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The equation of state for a zero-temperature system of strongly interacting baryons is cal-
culatecl. Interactions, described by the exchange of a pseudoscalar meson, are treated rela-
tivistically to lowest order in the coupling constant. The finite density of the ground state is
included through a fully relativistic many-body theory discussed in a previous paper. The
results, which are applicable to a single-component system of baryons for densities 103 g/
cm® < p, lead to an upper limit for the speed of sound vy = ¢/V3 . Simple analytic expressions
are given which fit the results of numerical computation in the density range 1013 g/ecm3<p

< 108 g/em3,

I. INTRODUCTION

A steadily growing interest in the properties of
superdense matter! (with densities>nuclear den-
sity ~2.5x10'* g/cm?®) and matter at relativistic
temperatures? (7> 6 X10° °K) has led to the develop-
ment of a relativistic many-body theory based
upon elementary particles and their interactions.®
Systems at relativistic temperatures arise primar-
ily in the study of the early stages of some cos-
mological theories, and will not concern us at this
time. The interest in superdense matter arises
primarily in the study of the final stages of stellar
evolution, although it may be of importance in the
study of stellar birth as envisioned by Ambart-
sumyan. The problem of superdense matter is
basically a problem of relativistic many-body
theory for strongly interacting systems of baryons
in their ground state (at zero temperature).

In a previous paper* the relativistic many-body
theory of strongly interacting matter in flat space-
time was developed. At this time we present nu-
merical results based on that work. In particular,
we give an analytic expression for the pressure,
energy density, and resulting equation of state
which closely approximates the numerical results
that have been obtained. A significant feature of
the result — important because of its implications

1

for the study of relativistic interacting matter in
general - is the asymptotic limit to the speed of
sound

vysc/V3, (1.1)

which follows from our equation of state.

Following a brief review of the material dis-
cussed earlier, we describe the calculation of the
equation of state. In Sec. II the density-dependent
self-energy (to lowest order in the coupling con-
stant) is reduced to a form suitable for rapid nu-
merical integration, and the baryon two-point func-
tion obtained by inverting (1.6) below. The details
of the numerical calculation are given in Sec. I,
and an analytic expression for the poles of the
Green’s function at the Fermi surface discussed.
The latter, while extremely simple in form, is a
good approximation to our results over the density
range 10'¥<p<10? g/cm?® and leads to simple an-
alytic equations for the pressure and energy den-
sity in Sec. IV. The pressure and energy density
represent the equation of state in parametrized
form, and yield a relativistic expression for the
speed of sound. In Sec. V we examine the nonrel-
ativistic limit of our analytic results.

The system which we have investigated, as de-
scribed in the previous paper, consists of N bar-
yons of number density
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ng=2E (1.2)
(4] 3.”2 ’

interacting by the exchange of pseudoscalar mesons

according to the coupling®

Lint = 1P XY P(x)P(x) . (1.3)

There it was shown that the relativistic pressure
and energy density of the interacting system could
be written in terms of the fermion two-point func-
tion Gp(p, qr) as follows:

P(pp)=-i [ " s (a)

dip
x f(_z,,—)42<=°si’ottr[7°cp(p, a9,
(1.4)

»

p=mno+9n2no£ Fi‘j{%. (1.5)
F

The two-point function G(p, q;) is obtained by

inverting the equation

[(B-m -Z8(p, ax)IGR(D, gp) =1, (1.6)

where Z(p, q) is the regularized self-energy
obtained from the expression [see Fig. 1(a)]

2 b, a0 =38 [ (i Se(p = ) s(B),
(¢

the density-dependent noninteracting two-point
function® Sp(p - k; g;), and the usual spin-zero
boson propagator A.(k). Regularization was per-
formed by renormalizing the two-point functions
to the physical masses and charge. For a more
complete discussion of these matters the reader
is referred to the previous publication.*

It will be observed that the solution of (1.6) for
the corrected fermion propagator is equivalent
to summing an infinite number of self-energy di-
agrams as shown in Fig. 1(b). This procedure is
crucial to obtaining a finite result since, if the

. dk B-K+m
= 2 —_— 20 5
Zelp, a) 'g°f @mi’s 2E5.%
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| =3

expression equivalent to (1.6),
G=Sp+SpZG

is iterated and only terms to finite order retained,
the pressure obtained from (1.4) will, in the as-
ymptotic limit p,/m—~=, have the form of a diver-
gent power series in (pz/m).

