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The radiation problem in massive and massless linear Einstein gravitation is analyzed for
mass discontinuities in the limit of vanishing graviton mass m. It is found that in this limit:
(i) the radiation into the massive modes of helicity +2 becomes equal to 4 of the total massless
Einstein radiation, (ii) the radiation into the massive modes of helicity +1 tends to zero, and
(iii) the radiation into the massive helicity-0 mode stays nonzero and is model-dependent.
Two models illustrate this: (i) An oscillating point mass radiates for m —0 into the modes
of helicity +2 and 0, and its total radiation approaches in this limit the massless Einstein
radiation; (ii) a pulsar radiates for m —0, but only into the helicity-0 mode: Birkhoff's the-
orem is broken in linear massive gravitation. It is also broken in massive Maxwell theory,
but holds in massless Maxwell theory.

I. INTRODUCTION

Recently it was noted' that in the linear approxi-
mation of Einstein gravitation, a nonzero gravi-
ton mass, however small, results in a bending
angle of light near the sun's edge which is —,

' of
Einstein's value. Since experimentally Einstein's
prediction has been confirmed to within 10%,' one
is tempted to conclude that Einstein's theory of
general relativity allows no massive neighbors,
however small their mass.

An analysis of the free linear gravitational field
reveals' that here mass discontinuities are absent,
canceling in the same subtle way as in electro-
magnetism. 4

In this article the radiation problem in massive
and massless linear Einstein theory is considered.
The interest of such a calculation is that radiation
represents the intermediate case between free
fields and virtual fields exchanged between two
sources (as in the case of light bending}.

The result is that there are also mass discon-
tinuities in linear gravitational radiation.

If one scales the coupling constants of both
massive and massless linear gravitation such
that the Newtonian limit holds, then the radiation
which is emitted in the massive case into the
modes of helicity ~2 approaches in the limit of
vanishing graviton mass 4 of the total radiation
in the massless case. This mass discontinuity 4
has the same origin as the factor 4 in light bend-
ing. Moreover, in the massive case the radiation
into the helicity modes ~1 tends to zero in propor-
tion to (graviton mass}'. These results are to be
expected since a massive spin-S (S =1, 2) helicity-
A. particle becomes in the limit of vanishing mass
a genuine spin-i Xi particle. Hence the helicity
modes +1 can only couple to a vector source and

the only available vector source is B„t„„which is
zero. Correspondingly, in electromagnetism the
longitudinal fields decouple since in the limit of
vanishing photon mass they can only couple to
~„j„which is also zero. Hence, in linear Einstein
gravitation and Maxwell electromagnetism, the
maximal helicity modes approach in the limit of
vanishing mass those of the massless theory (up
to the factor -', in gravitation}, and the modes of
helicity +(S —1) decouple.

A second mass discontinuity in the radiation of
gravitation occurs in the helicity-0 mode. That
this mode does not decouple is not astonishing:
The scalar source t» is in general nonzero. But
both angular dependence and intensity of this mode
are independent of the other modes and model-
dependent. In the massless case on the other
hand one can always choose a gauge such that only
helicities +2 remain.

These general results are illustrated in two
models. The first model is a harmonically oscil-
lating point mass. Here the helicity-0 mode car-
ries in the massive case for vanishing graviton
mass 4 of the total massless Einstein radiation;
hence the total massive radiation in this case ap-
proaches in the limit as m - 0 precisely the total
massless Einstein result, both in angular depen-
dence and in intensity. The second model is a
spherically symmetric pulsating source (pulsar).
In this case only the helicity-0 mode carries en-
ergy. The Birkhoff theorem' asserts that in mass-
less (even nonlinear) Einstein theory the radiation
from any spherically symmetric source is zero;
hence the Birkhoff theorem is broken in massive
linear gravitation. Consequently, detection of
gravitational radiation from pulsars would con-
tradict the measurements on light-beam bending.

