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The relativistic many-body theory for the equation of state describing a strongly interacting
system of baryons in flat space-time is presented. After giving the coupled equation of motion
for relativistic Green's functions, which include finite density and temperature as boundary
conditions, we develop relativistic expressions for the pressure and the energy density of the
interacting system in terms of the fermion two-point function. The latter is expressed by an
integral equation, which includes the pseudoscalar coupling to lowest order in the coupling con-
stant. The result is regularized, and renormalization to both physical and effective mass and
charge is discussed. The expressions obtained serve as the basis for a numerical calculation
of the equation of state which is presented in the following paper. A significant feature of our
results is a fully relativistic equation of state which includes interactions, and which leads
to an asymptotic limit for the speed of sound v, (c//v 3.

I. INTRODUCTION

One of the most challenging questions facing rel-
ativistic astrophysics and general relativity is the
problem of stability against gravitational collapse
for stars whose mass exceeds the Chandrasekhar
mass limit. ' The fate of such a system poses a
problem which involves at one and the same time
elementary particle theory, many-body theory,
and general relativity. In addition to this issue of
principle is the problem of determining the proper-
ties of possible final stages of stellar evolution.
The neutron star, and its relation to pulsars, is of
primary concern in this connection. The problems
mentioned above share this one common feature:
They depend upon the behavior of relativistic mat-
ter at supernuclear densities.

In this and the following paper we shall investi-
gate various properties of relativistic systems of
interacting elementary particles. The approach is
based on the flat-space-time limit of a relativistic
quantum many-body theory developed' in an earlier
paper. In this paper, we shall develop the limit in
terms of a relativistically interacting system of
baryons which includes the exchange of pseudosca-
lar mesons. Particular attention will be given to
renormalization and regularization of the theory.
Expressions for the pressure, number density, and
energy density will be developed in terms of fully
relativistic many-body Green's functions. In the

second paper, the numerical solution for the equa-
tion of state will be given for densities p) 10" g/
cm' and an analytic approximation to these results
discussed.

For densities p& 10"g/cm', the treatment of
stellar evolution and stability is usually divided in-
to two distinct parts'. the macroscopic influence
of gravitation as determined either by Newtonian
gravity (p& 10"g/cm') or Einstein's general theo-
ry of relativity (10"g/cm' & p & 10"g/cm'), and
the behavior of matter at nuclear or supernuclear
densities (p~ 10" g/cm'). As long as p&10' g/
cm', it is generally argued that gravitational con-
tributions to interactions between particles are
negligible. We shall restrict attention at this time'
to such situations. Furthermore it will be as-
sumed that the effects of gravitation, as manifest-
ed by the curvature of space-time, are negligible
across samples of matter which are microscopi-
cally large. As a result, we effect a complete
separation between the curvature of space-time
and the interaction between particles.

A substantial body of theory exists in the litera-
ture concerning the properties of matter up to and
slightly above nuclear densities' (p„„=2.4x10'» g/
cm'). In this region, matter consists predomi-
nantly of atoms, ions, electrons, protons, neu-
trons, and nuclei, whose motions are nonrelativis-
tic (q~/m& 1), and between which interactions may
be described by phenomenological potentials. The
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latter, based upon extensive empirical data rang-
ing from the density of iron p„,=7.86 g/cm' up to

p, in conjunction with nonrelativistic many-body
theory, have led to a detailed understanding of
matter in the nonrelativistic region. In particular,
it is suggested that nuclear matter, just as ordi-
nary matter, may exist in collective states which
exhibit superconducting, superfluid, or possibly
even fez romagnetic behavior. ' The detailed equa-
tions of state derivable from the results mentioned
above are crucial to the exact analysis of stellar
models, particularly insofar as they determine the
mass, radius, and luminosity of stable configura-
tions, whose cores have densities in the nonrela-
tivistic regime. They are of fundamental impor-
tance for the analysis of white dwarfs, and possi-
bly for pulsar mechanisms. However, as soon as
the density exceeds p, = 10"g/cm', or when ques-
tions of stability arise, it is necessary to treat
matter relativistically' —results based upon poten-
tials and nonrelativistic many-body theory become
inapplicable. Therefore, in order to obtain a com-
plete understanding of the formation and properties
of neutron stars (whose central densities may
reach 10'~ g/cm' or more), or to determine wheth-
er a star of given mass and composition will evolve
through the neutron star stage and enter a state of
inevitable gravitational collapse to a curvature
singularity, it is necessary to apply relativistic
many-body theory to a system of relativistically
interacting particles.

