diagrams for the VEV of the gravi-
tational field in the presence of a c-number source (de-
noted by the circles). The closed loops have been
ignored.

*_0+

@
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the gravitational field is then and ¢*? the corresponding field operator in the
interaction picture. |0) and (0| denote the unper-
MKy
(P Ux)Y, = (o T{gl) S(T)gl}l 9 . 4.27) turbed vacuum state. Ignoring closed-loop contri-
( A0 butions, the usual Wick expansion to order «*
" is the field operator in the Heisenberg picture gives, in momentum space

K¢ HH1 i(k,)); = sK2GH1V1M "1(k12)Jm‘ﬂl(kl).q.%;(‘l f a*k,d%k,G* 171 Bl(klz)G“z "2“252(k22)cﬂa"3“353(k33)

X 64k, + Ry + B3) T a b, 0y 8y cs 85 s Bas B30T g 10 (02) T (k)
(4.28)

These two terms may be represented by the Feynman diagrams of Figs. 1(a) and 1(b). The vertex function
T is the 3-point function calculated using the field ¢*,

r

2 _ 83 A +A,l
alﬂl%ﬂzdaﬁa(xl’ X ) xs)—GgulBl(xl)dgdzgz(xz)ﬁgaaﬁs(xg) I([lll=r’ull . (4.29)

It is to be distinguished from T of Eq. (4.17) which was obtained using $*”. From Eq. (4.12) we see that
the above expression for the VEV requires a knowledge of

o8 8 ogB
dt1v1%1BLghavaazBagligvgag 3r“151“282“363 . (4.30)

Since I' is much more complicated than I', an evaluation of this quantity would involve considerable labor.
Therefore, the following trick is employed. By repeated use of the relationship

6g%8(x)
68HYx")

it is not difficult to show that

L@r1vioaBigravaoeBagiavsog By

=3(=g) 26565 +6562 — g,,0%B)0 (x, x") , (4.31)

o B1opB8y0383
=TH1V1HaVak3Vs -%Pz(é“x"x“z”zn“s Vs §H3VstiViptaVs - §F2VaFsVantil 4+ Inhs "Ln“z"zn”s"s)kaz ,

(4.32)

where the symbol P; means sum over the three cyclic permutations of the momentum-index triplets u,v,k,,
KoVyk,, and pgvgk,;, and also

B5HPT =L (nHPn VO ko) | (4.33)

Now the first term on the right of Eq. (4.32), T, is known already and is relatively simple. So we see that
by writing £; and £, in terms of the density g"” it is possible to work out the quantities required in evalu-
ating the VEV of g"” in a reasonably straightforward manner, and this was the reason for switching our
choice of interpolating field from g¢*” to g*”. In addition, a discussion of the source term £ ; was facili-
tated by choosing g"”.

After many diversions, we are finally in a position to work out the VEV. In addition to the invariant
masses m and m,, a third coordinate dependent mass will appear when we evaluate the integrals for
(P*"y,. 1tis

A= gmped (4.34)
and is related to m and m, by [Eqs. (2.14), (3.6), and (3.7)]
2 2
A:m—3G—?—+O(G2)=m°—15—SG—?5L+O(GZ). (4.35)

It will be instructive to define the quantity

eikx

V(x) =1 fd"k—k—z—u(k) , (4.36)

where

w (k) =6(£°) j d*xe~F Xy (%) (4.37)
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then V takes the form of a “potential”

V(r):-Gx[ o(r - €)+ (2 2 %g) e(e—r)] .

I3

(4.38)

If the explicit expressions for the propagators, vertex functions, and sources are substituted back into Eq.
(4.28) for (¢, then Fourier-transforming back to x space, we come across integrals like

&K fd3k A%, %, ' F1 %63k, +k2+k)- E' N AMCAE 2(V8‘B’V),
1

T . = = Ripl -~ o= 1
ﬁ-x"fd%ldskgdakse‘k‘ xés(kl+k2+k3)ﬁ_za-ﬁ_2“(kz)“(k3)=gf(a"’a”’),

1 3
and

p&x) 1
—_ dsx’—:'T D — ,
f 47| x-%/| ve?

where 1/V? denotes the inverse of the Laplacian
operator. The resulting expressions for ( V),
may be simplified using momentum conservation.
After much cancellation we obtain

31

K( ¢00>J 2V+ 2 V2 p VZ (77;,;3*"3 V)
8 2
—?(VV v, (4.42)
~os 1 4 i
K( Py, = <2V—2ﬁv‘2'17 +?(nklakValV)>77“
+%(a‘va"V), (4.43)

the other components vanishing.

We already have a hint of the divergence difficul-
ties. Had a strictly pointlike source been chosen
then V~7»"! everywhere and quantities like

% (Vvv2v)

would be infinite.
Firstly we look at the zero-zero component of
the VEV. Explicitly,

%szv=<-5—f—€> GZ\%0(r - €)
15 3* 3 »*
<@ TS ) @N6lc=7),
(4.44)
1 1 6
'V—z'nklakVB'V= <W—§;—E)Gz)\29(7—€)
3 4
+ (—4? +2763>62X29(€—T) s

(4.45)

(4.39)

(4.40)

(4.41)

3 3 ) 22
+(—8€2+4€ ~%0e8 )G 6le-7).
(4.46)

In accordance with the remarks made in the pre-
vious section one may check that all the above
quantities as well as V are continuous at » =€ and
so are their first derivatives. We now have to
order G2