The mass discontinuities in the helicity-0 mode
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can be displayed in a particularly simple way in

the rest frame of the massive graviton. The mas-
sive Einstein fields, having spin 2, must satisfy
outside sources ~„g„„=g»=0, and hence have in
the rest frame only space components with space-
trace zero. On the other hand, precisely and only
in the case of plane waves, one can choose a
gauge for massless Einstein fields such that they
satisfy a„(«)„„=«p» --0. It follows that in the mas-
sive case one must make the fields which propa-
gate from the energy tensor [g„"„), see Eq. (42}]
space-traceless, whereas in the massless case
only the transverse components remain. Since
the Poynting vector is the same in massive and
massless linear gravitation, in contrast to elec-
tromagnetism, the calculation of radiation in par-
ticular models is simple.

An analysis of massless and massive Maxwell
theory reveals that no mass discontinuities occur
in the limit of vanishing photon mass. From the
usual Maxwell equations, a Birkhoff theorem for
massless spin-1 photons follows but it will be
shown that for massive photons, the BirkhoC the-
orem breaks down in the quadrupole limit.

The explanation of the aforementioned mass dis-
continuity factor —, is the following. Massive lin-
ear gravitation gives an effective source-source
interaction of the form V= TDT with

v = G'~'r"'(r") - -'( r"')/(a'+ ) ')

whereas the usual linear Einstein theory gives

I«G(0)T(1)(I (2) ~() I (2))/hm
po po ~ pG

The Newtonian limit requires -,'O'"'=-,'G"' =New-
ton's constant, since for static sources (k*+)),') '
becomes in x space a Yukawa potential. On the
other hand, light, having a vanishing trace of its
energy tensor (T(2) =0), is scattered in the mas-
sive theory over only —,'- of Einstein's angle. The
factors 3 and —,

' in the expressions for TDT are ob-
tained by summing over five and two polarizations
of the graviton, respectively.

In order to bring out clearly where in the case
of gravitation mass discontinuities are generated,
the radiation in massless and massive linear Ein-
stein gravitation is compared with the radiation in
massless and massive Maxwell electromagnetism.
In Sec. II massive Maxwell theory is briefly
treated and a Birkhoff theorem is derived for
massless spin-1 fields. In Sec. IH the radiation
of massive photons is calculated in the two mod-
els and in an example the BirkhoQ' theorem is
shown to break down for massive Maxwell fields.
In Sec. IV the theory of linear Einstein gravitation
to which is added the Fierz-Pauli mass term, is
treated and a simple proof for the Birkhoff theo-

rem in linear gravitation is given. In Sec. V the
radiation of massive linear gravitation is calculat-
ed in two models and the Birkhoff theorem is
shown to break down for massive linear Einstein
gravitation. Finally, in Sec. VI the results for
massless and massive Maxwell and linear Ein-
stein radiation are compared and the conclusions
are drawn, some of which have already been giv-
en in this introduction.

II. MASSIVE ELECTROMAGNETISM

In this section the Lagrangian field theory is dis-
cussed for a massive photon which is coupled to
a point charge.

The I.agrangian for a free massive vector me-
son is unique. If the vector meson is uncharged,
the Lagrangian density, as given by Proca, '
reads

gqPh ( jF 2 & ~2A 2)
4m

For comparison with results from ordinary elec-
tromagnetism cgs units are used; the photon mass
m is given by )), =mc/5 and F„„=S„A„—()„A„Any. .
Lagrangian inequivalent to Eq. (I), such as one
with a term added proportional to (&„A„P, implies
the existence of a scalar ghost particle. Upper
limits on m follow for instance from the absence
of color phenomena in distant eclipsing binaries"
and from the laws of Planck and Wien'; the low-
est limit to date is obtained by studying the effects
that a massive photon would have on the magnetic
field of the earth and gives m ~ 10~' g."

For massless photons (p, = 0}, gauge invariance'
requires that the field A„be coupled to a con-
served current. '" Conventionally one couples to
the electric current which is conserved due to
phase invariance' of the matter part of the total
Lagrangian.