As a first step in this direction we have formu-
lated a relativistic many-body theory, and applied
it to a system of baryons which includes the ex-
change of pseudoscalar mesons. The equation of
state which we derive is expected to reveal char-
acteristic features of relativistic strongly inter-
acting matter. In particular, it is found that the
system described above leads to the restriction'

C
s ~3

where v, is the speed of sound in the medium. We
hasten to emphasize that this result includes the
effects of interactions, and is therefore of a more
general nature than similar limits based on nonin-
teracting fields. The results of this investigation
will be extended in future work to include the more
nearly realistic situation of a system of baryons
from the first octet interacting via the exchange of
pseudoscalar mesons in an SU(3)-invariant manner.

Before proceeding with the baryon-pseudoscalar
meson theory, we review' existing methods em-
ployed in the analysis of superdense matter. We
shall limit this discussion to relativistic systems
(since the nonrelativistic regime offers no issues
of principle), and focus attention on single-compo- p(E) -cm'e' (1.2)

nent systems of fermions at zero temperature. A
characteristic feature of all stable configurations
of ferrnions is the requirement that the particles
obey the Pauli exclusion principle. In the absence
of all interactions, such a system will exhibit the
well-known pressure due to degeneracy. This led
Landau' in 1932 to suggest that quantum statistics
plays a dominant role in stellar interiors. Simi-
larly, in 1939, Oppenheimer and Snyder' demon-
strated that a system of neutrons sustained only by
pressure due to degeneracy will undergo gravita-
tional collapse to a singularity, unless the mass
(at zero temperature) is less than about 0.7Mo. In
1960, the first detailed relativistic equation of
state for a system of noninteracting baryons and
nuclear resonances was given by Ambartsumyan
and Saakyan. " They included in their discussion
the baryons from the first octet, the electron, &,
p, , and the nuclear resonances represented by the
two isotopic spin states N*(1238). The equation of
state covered a density range 10"g/cm' & p ~ 10"
g/cm', with thresholds for the appearance of each
particle determined by the requirements that the
system have minimum energy, and conserve both
electric and baryonic charge. Their results have
been extended with the discovery of additional par-
ticles and resonances. "

A refinement of the noninteraeting Fermi gas
was given by Gratton and Szamosi, "who developed
a relativistic treatment of an excluded-volume
Fermi gas (the nearest relativistic analog of a
hard-core interaction). They find, in particular,
an asymptotic speed of sound identical to (1.1).

The problems associated with early cosmologies
and high-energy astrophysics discussed previously
have recently attracted the interest of elementary
particle theorists. As a result, some very in-
triguing high-density and high-temperature equa-
tions of state have been suggested, which are
based upon current theories" of elementary parti-
cles. For example, Begge-pole theory, Veneziano
amplitudes, and the dual resonance model, "as
well as Hagedorn's description of strong interac-
tions at high temperatures, "have been used to de-
scribe relativistic superdense matter. These the-
ories differ in several fundamental ways from the
Green's function approach which we have used.
For this reason we shall discuss their character-
istic features 'in order to place our approach in
perspective. Each of the first three descriptions
of elementary particles mentioned above is based
upon a density of states describing the elementary
particles (resonances) that occur in the theory
The density of states used to describe the hadron
mass spectrum is generally of the form
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where the constants a, 5, and c depend upon the
particular theory employed. The resulting mass
spectrum is substituted into the expression for the
relativistic thermodynamic potential. The pres-
sure and energy density are then evaluated by
standard thermodynamic methods. Roughly speak-
ing, this approach replaces elementary particles
and their interactions by a system of baryon reso-
nances whose "density" is determined by (1.2}.
Furthermore it assumes that all such resonances
will occur in ultradense matter [a suitable choice
of parameters in (1.2} guarantees that the thermo-
dynamic potential converges]. It is argued that this
type of analysis, which is free from the detailed
dynamics of strong interactions, may lead to a
realistic description of superdense matter. It is
further argued, though not always convincingly,
that any theory which takes into consideration only
a finite number of states at asymptotic energies is
unrealistic.