In concluding this section we recall the expres-
sion for the renormalized self-energy discussed
previously*

Zf(ﬂ, qF)=Zc(p, qF) ha Ec(p’ 0)‘. p=m

az(p,0)
-(g-m) dﬁ o ’ (1.8)

and note that it, as well as the Green’s functions
appearing in (1.4~1.6), is in fact a 4x4 matrix ex-
pression whose indices have not been explicitly
exhibited. These matters are fully discussed
elsewhere.3'*

II. SELF-ENERCY

To find the lowest-order correction to the pres-
sure for a system of strongly interacting baryons,
we solve (1.6) for Gy(p, q5) in terms of the self-
energy (1.7) and perform the integrals in (1.4).
The self-energy reduces, to lowest order, toa
sum of two terms, the first of which contains all
of the density effects. In this iection the density-
dependent part will be written in a form suitable
for numerical integration (the details will be rele-
gated to Appendix A). The density-independent
part will be regularized by the procedure outlined
in the previous paper.*

The second-order self-energy is obtained from
(1.7), the two-point functions Sp(p - k; g5), and
Ap(k):

x( 1-ng(p-k)

where Ex_g=(|P -K|?+m,?)!2 is the free-particle
energy. The distribution functions are given by

n<p-k)={1ﬁlr’>-k|<qr

Olf |§_EI>qF (2.1b)

where the variable Fermi momentum g, is in the
range 0 < g <p., and p. is fixed by the number

ng(p-k) 1 il
bo—ko— E5_i +i€  po—Ry— Eg.g—i€ po—ko+Ez_g—1i

B — L2 +ie” (2.1a)

-

density of particles (1.2). The unrenormalized
masses and charge are denoted by m,, i, and

g,- By hypothesis’ the ground state is devoid of
antiparticles and

g(p-k)=0.

Examination of (2.1) shows that the self-energy
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may be written as

Ec(p’ qp)=23(P2)+zu(P, q}?‘), (2-2)

where the first term

-k -my +ie€
s
Xy B = o2 +ie (2.3)

is just the zero-density self-energy arising in rel-
ativistic quantum field theory to lowest order in
the interaction (2.3). The second term

B-K+m,

k- pk+ie

. d*k
zu( b, qF) = zgoz‘{ (2n)? Ys

ng(p-Fk), . -
X8 SEst 27i6( po — ky — E5 -it)

(2.4)

contains the entire density dependence of the sys-
tem to second order. It will be observed that
although (2.3) diverges as it stands, the density-
dependent part is finite and well behaved. This is
a consequence of the factor z,(p - k), which at
zero temperature limits the range of integration
to values of the virtual momentum % such that

Ii-E'SqF, (2-5)
as shown in Fig. 2. By (2.2),
gy s (3a"n,)"3, (2.6)

so that the upper limit is finite, and is determined
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FIG. 1. Self-energy contribution to the pressure: (a)
the irreducible second order self-energy; (b) the cor-
rected baryon two-point function, which contains the
self-energy (a) to infinite order.

naturally by the density of baryons in the system.
There is no difficulty of principle involved in the
evaluation of the integrals occurring in the den-
sity-dependent part of the self-energy (2.4). We
shall return to it in Sec. ITI. The situation at
finite temperature, though numerically more dif-
ficult, is basically unchanged. To show this we
consider the integrand of the density-dependent
term (2.4). For a given temperature and baryon
density, a simple power count shows that at large
virtual momenta the integrand goes as

exp{-B[(ID —K|*+m*)"/? - u]Hdk,

where p is independent of k. For large % this is
~exp(—pBk)dk, and the integral is convergent. Its
value in this case is determined by the tempera-
ture as well as the density of baryons in the sys-
tem.

The divergent term (2.3) may be regularized by
the arguments of Sec. I. Demanding that the singu-
larity at zero density correspond to the physical
mass m, we use (1.8) which yields, to second
order, the regularized self-energy

25(1), qF)=Eu(p, qF)‘*‘ER(P) ’ (2.7)

where

2“(p)=EE(P)—EE(p)I‘m-()f—m)dEdg;P) .
#=m

(2.8)

In arriving at (2.7) use has been made of the rela-
tions Z,(p, 0)=0. The notation g=m implies that
the quantity is to be evaluated on physical mass
shell. It is evident that (2.8) is just the regular-
ized elementary particle self-energy.
Examination of the y-matrix dependence of
(2.3)-(2.4) shows that they may be written in the