For massive photons, coupling to a noncon-
served current can be consistent" —it merely
implies a relation between the Lorentz condition
and current conservation,

u'(&„A„)= —, (&p„)

In this article, the massive photons will be cou-
pled to the same minimal conserved current as
the massless photons. " This minimal current is
defined by requiring that the source of the photon
be that current which is conserved by phase in-
variance.

The equations of motion for the massive photon
are

4m .
p+pv-& &v= &vy
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where

Og(m+y)/gA (4)

1dA
e =-VQ- —— divb=0

c dt

4m-. 1 ~e
curl b =—j + ———p, 2A.

c c8t

From these equations, a Birkhoff theorem' for
massless spin 1 will be derived. A symmetric
source gives b = 0, hence no radiation is possible.
Moreover, e depending only on r and t, e = Vg,
hence outside sources V'e = 0, so e = a(t}/r. Fi-
nally, b =0 gives da/dt =0: The field e is static.
In the next section, it will be shown in an example
that the Birkhoff theorem is broken in the case of
massive spin 1.

A point particle with charge e and prescribed"
trajectory [R(t},R,(t}=—ict] gives a source current

and where the total matter Lagrangian density
'& is obtained from the matter Lagrangian

without photons by the minimal substitution ~„
—8„—(ie/c)A„. The corresponding massive Max-
wel. l equations are

1 abb=curlA, curie =-——,dive =4np —p, Ao,

theory are given. The two models are: (i) an
electric dipole oscillator and (ii) an electric pul-
sar.

The symmetric energy tensor for the free mas-
sive photon is

4m

The mass term breaks gauge invariance and the
total matter part contributes the rest of the total
energy tensor such that the latter is conserved.
For example a free electron gives

~o."= '[(D-.*4b„4 kr—„D.4+ u ~]+ t'y»(ie4A)

(9)

with covariant derivative D„=&„—(ie/c)A„, e & 0.
The interaction term gives

To~„' = 5»(-i egg/}, (10)

and T„„"+T„„'is gauge-invariant.
In canonical formalism, the decomposition of

the Hamiltonian and Poynting vector for a massive
photon proceeds as follows.

The total Hamiltonian density in terms of canon-
ical variables (-E, A) is given by"

2

X=—(E'+B')+—(A'+A ') - j X+K'0

The correct Lorentz behavior is manifest from
the representation

j„(r, t) = e "
& (x„-R„(7))d&,

'" dR„(r),
dT

where 7 is the proper time.
It has been shown in the literature that in elec-

tromagnetism the limit p. -0 exists and coincides
with the case p. =-0. Stuckelberg has shown this
for the Hamiltonian'4 and Deser for the action. '
They introduce rescaled canonical variables.
This means only that one can say "one photon has
an energy I~." In calculating a classical quan-
tity which does not depend explicitly on the num-
ber of photons, like the radiated energy, one
needs no canonical formalism. This will be of
advantage in the case of gravitation. No redundant
field variables (like A,) are eliminated and the
helicity properties of the field components follow
directly from their Lorentz behavior.

where A, is eliminated by Eq. (3),

A, =—,(divE —4wp) .

The Poynting vector is

kO

=—(E x B + p A Ao} (13)

Decomposing E =Er+Es with Es Vga and divE
=0 and similarly decomposing A shows that the
mass term in Eq. (13) describes pure longitudinal
radiation [use Eq. (12)] while the term E x B de-
scribes pure transverse radiation (E~ xB is par-
allel to the surface of a large sphere around the
source).

As argued before, the radiation problem will be
considered without canonical formalism. In this
case one has for the Poynting vector

III. RADIATION OF MASSIVE PHOTONS

In this section in two models the amount of en-
ergy is calculated which is radiated into the three
helicity modes of the massive photon. Subsequent-
ly, corresponding results for massless Maxwell

c
3o =4, (Fo/'oi+&'AoAo} (14}

Boosting along the radius r to the massive photon
rest system shows that the longitudinal and scalar
components of A„have helicity 0 while the trans-
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verse components have helicity +1. Hence it again
follows that the first term in Eq. (14) has helicity
+1, while the second has helicity 0.