26 2 6
K<¢°°>J——'—+<—;3—V—€>G27\2 (r>¢)
(4.47a)
( 3 7 57 1502 57) 2,2
'('U?)G‘“(' 3 "3 ) O
(r<e). (4.47)

In anticipation of the desired result we shall now
replace (é“”), by the classical symbol ¢*”. Using
Eq. (4.35) to rewrite the exterior solution (4.47a)
in terms of m, (which unlike » and A does not de-
pend on €), we find

2Gm, 6G*mg?
+
v S5re€

K% = —

+0(G%, r>e¢
(4.48)

and it is now clear that the limit € - 0 leads to true
divergences in the gravitational field outside the
source. However, in terms of the total mass, m,
the €' pieces in the above equation cancel to yield

2G%m’
P

2G 2G2 m?
k% == rm - Ger +0(G?, r>e€. (4.49)
Since
g00=_1+K¢00 ,
we find, happily, that
2Gn 2G?m?
=12 20006 ey (a50a)



I=3

3Gm Gmr?
+—3

€ €
21 9?2 50t
+ (—ZG—.‘;+-2—€;—E)G2m2+O(Ga) (r<e),

(4.50b)

which are precisely the classical Schwarzschild
solutions given in (3.10) and (3.11).

The computation of ¢!/ proceeds in a similar
fashion. To avoid too much algebra we quote only
the exterior solution

1 1 2 xix
?(B‘V*”V)=[<m-gr:)""-v]czf’
r>e (4.51)
and
. 2GA  3G2\? 6sz2) .
ij_ == _— if
ke -< 7y T2 ve )"
i,.4
-szz"rf +0(GY, (4.52)

so that finally, in terms of m, the €' terms again
cancel to give

2,,2 2,2 i,
g,-,:(l_sz +3G12m )TI” G;zn xyic +0(GY),

(4.53)
which is just the classical equation (3.10b).

V. DISCUSSION

By using an extended source to avoid divergences,
we have seen how, at least to order «*, the quan-
tum theory correctly reproduces the classical
Schwarzschild solution in the # - 0 limit, and how
the terms €™, €%, etc., conspire to effect a mass
renormalization consistent with that obtained from
purely classical reasoning. There is every reason
to believe that this correspondence holds to all
orders of perturbation theory, independent of the
choice of gauge or interpolating field.

Having gained an insight into the problem by the
explicit evaluation of the Feynman diagrams, one
is perhaps in a better position to attempt some
sort of qualitative % corrections by including the
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closed loops. However, this is a formidable cal-
culational task. Furthermore, these extra terms
contain all the usual infinities of perturbation theo-
ry and would have to be renormalized. An alterna-
tive approach is possible using the superpropagator
techniques of nonpolynomial Lagrangians and one
might expect to achieve finite results in this way.
The problem of gravitational collapse springs to
mind as one arena where such # corrections may
find applicability. As Wheeler'® has emphasized,
quantum effects must change the complexion of the
problem in regions of high curvature. In this con-
nection we may note that although we chose a stat-
ic perfect fluid as the most convenient source for
our calculations, it is not necessary to do so. A
quantum treatment of collapsing matter, however,
would necessarily be more difficult.

Finally, it is an amusing fact that there exists
one coordinate frame in which each component of
the exterior Schwarzschild metric, when expanded
in powers of G, terminates at first order. This is
the metric given by Eddington,

2Gm
7

ds?=dr? +7%dQ - dt? +

(dr +dt) .

If it were possible to perform the quantum calcula-
tions in Eddington (rather than de Donder) coordi-
nates, one would no doubt find that the sum to all
orders of the tree diagrams could be represented
by the single-graviton-exchange graph of Fig. 1(a),
with an effective source in which the bare mass is
replaced by the already renormalized mass. This
single graph would then describe the gravitational
field everywhere outside the source and not merely
its asymptotic behavior.
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Weyl’s gauge-invariant geometry predicts that the periods of clocks are affected by their previous
history in electromagnetic fields. We have used the Mossbauer effect to search for such an effect with

negative results.

I. INTRODUCTION

The first attempt to formulate a unified field
theory in which both gravitation and electromag-
netism were incorporated into a single geometri-
cal structure of a space-time manifold was made
by Weyl'? in 1918. In spite of some attractive
features this theory was abandoned by its author
and others within a few years. As will be dis-
cussed presently, at least one of the reasons for
this rejection might not seem as compelling in the
light of some recent astronomical observations.?
These observations led us to reconsider Weyl’s
theory and to subject it to a more stringent exper-
imental test as reported here.

Einstein® pointed out in 1918 that a consequence
of Weyl’s theory would be that the frequencies of

spectral lines emitted by atoms would depend on
the electromagnetic history of the atoms. Since
all atoms of an element in the universe seem to
emit the same frequencies the theory seemed to
be contradicted by the facts.

However, observations indicate that atoms in
distant galaxies have their lines shifted toward the
red end of the spectrum® as compared with terres-
trial spectra. This shift is usually attributed to
the Doppler effect and accepted as evidence for ex-
pansion of the universe. Some recent astronomi-
cal observations of red shifts associated with
quasistellar objects as large as Av/v~1 have
made this interpretation difficult to maintain.?
Arp® and Burbidge® have suggested that it may be
necessary to revise our physical theories to ac-
count for these observations, and steps in this di-