FIG. 2. The distribution function 7 (P —k) limits the
integration in (2.4) to those values of k lying within the
Fermi sphere at D of radius pg. The transformation to
integration variable I*=p*— k¥ reduces the integral to
one over the sphere centered at the origin. The 1l inte-
gral is then over 0<l<pp, 0<6, <7, and 0<¢, <2m.
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matrix form (matrix indices o,8 =0,1,2,3 are Equation (2.11) may be easily inverted by using the
explicitly shown): anticommutation relations for the matrices y4g,
and the identity d# =2a"a,. Expressing p in polar
Zul Py 4r)as=VesZu( Py 4p) +0asZi(Pr ap),  (2.9) coordinates (see Appendix A), and defining
ZR(D)ap=mbys S (PP + D v he Sa( H?) . (2.10)
o , -1
The functions Z, and Z, are discussed in Appen- singcos¢ t
dix A, and S,, S, are discussed in Appendix B. (b, ap) =Z,( D, qp)< singsing, i=2
The integrals appearing in S,(p?) and S,(p?) are cos6 ;=3
well defined and depend only on the magnitude of ~ ’
the 4-momentum p*. . . ,
Substitute (2.9)—(2.10) into (2.7), and the result leads. to the following expression for the Green’s
into (2.6) to obtain the inverse Green’s function function:
Gp(P, 45) M ap=Vha{ D ,[1 = S,(pD)] - Z (P, 4 )} G(b, dp)es= ‘Vlgl(’;qq) e, (2.12)
' 4F
- 1-S,(p2)]+Z,(p, S yp -
{m[ (P4 2 q,,-)} o where we have set
(2.11)
N(P, qp)aﬂ'_")’gﬂ{pp[l - Sz( Pz)] - Z“([’, qp)}+ {mll - 51(.92)] + Z[(P; qp)}éas ’ (213)
D(p, ap) ={pu[1 - S, (p9)] - Z,(p, ap)F = {m[1 = S, (p")]+Z,(p, ap)F
={po[1 = S,(p")] =Zo(b, ap)P = {p[1 = S,($7)] = Zu(b, ap)P = {m[1 - S,(p*)]+ Z(p, p)}*. (2.19)

The expression (2.12) for Gp(p, q) is correct as it stands as long as the self-energy possesses a non-
zero imaginary part. For the system under consideration” Z (p, q;) is real, and the net effect of the inter-
action is to shift the energy of the elementary excitations. In particular, the excitations remain stable
(infinite lifetime). We have assumed that the particles making up the system are stable in the absence of
many-body interactions; this rules out, for example, the nuclear decay N— Z + e + v associated with the
weak interactions. The stability of the elementary excitations (which result from interactions between the
infinite-lifetime baryons) is a consequence of the Hartree-Fock approximation. If the calculations were
carried out to higher order, by including the self-energy contributions due to the Feynman diagrams in
Fig. 3 [subject to constraints (i)—(vi) in Sec. IV of the previous paper], then the elementary excitations,
though still describing the interactions between stable baryons, would have finite lifetime.

In the absence of an imaginary part to Z.(p, q5), it is necessary to specify the behavior of (2.12) in the
vicinity of the poles defined by the zeros of (2.14). This is done as in the free-particle case.® First de-
note the roots of D(p,, p, q5) by 8,(p, qz) and —8,(p, q5), where the first is positive and the second negative.
Only two roots occur since the interaction preserves the spin degeneracy. We therefore write

D(p9 qp)=[l’o"g1([’, qF)][po+82(py qF)]7 (2'15)

where &,(p, ) and 8,(p, q;) are defined by the requirement that D(§;, p, g)=0 for i=1,2. To lowest order
the system of V baryons plus interactions may be replaced® by a system of N noninteracting elementary ex-
citations of energies &,(p, q;) and &,(p, q;). Consequently, the Green’s function (2.12) will be rewritten in

the form,'° with E, replaced by &,(p, qz) or -8,(p, q5),

G (P q )= ﬁ'*'m ( l—nF(P) + nF(P) _ 1 )
e rE <“;l."'gz po-gl(p’qF)+i€ po_£1(pyqr)"ie po‘}‘gz(p,q}r)-ie )

In writing (2.16) we have emphasized that the excitation energies depend on the density. They will also de-
pend on the coupling constant g;,, as will be seen in later sections. Equation (2.16) contains boundary con-
ditions suitable to the assumed ground state of the system. The parallel between this Green’s function and
that describing a single particle in a noninteracting medium would be closer if §,(p, ¢;) = &,(p, qp). Ex-
amination of the equation D(p)=0 suggests that this is the case, as will be discussed in Sec. IIl. We there-
fore set

51(p) qF) = é’g(P; qp) .