The Green's function for massive photons

(0 —p )G(x —x')= ——5 (» —x')
4w

with a harmonic source with frequency co is

5(t t' ——
[ r —r'~ /c')G(x-x') =

(15)

(16)

where the velocity c' is given by the group veloc-
ity corresponding to ~,

c'=(kc/(u)c, (u2=(kc) +(p, c} . (17)

For conserved currents, one has with Eqs. (2)
and (3)

4m .(&- v*)&„=-—,j „

with solution

A„(x) =— G(x- x')j„(x')d'x'1

(18)

(19)

A, (r, f)= (
—j (21)

The Poynting vector in Eq. (14) is diagonal in
helicities

C 1

4 [2+k i+i2(F%1+i2) 2+21-i2(F+I-l2)*+ t ' .&.]

(22}

in an obvious notation.
The electric dipole oscillator radiates into the

transverse modes (p is the dipole moment}

d 2Ebe&&+&)

dQdt dQdt

(d kc Hp sin'g (massive case),
2 u 8mc'

(23}

while the longitudinal mode carries an amount of
energy

d shel(o) Qc ~2p2

(massive ease) . (24)

since indeed ~„A„=0. Current conservation gives
for large r in the dipole limit

1 1 d
A(r t) =——— r' j (r', t' = t —r/c'}dr

cr c dt
(20)

where t' is the retarded time, and A, follows from
the Lorentz conditions

and

d E ~4p'
(massless case) .

dt Swc
(27)

The electric pulsar is defined as a spherically
symmetric charge cloud which pulsates harmon-
ically with amplitude R and frequency co with total
charge Q. It never radiates in massless Maxwell
theory [see after Eq. (5)], nor does it radiate in
the dipole limit in massive Maxwell theory [in Eq.
(20) its dipole moment vanishes], but it radiates
in the quadrupole limit in massive Maxwell theory.
Expanding the Libnard-Wiechert potentials in pow-
ers of 1/c, one finds spherically symmetric emis-
sion into the helicity-0 mode with total rate

dE (p.R)2 &u4P2

dt 6 3wc2 (28)

Hence here terms linear in p,
' do not vanish and

at the same time Eq. (28) proves that the Birkhoff
theorem for massive spin-1 fields is broken.

IV. MASSIVE GRAVITATION

In this section the Lagrangian field theory is
discussed. for a massive graviton which is coupled
to a point mass.

The action for a free massive uncharged tensor
meson is unique and the corresponding Lagrangian
density is given by

(29)

where h„=-h„„„h-=h», and h„„must be symme-
tric a priori. In contrast to electromagnetism
Eq. (29) does not follow from the requirement that
the free field contains only spin 2 but can be ob-
tained by requiring that the propagator is given by

The total rate of massive radiation is

dE lu'p2 3 ti c
1 +O(ti )dt 3mc' 8

(massive case) . (25}

The absence of terms of order p,
' is no accident;

in the dipole limit the total rate of massive radia-
tion never contains terms proportional to p, '. On

the other hand, it will be shown in the next exam-
ple that the total rate of massive radiation can
contain terms proportional to p.

' in the quadrupole
limit. For massless photons one can choose a
gauge such that the radial component of A van-
ishes, which at the same time removes Ap The
remainder is then transverse and gives for the
electric dipole oscillator

dg (dp sin'e (massless case) (26)
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l(, B„(hqy —B„„h)=Bqt„„. (30)

As in the case of electromagnetism, the mas-
sive particles will be coupled to the same source
as the massless particles. Then the requirement
that the source of the field h„„be the energy ten-
sor of the nongravitational world leads to univer-
sal minimal coupling. Hence, as in electromag-
netism, the mass term does not break universal
minimal coupling nor source conservation.