Recent work by Sawyer, "based in part on a
Green's function technique analogous to that used
in this paper, suggests that the equations of state
calculated from the baryon mass spectrum as de-
scribed above may not be applicable to superdense
matter in its ground state. In fact, he concludes
that the population of states above the basic baryon
octet may not occur, even at asymptotic densities.
To understand this, Sawyer considers the effect of
a degenerate Fermi sea of baryons on a single bar-
yonic resonance placed in it. In vacuum the reso-
nance has mass m„and is unstable; the presence
of fi1led states of decay products stabilizes the
resonance, and the shift in lifetime leads to an in-
crease in effective mass which increases with bar-
yon density. Since the production threshold de-
pends on the mass, the only way to produce the
resonance is to increase the density (hence baryon
energy) But thi.s leads in turn to a further in-
crease in the resonance's mass, and a regenera-
tive suppression of the excited state follows. Saw-
yer's calculation, while suggesting that an adequate
description of superdense matter in its ground
state may depend only on the first baryon octet,
serves as a warning: The potential importance of
and need to include many-body effects within the
framework of a fully relativistic many-body theory
is of qualitative significance for the theory of su-
perdense matter.

%e turn now to the problem of obtaining a rela-
tivistic equation of state for strongly interacting
matter. As mentioned above, we shall use the flat-
space-time limit of the formalism developed in a
previous paper. ' In Sec. II the interaction is spec-
ified and the coupled equations of motion for the
relativistic many-body Green's functions given. In
Sec. III we develop the appropriate relativistic ex-

pressions for the pressure and energy density in
terms of the interacting Green's functions of Sec.
II. Finally we specify the finite-density boundary
conditions, and give expressions for the fermion
two-point function to lowest order in the coupling
constant. Renormalization and regularization to
physical as well as effective masses and charge is
discussed, and our approximations justified.

II. RELATIVISTIC MANY-BODY THEORY

The discussion of many-body effects is greatly
simplified if it is formulated in terms of Green's
functions. As stressed in Sec. I, the properties of
superdense matter will be relativistic; their dis-
cussion requires a fully relativistic formalism.
Therefore, the flat-space-time limit of the ap-
proach developed in an earlier paper will be fol-
lowed. In this approach, interactions are de-
scribed by a Lagrangian, which determines the
equations of motion for the Green's functions. The
latter are expressed in a temperature- and densi-
ty-dependent form. Many-body effects may then be
introduced through the homogeneous term in the in-
tegral equations for the two-point functions. Al-
though the field-theoretic approach is not neces-
sary to the formalism, it is a convenient interme-
diate step in determining an appropriate set of cou-
pled Green's function equations with which to work.

The Lagrangian density for a system of spin one-
half fermions interacting through a Yukawa cou-
pling in flat space-time is given by"

g(x) = y(x)(fy~ s„—m)y(x) +-,'[s„y(x)s"y(x) + p'y'(x)]

-fgy(x}y'y(x}y(x}+em'(x)y(x) —aq'y'(x).

(2.1}

The equations as written are, for example, appli-
cable to a system of neutrons interacting by the
exchange of &'. Mass renormalization counter-
terms" for the two fields have been included; m
and p. represent the physical masses of the parti-
cles. The matrix y' is defined through the Dirac y
matrices y".

(2.2)

iy'y'y y'. - (2.3)
The following anticommutation relations hold for
y'

(2.4)

The strong-interaction coupling constant is denoted
by g, and all spinor indices have heen omitted.
The adjoint P(x) —= P~(x)y', where the dagger denotes
Hermitian conjugation. The fermion fields satisfy
the usual anticommutation relations, while the bo-
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son field satisfies commutation relations.
The e(luations of motion for f(x}and p(x} may be

derived in the usual manner from E(l. (2.1}. They
will not be reproduced here. From these it is
straightforward to derive a set of coupled integral
equations which relate the two-point functions to
the three-point function. In this paper we shall be
concerned primarily with a system of ferrnions,

and shall assume that the density of antifermions
and bosons is zero. The equations will neverthe-
less be written initially in complete generality; the
density of all matter (particles and antiparticles of
both spine) will be denoted by p, and the tempera-
ture by T =(P) ', where Boltamann's constant K has
been set equal to unity. The equations of motion
for the Green's function are"