As a result, (2.16) is formally identical to the Green’s function for a noninteracting medium. The net ef-

(2.16)
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fect of interactions appears in the shift in the position of the poles:

ng(p)

__Bem 1-ng(p)
Gp(p’ qF)— 251(1)’ qF)[pO_ gl([” qF)+i€

1
+Po_ gl(p’ q}r)"ie - Po“' 61([)1 qF) —t€ ] ’

The relativistic pressure is found in the following manner:
(1) Evaluate S,(p%), S,(p?), Zo(b, dr), Zu(P, dr), and Z,(p, q) numerically, and find the roots §,(p, q5)

and - &,(p, qz) of the equation D(p,, p, q) =0 — Sec. III;

(2) Substitue the roots found in (1) into the expression (2.16) for Gz(p, q5), and find the chemical poten-

tial u(gp) - Sec. IV;

(3) Evaluate (2.4) for the pressure, (2.5) for the energy density, and obtain the equation of state — Sec. IV.
This problem will be facilitated by the introduction of an analytic expression in Sec. IIl, which serves as a
good approximation to our numerical results for the chemical potential. The analytic expression covers

the matter density range 10'3<p<10?% g/cm?.

IIIl. NUMERICAL COMPUTATION

To determine the equation of state, we need to
evaluate the separate equations (1.4) and (1.5) for
the pressure and energy density. This involves us
in a contour integration where Gp(p, ;) is the only
singular factor of the integrand. Therefore the
first step in the calculation is to find the singular-
ities, which are the zeros of D(p, q) in (2.14).

The general search for the zeros of (2.14) is a
difficult job, because we begin in such a case
from an expression in three variables: p,, p, and
qz. However, there is one immediate simplifica-
tion. As we are interested in pressure and ener-
gy density, we need information only at the Fermi
surface, i.e., at p=q,. The simplified exercise
of detecting the zeros of D determines p,as a
function of g5, which therefore gives us directly
the chemical potential u necessary to complete
the evaluation of the double integral in (2.4).

Numerical computation of S, S,, Z,, Z,, and Z,,
followed by evaluation of the entire expression
(2.14) for D, is the only practical way to find the
poles of G,. This is still a laborious search in
(po» 47) Space, but the procedure is helped by the

(b)

FIG. 3. Fourth order contributions to the self-energy.
Inclusion of such terms would lead, among other things,

to a finite lifetime for the elementary excitations in the
system.

educated first guess that the two parameters may
be (asympotically in g,) linearly related, e.g.,

Do=aqp+bm, (3.1)

where g and b are dimensionless, and m is the
nuclear mass. The same educated guess suggests
that @ =1 by analogy with the noninteracting case,
but the suggestion is misleading. The linear equa-
tion (3.1) has been helpful to identify approximately
and quickly the paths of D=0 in (p,, q5) space, but
with a= % for the zero corresponding to §, in
(2.15). If the strong-coupling constant g is varied
in the computation, we find that a varies smoothly
according to the relation

1¢

az1+ﬁ4—”. (3.2)

In the absence of interactions, the magnitudes
&, and &, of the roots of (2.15) are equal. Finite-
density effects turn (2.15) from a simple quadratic
in p, into a complicated transcendental equation
for p, when D=0, but we find numerically that &,
= &, within 1- § percent over the range for which
(3.3) is defined below, despite rather larger
changes in the sizes of individual squares in the
expression for D when the sign of p, is changed.
The differences between &, and &, are not system-
atic, except that they decrease for large q,. Al-
though numerical analysis alone can never give ex-
act answers about analytic properties of such ex-
pressions we are confident that &, and §, may
still be regarded as equal here, i.e., that every
relation of the form p,=f(g;) implies another of
the form —p,=f(qg).

We have carried out the computation for values
of gp/m between 0.01 and 100. Equation (3.1) ex-
presses the desired condition for D=0 well, pro-
vided that b=-2 and that « is given by (3.2) (i.e.,
a= % in practice). It fits best at the extremes of
the range for q., but a better over-all fit involves
a small exponential correction for the low end, i.e.,
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FIG. 4. Equation of state for the density range 10 g/
cm? <p <10% g/cm?®, as calculated from the relativistic
many-body Green’s function (2.17). The slope of the
curve logy, P versus log;,p approaches unity asymptoti-
cally. Numbers along the top horizontal scale correspond
to the mass density in g/cm?.