It is possible to derive by means of the Rosen-
feld prescription the energy tensor of a point par-
ticle. There exists however a powerful (but little
known} theorem by Tulczyjew ' which proves that
the only covariantly conserved symmetric point
tensor which does not contain derivatives of 5
functions is given by

where 2 is the proper time, R(t) the trajectory of
the particle [R,(t) =ict], and -g is the d-eterminant
of the metric g„„. Its correct Lorentz behavior
follows from a representation like Eq. (7) and its
correct general relativistic behavior is manifest
since 5'(x) is a scalar density like v' -g. In the
aforementioned linear approximation one has

the spin-2 projection operator. " Nor does the
existence of lower-spin parts in the most general
Lagrangian for a tensor meson always imply the
existence of a ghost, again in contrast to electro-
magnetism. However, the linear part of the Ein-
stein action gives Eq. (29) with p = 0, and the only
mass term which does not introduce ghosts is the
Fierz-Pauli22 mass term in Eq. (29). The correct
factor --,' in Eq. (29) is determined by the canon-
ical form "2Pq" of the kinetic energy" and is
needed for the Rosenfeld prescription for the en-
ergy tensor. "'

For massless gravitation gauge invariance re-
quires that the field h„„be coupled to a conserved
tensor and one couples conventionally to the ener-
gy tensor of matter" which is covariantly con-
served by phase invariance (Lorentz invariance).
Strictly, the linear theory of gravitation cannot
consistently be coupled to a dynamical matter ten-
sor (although it is a useful approximation) and
only prescribed external functions are permitted. "

Massive gravitons can be coupled to a noncon-
served tensor —it merely implies

h„„ follow from Eqs. (29}and (32),

2G~„+ t(2(h„, —B„„h)= (2x}2"t„p 2 (33)

where G~„ is the linear part of the Einstein tensor

2Gi„=—-Clh„„—(B„B„—B„„U)h+h„„+h „„—B„„h

(34)

satisfying identically (not by means of the equa-
tions of motion)

(35)

Inserting B„G~~„ into Eq. (33) leads with B„t„„=0
to

Bq(h„„-B„„h)=0,

and Eq. (36) together with the expression in Eq.
(35) for G~~ inserted into Eq. (33) leads to the
fifth constraint —leaving 5 degrees of freedom,

(36)

3,t-(h2= (2x)'"t . (3'I)

g„„=h„„-B„„h(massive case),
one has with Eq. (38} in the massive case

(39)

(() — ) lt(22 )'"(t 2~ " " "' „„t)
8 8

(4o)
y~ =[(2x)"'/t ']t, B„g„„=0

Inserting Eqs. (37) and (36) into Eq. (33) finally
gives~'

2'

((2 —tt')2„„=(2 )" ( t„+t„„t-— „"t).
3p 2

(38}

It is at this point that the origin of the mass dis-
continuities lies. For the relation B„G„„is in the
massless case no constraint on the field h„„but
on the source (B„t„„=O).Consequently, the sec-
ond relation in Eq. (35) stays an equation of mo-
tion instead of leading to a constraint. It is not
possible to choose a gauge such that G~„vanishes
in the massless case in order to obtain still a re-
lation which resembles Eq. (37), since G~„ is
gauge-invariant [it is the linear curvature, and
equal to 2(2x)'"t in the massless case]. Of course,
the correct number of degrees of freedom (2) for
massless graviton follows from gauge invariance;
as in the case of electromagnetism, twice as many
degrees of freedom (8 here) are eliminated by the
number of gauge functions (4 here).

Defining the conserved field g„„,

gin( 2
(2 +)2/2h t

SmG'&'~
K= 4 (32) In terms of the Green's function G(x- x') in Eqs.

(15) and (16), one has
where G "' and G"' are the coupling constants of
the massive and massless theory.

The equations of motion for the symmetric field

(0) (~)4j.=4j, +4'j& y

where"
(41)
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D(x x—')t„„(x')d'x' (42)

and outside sources

1
&~~ - hu~ —~~ v."

in the gauge ~„y„„=Othe following equation

(44)

Cly„„=-(2K)'"t„„, s„y„„=0. (46)

Hence, y„„=g„"„'(g-0}.On the other hand g„"„'
blows up for p —0, but in the Poynting vector it
will give a finite but nonzero result.