G (x —x", p lt) = s (,x —x'; p S) jd, jd'*Ps (*- I', p S)z, (y, , *;p lt)G ,(z —*';p, S), (2 6)

G, (*-*",p, S)=z,(x-*'; pp) ~ jd, 'y Jl
d'*x, (*-y, p S)G(y, *;p, S)G,(*-*",p, S). (2.6)

The density and temperature dependence of all quantities has been shown explicitly. The self-energy and
polarization operators are denoted by

S t*, x'; p S)=ty'd'Jld'y jd'zG (x —yp, S)r (*', ylz)G (*—zp tl), (2 '1)

rl. (x, x';P, Il)=-Id'tr jd'y J/d'zy'G (*-y;P, S)r,(y, *(x')G,(*—x', P, I)), (2.8)

respectively. The vertex function, denoted by F,(x, y iz), is related to the three-point function by a well-
known identity which will not concern us at this time. It should be noted, however, that it is in general a
function of the temperature and density of the system, although to lowest order these effects may be ig-
nored.

The homogeneous terms in the integral equation represent the noninteracting Green's functions. These
were discussed in detail for finite-density and -temperature systems in a previous paper. There they
were shown to have the following representations in momentum space:

and

p+ m 1 —n~(p, p) n~(py p) 1 —n~(py p) ny, (p, p)+
2E p —E +Sf p —E —ZE' p +E» —$6 p +E +k

P - Q P Q p 0 p Q p

1 1+nd)(k, p) nd)(k, p) 1+nz(k, p) ns(k, p)
2e), k, -~k + is kG —(d-„—iz k, +&ai; —iE k, +&a), +if

(2 9)

(2.10)

The Fourier transform of any function f (p) of the
four-momentum P" =(PG, p) is by convention nzk, P = 1

exp[P((uk —g)] —1 (2.14)

f(z)=
2 .f(P)e "'*,d4p

(2.11)

where p ~ x=p"x„. Note that p =pG and p' = —p, (i
= 1, 2, 3). The single-particle energies, in terms
of the physical masses m and p, , are

n, (p, p = 1
exp[P(E z

—g)] + 1

for fermions, and

(2.13)

= (ipi2+)n2)' (t)g —(iki'+p )'I' (2, 12}

The particle distribution functions are, for each
spin degree of freedom,

for bosons. The relationship between the chemical
potentials p. and g, and the number of particles in
the system, is well known. " Expressions similar
to E(ls. (2.13)-(2.14}are also defined for antiparti-
cles, with p. and g replaced by P and &. For bo-
sons which may be created in arbitrary numbers,
the chemical potentials vanish, f = g =0. Exarnina-
tion of the interaction term in (2.1) shows that this
will be the case. The poles of S„(P,p, p, P) in the
P, plane are shown in Fig. 1, and have been dis-
cussed extensively elsewhere. '

The anomalous behavior of (2.14) when u&k = g
leads to the well-known phenomenon of Bose-Ein-
stein condensation. It is then desirable to separate
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FIG. 1. The poles of S& (p, p, p, p) in the complex p 0

plane. The strength of the singularity is a function of the
momentum, the density, and the temperature. States
which at T = (k p)-~ =0 correspond to excitations with mo-
menta ~p ~

&pr or
~ p ~

& p r are denoted by X; those corre-
sponding to momenta )p( & pz or jp)&p+ are denoted by
O. At zero density the poles pp +(Ep + ie) do not con-
tribute.

III. THERMODYNAMIC VARIABLES

Having defined the fermion and boson two-point
functions, it is possible to consider thermodynamic
variables for a relativistic system. From the two-
point functions one may obtain such information

from the Green's function (2.10) that part which de-
scribes the condensate. " For the applications of
this paper it will be assumed that the density of
real bosons is strictly zero. In this case, since &

refers to real particles only, the distribution func-
tions ns(k, g) and ns(k, f) vanish identically. Con-
sequently, (2.10) takes its usual form as in relativ-
istic quantum field theory. We shall return in a
later paper to the problem of Bose-Einstein con-
densation in the relativistic region.

about a many-body system as the pressure,
ground-state energy, density of particles, chemi-
cal potential, and others. Furthermore, the ener-
gies, lifetimes, and effective masses of the ele-
mentary excitations of the system are given by the
singularities of Gr(P, p, p, ; P) and Dr(k, t, g; P) in
the complex-energy plane. In most instances these
follow in a straightforward manner the arguments
familiar from nonrelativistic many-body theory,
except for the appearance of antiparticle states.
The latter result in slight modifications, as will be
seen below. The divergences associated with radi-
ative corrections may be easily eliminated as in
relativistic quantum field theory, ' so that finite
values for physical observables result. (See
Table 1.)