Po= §4r — 2m+cm exp(-agg/m), (3.3)

where ¢=3 and a= £. The form (3.3) still under-
estimates p, symmetrically over a small range of
values of g, near m, but we bring (3.3) into line
with the results of the numerical computation by
multiplying by an extra factor:

Po= k[ %97 — 2m+3m exp(-5q5/9m)]

_dr_m
x[41 exp(z " qF> +39]. (3.4)
Several words of explanation about (3.3) and (3.4)
are in order. Firstly, it is customary!! to write
computed equations of state and their preliminaries
with floating-point numerical coefficients. We
could have done the same above, because (3.3)
and (3.4) express fits to arrays of floating-point
numbers for p,, but we have an aesthetic prefer-
ence'? for rational approximations.

r(qg)

FIG. 5. Schematic plot of the chemical potential. The
dashed line has slope % The solid line is the free-
particle asymptote.

Secondly, we provide some justification a poste-
riori on physical grounds for (3.3) and its coeffi-
cients in Sec. V below. This justification does not
extend to the new term in (3.4), which is not an
embarrassing fact because there is probably a
limit to the applicability of simple physical rea-
soning to explain the entire content of (2.14). What
is more embarrassing is that we have been unable
to find a closed analytic form for the final integra-
tion in (2.4) when (3.4) is used. After a numerical
test to ensure that the effect of (3.4) is adequately
approximated by (3.3) for our purposes, we have
been content to use (3.3) in the subsequent discus-
sion. Nevertheless, (3.4) is the most accurate
equation that we have been able to construct so
far.

Finally, p, in (3.3) is actually the chemical po-
tential u, apart from an additive constant which
is a matter of definition. In our present and ear-
lier work,* we define p,(p, ) as derived via (2.14)
from the condition D=0, and evaluated at the Fer-
mi surface, to be the chemical potential, i.e.,
w(gp)=po(dp, q). Thus, from (3.3), we write

l-L(qF)= %qp-2m+3m exP(‘sqF/gm)- (8.5)

[More accurately, if it is needed, (3.4) give the
chemical potential.] Equation (3.5) is used in the
discussion below. The range of validity of (3.5)
follows from the range of ¢,/m for which we have
stated that it has been computed: The correspond-
ing upper limit to the density of matter which it
governs is about 7.22x10% g/cm?.

IV. EQUATION OF STATE

The relativistic pressure and energy density are determined to lowest order by the excitation energy 8,
(Sec. II), the Green’s function (2.17) and the integrals (2.4) and (2.5). The equation of state follows from
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the parametric dependence of both P and p on p,. The evaluation of P and p is easily accomplished if the
analytic expression (3.3) is used for ,(q;). We present the results first, and then give the derivations.!?
Finally the significance of the equation of state will be discussed.

Set x. = aftk;/mc; then the pressure is given by

o' [ 24 €T s gy ] 4.1
P(kF)‘WxF [1- xF4+4 P (xp3+3x.2+6x,+6) |, (4.1)
and the energy density by
mics . a\ 3a 3a .
p= W[x;(l _E)+ Z&-(xF‘+8) - ’F(xF2+2xF+2)]. (4.2)

The equation of state P=P(p) is plotted in Fig. 4, for the total energy density p in the range'*

2.17x10% ergs/cm?

sps
2.43%x10'% g/cm? 7.22%x10% g/cm?

6.45x%10* erg/cm?

The expressions (4.1) and (4.2) will now be derived in terms of the analytic expression (3.5) for the chem-

ical potential shown in Fig. 5:

Wgqr)=agyp+mb+mcexp(-aqp/m),

(4.3)

where a= %, b=-2, ¢=3, and a=%. The expression for the pressure (2.4) becomes

5] 00
P=% [ 711~ exp(-agy/m)lda [ pdp olaz ),

where 7n(p) has been replaced by 6(q, - p), the p,
and angular integrals performed, and (4.3) used to
replace the integral over chemical potential by an
integral over the Fermi momentum. In arriving
at (4.4) the Green’s function (2.17) has been used,
and the trace evaluated with the aid of the anti-
commutation relations® for the gamma matrices
v" and y®. Performing the integrals over p and g
leads to the expression (4.1) for the relativistic
pressure to lowest order in the interaction (1.3).
The expression for the total energy density (4.2)
follows directly from (2.5), if the pressure is ex-
pressed in terms of the rest energy density p,,
defined in terms of the Fermi momentum qr by

pg=m IE . (4.5)
o 3”2 .