If one would have taken instead of the Fierz-
Pauli mass term the following mass term in the
Lagrangian,

(46)

then the massive and massless fields would have
limited to each other in the limit ILt. - 0. Moreover,
also in this case the Poynting vectors are equal
for harmonic sources (see the next section) and
P„=y„=0; however, since in that case $0 in
the massive theory, there is a scalar particle
present. It is a ghost and cancels precisely the
radiation into the spin-2, helicity-0 mode in the
limit p -0 (for example it has the same angular

q(&) ~ I 0 fI pu~ D + I t r 4 I(2~$1/2

4~ 3p

(43)

since indeed P„„satisfies the constraints in Eq.
(40). Linear massless Einstein theory on the oth-
er hand gives for

dependence of radiation as the helicity-0 mode}.
The Fierz-Pauli mass term on the other hand
leaves the helicity-0 mode, and since the latter
tends for vanishing graviton mass to a scalar par-
ticle, one ends up with a Brans-Dicke theory of
gravitation.

This section will be concluded by a simple proof
of the Birkhoff theorem for linear massless grav-
itation. Spherical symmetry implies (i} that h„.
= 5,.&H, + 8, 8,H» ho,. = ~,.H„and h~ =H0, where
H, =H,((r, t) and (ii) that there are only two symme-
try-conserving gauge functions, g„=(x'g, y, ).
Choosing a gauge such that H, and II, vanish, one
finds from the field equations H„, =0, V'(H, -H, )
+3H«0 —-0, and (HD-H, ),, =0. Hence H, is station-
ary, H, -H, =A(t)/r, and H, =H„respectively.
So, in this gauge the fields are all stationary and
cannot radiate.

V. RADIATION OF MASSIVE GRAVITQNS

In this section, the amount of energy will be cal-
culated mhich is radiated into the five helicity
modes of the massive graviton by (i) a harmonical-
ly oscillating point mass M (gravitational dipole)"
and (ii) a spherically pulsating mass distribution
(pulsar or gravitational monopole). Finally, cor-
responding results for linear Einstein theory will
be derived.

A symmetric and conserved energy tensor can
be obtained by adding to the massless energy ten-
sor"b the mass term which follows from the
Rosenfeld prescription. One finds for the energy
tensor of the free massive graviton field

(4V}

with g~s given in Eq. (29). There are other sym-
metric conserved energy tensors. For example,
the Rosenfeld prescription applied on the full Eq.
(29) gives a tensor with second derivatives of the
fields. All such tensors differ however by super-
potential terms' and, when averaged over the vol-
ume of a wavelength, give identical results for
the rate of emission.

The Poynting vector S follows from Eq. (47); it
is -icT~. Outside sources, the massive field
g„„=-h„„-5„,h satisfies

8„$„„=0, $„„=0 (constraints, massive case).

(48)

On the other hand, far away from the scattering
region the emitted fields become plane maves, and
precisely in this case one can choose a gauge such

e„y„'„=0, y„'„=0 (gauge, massless case).

(49)

Since our sources are harmonic, the Klein-Gor-
don equation for the fields leaves, together with
the constraint and gauge relations in Eqs. (48)
and (49), the same Poynting vector for massive
fields in terms of g„„and for massless fields in
terms of y„'„,

f=-X 8, X 8, o X 8=v Bor9 (50)

This result is identical to that in Ref. 24a after
choosing a gauge there such that y„'„=0 as well.
It follows from the contraction over a and P that
this Poynting vector is diagonal in helicities.

that"' locally the same relations hold for mass-
less fields. Denoting from now on these regauged
massless fields by (It)„'„, one has
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y(I) o5 g q(0)

in the graviton rest system and the field P"' elim-
inates a nonghost spin-0 particle from g„"„'. In the
.limit of vanishing graviton mass, however, the
spin-2 helicity-0 component becomes a nonghost
spin-0 particle leading to a tensor-scalar mixing
of a Brans-Dicke type. On the other hand, in the
massless case the gauge 8„q„'„=cp„'„=0leaves on-
ly the regauged transverse fields ((),', = -9)~ =-', ((t)„
—&zz)o (('(z =())xz and (t)), =PI (& -0).