It is now a straightforward matter to check that
the number density remains unchanged as a re-
sult of the interaction. That is, from the relativ-
istic expression!!

dpP
n= EE ’ (4-6)

where P and u are given by (4.1)-(4.2), it follows
[compare (1.2) for g,=0] that

S

n
h&'
w

w
E ]
»

(4.7)

(4.4)

It is to be expected that the momentum distribution
u(p) will deviate from that of an ideal Fermi gas
if higher-order corrections to the self-energy are
considered (for example, those shown in Fig. 3).!5

Examination of the expressions for the pressure
and energy density reveal the following asymptotic
behavior:

lim P-iappen="P,, (4.8)
pp/m=
lim p-3P,. (4.9)
ppim==

Apart from the additional factor a which is given
by (3.2), (4.8)—(4.9) are just the pressure and en-
ergy density of an extreme-relativistic ideal Fer-
mi gas. The factor g leads to an interaction-de-
pendent enhancement in the asymptotic regime,
which is independent of the density of the system.!®

Finally, from the pressure and energy density
we may calculate the speed of sound for our rela-
tivistic strongly interacting system. The speed of
sound j; is given at zero temperature by the ex-
pression

dP)

2 _( &2

Bs (dp r=o ’

which, with p given by (2.5), is valid for relativ-

istic systems. A simple calculation yields

1-e™F
a-a+axp+ae™F’

B= gaxgp (4.10)
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The asymptotic limit, which also follows from
(4.8)-(4.9), is

vy = _\/_%_ . (4.11)
Further examination of (4.10) shows that (4.11) is
an upper limit which is reached only at infinite
density.

Early analyses of possible upper limits to vg as
a result of special relativity!” leads to the limit
(4.11). These are based upon the behavior of free
fields in the asymptotic limit, and generally make
no reference to interactions between the constit-
uents of the system. In 1962, Zel’dovich pre-
sented a simple classical model of relativistic in-
teracting matter'® which led to the less stringent
limit v, <c. However, this result is not based
on a fully relativistic interaction, nor upon a rel-
ativistic many-body theory. Our result v, <c/V3
is, therefore, of particluar significance in that it
is based upon relativistic interactions within a
fully relativistic many-body theory. Further, it
suggests that this limit may be a general conse-
quence of relativistic interactions, at least for a
broad class of couplings. In fact, a calculation of
the equation of state for a system of electrons and
neutrinos at zero temperature, which includes low-
est order corrections due to the weak current,
leads to the same asymptotic limit (4.11).

The comments above strongly suggest that re-
sults based upon models which lead to less strin-
gent limits than (4.11) be reexamined within the
context of a fully relativistic many-body theory.

V. NONRELATIVISTIC AND NONINTERACTING
LIMITS

It will be instructive to examine the nonrelativ-
istic limit of the equation of state (4.1)-(4.2), as
well as the noninteracting limit of the analytic ap-
proximation discussed in the previous sections.
We look first at the nonrelativistic limit x,< 1,
and then at the case g,=0.

The nonrelativistic pressure is obtained by ex-
panding the expression (4.1) in the limit x,< 1,
where it will be recalled that x.=ap,/m. How-
ever, before doing so, we consider the chemical
potential (4.3)

k=aqp+mb+cme *F/m, (5.1)

We wish to show that certain constraints may be
placed on the choice of constants used in fitting the
chemical potential which are, to some extent, in-
dependent of the detailed numerical calculation.
First, denote the nonrelativistic chemical potential
at zero temperature by u,
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Ho=H—m. (5.2)
Then expand (5.1) in powers of xq./m to obtain
p=m(b+c)+(a-ac)x,
+5(afex Pl - $(axy) + H(a?x2) + « - ].
(5.3)

Comparison with (5.2) yields the relation b+c=1.
Since the nonrelativistic limit of the pseudoscalar
coupling® is the Yukawa potential

e-r/a

V=v,5—, (5.4)

r

and insofar as nonrelativistic many-body calcula-
tions based on (5.4) lead to chemical potentials at
zero temperature which do not contain terms lin-
ear in g/m, we expect the constraint'® ¢ —ac=0.
It is quite reasonable, therefore, to demand that

the constants in the analytic fit (5.1) satisfy con-

straints

(5.5a)
(5.5b)

We observe that the values a= %, b=-2, ¢=3,
and « = £ mentioned previously, and determined in-
dependently of the above arguments (see Sec. III)
satisfy conditions (5.5a)-(5.5b) exactly.

Returning to (4.1), and expanding in powers of

Xp, We obtain the nonrelativistic pressure

P, =Pg"(1 - 45y + $5a’y?—--+), (5.8)

b+c=1,

a-ac=0.

where y=p./m, and

5
nr._ _Dp

Po™= T572m 6.7
is the asymptotic pressure for a nonrelativistic
ideal Fermi gas. Similarly, the energy density
(4.2) reduces to

p=p(l+&y*—day’+:-+), (5.8)

with p, given by (4.5). In the nonrelativistic re-
gime the Yukawa interaction is attractive, as
evidenced by the decrease in pressure and energy
density over their noninteracting values. It will
be noted that the pressure (5.6) has the same form
(to lowest order) as that calculated from the pseu-
doscalar Yukawa?® potential and nonrelativistic
many-body theory.

The speed of sound in the low-density limit is
readily calculated, and found to be

1 a
o3 Wp,ﬁ(l - —££> , (5.9)

a result typical of low-lying excitations (phonons)
at zero temperature.
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VI. CONCLUSION

The equation of state calculated above (4.1)—(4.2)
is significant for several reasons. First, itis
based upon a relativistic many-body theory which
includes interactions relativistically. It is to be
emphasized that both relativistic and finite-densi-
ty effects enter at the same elementary level. Sec-
ond, since the analytic fit used in arriving at
(4.1)~(4.2) reasonably describes the numerical re-
sults in the density range between 10'% g/cm?® and
10%® g/cm?, it is natural to consider the asymptotic
limit p/m> 1, which gives some indication of
the behavior of interacting many-body systems in
the highly relativistic regime. The results (4.8)-
(4.9) suggest that the principal asymptotic effect
of interactions is to modify the free-particle pres-
sure and energy density by a factor proportional
to the coupling constant, but independent of the
density to lowest order. Since the constant of pro-
portionality is the same for both P and p, we ob-
tain the asymptotic speed of sound

vysc/V3,

a result which is of significance in its own right.?

Furthermore, our approach serves to emphasize
that any distinction between self-interactions (zero
density) and interparicle interactions is unneces-
sary. Infact, for densities p,2 10" g/cm? the
interparticle separation is less than the range of
interactions, and it is difficult to talk about par-
ticles as such. Under these conditions the separa-
tion of interactions into self- and interparticle in-
teractions is meaningless. This is most easily
seen by examining (2.1a), which includes all inter-
actions to lowest order. The decomposition
Z.(p, qp) given by (2.2)—(2.4) is purely arbitrary.
The form chosen here is dicated by questions of
calculational convenience, and should imply noth-
ing more.

Our calculation has demonstrated, at least to
lowest order in the coupling constant, that all
divergences associated with a renormalizable in-
teraction in vacuum may be eliminated in discuss-
ing the corresponding many-body problem. Fur-
ther, the procedure used in relativistic quantum
field theory is sufficient for regularization. The

infinite contributions due to negative-energy states
are removed when we work in terms of normal-
ordered operators (this has been discussed in
greater detail in Ref. 4).

The simple ansatz represented by (2.16), and
the equality & (p, qg) = 8,(, q) which is indepen-
dent of the reasoning leading to (2.16), makes the
subsequent determination of the pressure and en-
ergy density straightforward. However, we stress
that this state of affairs is a consequence of our
approximating the self-energy to lowest order
(Fig. 1). The inclusion of higher-order terms in
the coupling constant, such as those shown in Fig.
3, complicates the problem considerably. It then
becomes necessary to use an equation for the
Green’s function such as (2.12)-(2.14), and to
solve for the zeros of (2.15) as functions of |P|
and g,. It then seems likely that the integrations
over p and u(qg) in (1.4) for the pressure and the
resulting integration in (1.5) for the energy densi-
ty must all be done numerically.

The additional complexity resulting from higher-
order corrections in g, may not be of as much in-
terest as those obtained by generalizing the pres-
ent approach to include more than one type of in-
termediate boson in describing the interaction.
The latter would lead to an equation of state more
nearly descriptive of superdense matter, partic-
ularly that which can be expected to occupy the
interiors of neutron stars and pulsars. For this
reason we are currently solving the generalized
problem which includes the eight particles of the
first baryon octet, with interactions included
through the SU(3)-invariant exchange of members
of the first pseudoscalar meson octet. The re-
sulting equation of state will then be used as the
basis of a stellar structure calculation for matter
at relativistic densities p> 10" g/cms3.