Hence rp„'„and g„„are calculated directly from
g~('„) of Eq. (42) in the graviton rest frame. For
conserved sources t„„one has" in the quadrupole
limit '

l 1
t, ,(x)d,x = ~, x'x't~(x)d, x2c' ~t

leading far away from the source to

(51)

4&r 2c2 gt2

(52)

The Lorentz condition then gives

It is now clear from Eq. (50) that the only dif-
ference in emission of radiation between mas-
sive and massless gravitational fields comes from
the different way in which g» = 0 and y» = 0 is ob-
tained. From ~„$„„=0,it follows that in the rest
frame of the massive graviton only the space com-
ponents of g„, can be different from zero. The ab-
sence of lower spin moreover requires that
Q', ,g„.=0; and this is precisely what g~'„) [see
Eq. (43)] does:

kc—cos8

In the graviton rest frame with Cartesian axes in
the plane (R, r), perpendicular to r and R, and
along r, one has in matrix notation

~

~

s'o'8 0 (o)4 ) o'ooo 0 )
(o) 0 0 0 0 (o)

p. 4(u sin28 0 p, 2,~4' cos~8 0
0 0 0 0

(56)

while

o o o)
0 0 ~ 2 W 2 (o)sin 8+4 2 cos 8

~ sin 8
0

&Pv='
0
0

0 0
--,'sin'8 0

0 0
0 0

o)
(58)')

Inserting y„'„and g„„=g~('„'+ f„"„'into the Poynting
vector, boosting back to the laboratory frame,
and putting 3 G'"'= &G '=y =Newton's constant in
Eq. (32) (see Introduction), one has with I =—MII,'

d 2Ehel+2 3 k c y(de@

(57)

Indeed, g„"„'eliminates the space trace of P„"„.
The disentangling of the five helicity components
is in this frame reduced to ordinary quantum
mechanics for a spin-2 particle. For y„'„one
finds

k y(o) @(o) k g(o) @(o) (53)

The same relations hold for y„„. The relation be-
tween k =k rjr and (d is given by the Klein-Gor-
don equation'e

~' = (k c)'+ (-,' p c)' . (54)

—ose ~(o)
(d SS (55)

With the Poynting vector of Eq. (50), the fields
(t)IO&) of Eqs. (52) and (53), the energy tensor of Eq.
(31), and the above-derived prescription how to ob-
tain in the graviton rest frame g„„and y„'„ from
g„"„', the radiation in the two models will now be
calculated.

The gravitational diPole oscillator has a trajec-
tory R(t) = Rosin(dt with R, along the z axis»d a
mass M. One finds for the massive field g(o)

pv

(P) —2g MRo u
2 k — t4m'

dQdt 4 4(d m 2mcs5
sin 28,

(massive case) (59)

sin28-2 2 cos 8

d~E y(eel
, sin't) (massless case)dQdt 2mc' (60)

and the differential rate of massive radiation ap-
proaches the differential massless rate while
terms linear in p,

' are absent in the total rate
dE 16y(o) I 0( o)
dt 15c' (61}

The positive and negative helicities radiate equal-
ly.

The radiation in the massless case is
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(i
~(0)

jlv 0
0

o o o)
0 0 (2g)'"(u'I

0 (pc/2~)' 0 4vr cos pt

0 0 0

(62)

Hence in this system $„„tends for small graviton
mass to

g„gp -0) =

0

0 0 0
0 0 (2~}'"uPI

cos(p, t),
3 4'

0 0 0

(62)

while y„'„=0. The latter result is an illustration
of the Birkhoff theorem which says that in general
relativity or its linear approximation no spheri-
cally symmetric source can radiate. The radia-
tion in the massive case into the helicity-0 mode
is isotropic and has a total rate

duel 0 32y2 +6I2 p c 2 2

dt 3c' . 2(d

Hence, in this case the total rate contains terms
linear in p, 2.