We conclude by observing, as suggested by the
last comment above, that the approach used in
this calculation is of a quite general nature. As
described, it is applicable to renormalizable (in
the sense of regularization) quantum field theories
possessing normal ground states. We are current-
ly examining systems with non-normal ground
states, such as those leading to superfluidity,
superconductivity, and Bose-Einstein condensation.

APPENDIX A

The functions 2, and X, appearing in (2.10) are given by the integrals

ask -k
ZH(p, qg) = -1gy? @y EAP__)G(% - ko= Ez_%)

E ﬁ’-i

z =—7g,?
b, ap)=-1g, 2n)? E3 ¢

d*k n (p-k)
——L—————é(ﬁo_ko—E—ﬁ_E)kz—_P .

B —p)H
ey, (A1)
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Since the system is assumed to be homogeneous and isotropic, the self-energy terms X, and Z, will depend
only on the magnitude of the three-vector momentum p = |P]|:

zu(py qF)=Eu(|§I y Po» 4F) s
21(1)7 qF)= 21('5' s Pos QF) .

Furthermore, the Fermi sea is spherically symmetric as tacitly assumed by (2.16) and (2.5). Expressing
P in spherical coordinates (p, 6, ¢) and noting that the y matrices y* are defined with respect to the Carte-
sian components of P, it can be shown that (A1)-(A2) reduce to two distinct integrals:

(A3)

y*Z,=9"Z, - (¥ sinfcosp ++*singsind +y*cosh)Z,, (A4)

where Z,=Z,(p, gp). It is convenient to perform a change in integration variable k2" —p# =I*  where the po-
lar coordinates of I are defined by (Z, §,, ¢,). Then

*dl
ol 25 aF) = f d(cos6 )f <1>(p7 )’ (A5)
r3dl _ cos@
Z,(p, qp)—-s z f d(cosé, )f E, #p,5,6)" (A6)
The last term of (2.10) similarly reduces to
12dl
2,070 = -5 [ dteoss,) [T EA ot (a7

The function &(p, !, ;) is defined by
®(p,1, 6,)=p,2 = p*+m? — u? = 2p E, — 2pl cos¥, (A8)

where E, = (2 +m?"2, and |B| =p, |I|=I. The integration over 1, is trivially performed, due to the 6 func-
tions in (A1)-(A2). Furthermore in the integration over ¢,, all terms in sin¢, or cos¢, vanish.

The evaluation of (A5)-(A7) is straightforward but tedious. For this reason only the results will be
given. It was found that

Eo(p’ po: qF)=137 (Ag)
ZI(P, pm qp)=12; (AlO)
where
_&m® (“1)" ) [(gp? +m?) 2170 | o = 2po(g,° +m?)'? - 2pg
I,= 1677 71 { [ E - ]" ln\ P 2p:(q£2 P v 21>q£ +2f(n, 2mp) — 2f(n, =2mp),, (A11)
1+£2\" 4pomt+ (1 +8)c
fn, €)= f d’( ) (1= a - 2(1+ PYpgn - 2¢H(1 - )’ (a12)
qrT=m - (qp* +m?)"?, (A13)
a=php, - p?+m?. (A14)

Finally we find for Z,

Zo( D, Doy 4F) = 32 2p%2mz ln(tani-n +% tan-xg::)

a-2po(qp’ +m?)M /% + 2pq5
a- Zpo(QFz + mz)x/z - 21>q,

2 ,2)1/2
= 2qp(qs" +m®)' 2+ (—qLiPﬁ)—— (a = Polas®+ mz)”z) o

2ol (2, 2mp) ~ 12, ~2mp)] T2 [£(1, 2mp) - £, —2mp)]}. (a15)

It will be noted that in (A9)-(A15) the energy Do and magnitude of the vector momentum p are written
separately. The 4-momentum when it occurs [as in (A14)] is denoted by p“.

Further evaluation of the integrals was done numerically as described in Sec. III.
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APPENDIX B

The elementary particle self-energy has been discussed extensively in the literature.?? In renormalized

form it has been shown that

m2x + p?(1 = x) = p?x(1 = x)

Zl'i(p)=—13637r22 j:dx[—(ﬁ—m)(l—thx]ln
3g% t 2m3x%(1 - x)
16 A xm2x2+u2(1—x) (B-m).

m2x® + 131 - %)

(B1)

Comparison of (B1) with (2.10) gives the expressions for S,(p?) and S,(p?). The integral above is finite,
and vanishes on mass shell. The two terms S,(p?) and S,(p?) were evaluated and included in the numerical

computation for the pressure. (See Sec. II.)
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