This concludes the calculation in the two mod-
els. In general, the rate of massive radiation is
always and in all directions greater than the cor-
responding rate in the massless theory. This fol-
lows from the fact that any two-dimensional pro-
jection of the three-dimensional inertial tensor is
necessarily semi-positive-definite. For one-di-
mensional sources (dipole oscillator) the lower
bound (equality of both rates) is reached

VI. CONCLUSIONS

The radiation of massive linear Einstein gravi-
tational energy differs by a factor —,

' in the modes
of helicity +2 from the usual (massless) Einstein
results and has an independent degree of freedom
for the helicity-0 mode. In particular:

(i) The radiation into the massive modes of he-

using

(sin'8) =T'r, (sin'8cos'8) =~, (cos 8) =r .

The gravitational pulsar has a spherically sym-
metric harmonically pulsating mass distribution.
Let the inertial tensor be I„=5„I.Then, after
boosting to the graviton rest frame

licity ~2 approaches, in the limit as m —0, —, of
the total massless radiation. The massless fields
can be taken in a gauge such that they have only
helicity +2.

(ii) The radiation into the massive modes of he-
licity +1 tends to zero in proportion to the square
of the graviton mass, which reflects the property
of a spin-2, helicity ~1 massive particle that it
becomes for vanishing graviton mass equal to a
spin-1 particle which can only couple to ~„t„„=0.

(iii} The radiation into the massive helicity-0
mode does not tend to zero for vanishing graviton
mass. The reason is that the spin-2 helicity-0
graviton becomes for vanishing mass a genuine
spin-0 particle which couples to t» w0, thus lead-
ing to a Brans-Dicke type of gravitation.

(iv) The constraints on the massive fields
(8„$„„=$„„=0)leave in the massive graviton rest
frame only the space components P, &

with van-
ishing space trace, whereas the gauge for the
massless fields, leading locally to ~„y„'„=y„'„,
leaves only the transverse components.

(v) The Birkhoff theorem is shown in the exam-
ple of the pulsar to be broken in massive linear
gravitation already in the lowest possible approxi-
mation (quadrupole limit), even for vanishing
graviton mass. Experimental detection of radia-
tion from pulsars would contradict the light-bend-
ing experiments.

(vi) The total rate of massive gravitational ra-
diation can (pulsar} have terms linear in p, ', but
need not have such terms (gravitational dipole os-

cillatorr).

(vii) The total rate of radiation in massive lin-
ear gravitation is always greater than or equal to
the corresponding rate of massless radiation.
The lower limit is reached in the case of the di-
pole oscillator.

(viii} The Poynting vectors in massive and
massless theory for harmonic sources are equal
and diagonal in helicities.

The radiation of massive Maxwell fields on the
other hand limits smoothly to the radiation of usu-
al (massless) Maxwell fields. In particular:

(i) The radiation into the massive transverse
modes (of helicity +I) smoothly approaches the
total massless radiation in the limit as m -0. A
gauge can be chosen for the massless field such
that only components of helicity +I are present.

(ii) The longitudinal radiation is damped in pro
portion to the square of the photon mass, which
reflects the property of a spin-1 helicity-0 mas-
sive particle that it becomes for vanishing mass
a genuine spin-0 particle which can only couple to

(iii) A Birkhoff theorem for massless spin-1
particles holds; hence a spherically symmetric
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source cannot radiate massless photons. On the
other hand, an electric pulsar does emit massive
radiation in the quadrupole limit.

(iv) In the dipole limit, the total rate of mas-
sive radiation never contains terms proportional
to p.', due to the presence of a mass term in the
Poynting vector. This was illustrated in the case
of the dipole oscillator.

(v) The Poynting vector is diagonal in helici-
ties.
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