Two examples will be considered below which il-
lustrate the slight changes attendant upon the in-
corporation of relativistic dynamics for a many-
body system. These, the number density and pres-
sure, will be of use later. Finite temperature will
be maintained throughout, since the limit T- 0 (P
—~) may be taken later.

Restrict attention to a system of fermions and
their antiparticles (although this is by no means a
necessary step) Fro.m the two-point function
Sr(x —x'; p, fi), where p denotes the density of par-
ticles and antiparticles, it is possible to construct
an expression for the number density of fermions
in the system. Proceeding as in the nonrelativistic
case we define n, —= n, (x),

n, (x) =tr(yt(x)f/l(x))s,

TABLE I. Finite-density Green's function in the nonrelativistic and relativistic regimes compared and contrasted.
For simplicity we set T =0, and consider spin-2 fermions.

Nonrelativistic Relativistic

Green's function, spin-
dependent

Thermodynamic boundary
conditions

Elementary excitation
energies

Number of excitations per
momentum state:

Chemical potential

2x 2 matrix representation in
terms of Pauli spin matrices

Specifies behavior of homogenous
part (noninteracting) near
singularity in the complex-en-
ergy plane

Measured with respect to non-
relativistic Fermi energy

Two: one per spin degree of
freedom

Measured with respect to zero
energy

4x 4 matrix representation
in terms of Dirac y
matrices

Same

Measured with respect to
relativistic Fermi energy for
particles or antiparticles

Four: two for particle and
two for antiparticle excitation
states

Includes rest energy of parti-
cles in the system. Need
not be the same for particles
and antiparticles
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where

( )
t pA

trp '

and the statistical density operator p is defined in
this case by

p = exp[-P(H —pN —p,N)] .
The particle and antiparticle chemical potentials
and number operators are denoted by (p, , N) and

(p, N), respectively, and the Hamiltonian by H.
The number density operator appearing above is in

fact infinite. To overcome this difficulty we con-
sider the normal-ordered form

No/V = tr: g (x)P(x): . (3.1}

The double colon refers to normal ordering. It is
straightforward to show the equivalence"

tr: Pt(x)P(x): = —,' tr[$(x), y P(x)]. (3.2)

Consequently the (finite) number density is given
by

n. (x) =-'tr([TW(x), r'g(x)] &8 . (3.3)

From the definition of the two-point function

G (x-x', p, P, P) = i(TN(x-)$(x')&8 (3 4)

4

,+ J (2w)'

&«rb'Ge(P; p, 0; P)]. (3 5)

The factors exp(sip'x, ) define the contours of inte-
gration in the usual way, and p, parametrizes the
density of fermions in the system (for noninteract-
ing systems the number of particles and antiparti-
cles may be separately specified). A similar ex-
pression is obtained analogously for antiparticles
parametrized by the chemical potential p, . From
(3.3) and (3.4) with p = 0 we find

n, (p, P) = ilim —,-(e'~0* +e '~o* )(2s)'
0

xt b'G (p;o, p;P)1 (35')

where T denotes time ordering of the fields, it is
trivial to show" that the number density of parti-
cles, as given by (3.3) and (3.4) with p = 0, is

no(x, p) = ilim-+ lim tr[y Gr(x —x'; p, 0, P)].
X0 XP+ 0 X0 ~X0 0

Using (2.11)we find the corresponding expression
in momentum space:

n, (p, P) =2 2, n, (P, P),
dSp

(3.6)

with a similar expression n, (p, P) for antiparticles
which follows from (3.5'). The factors of two arise
in evaluating the trace and represent the particles'
spin degeneracy. At zero temperature one readily
finds the expressions

PF — PFn.(PP)= 3„2 no= —
3 2 ~ (3.7)

The minus sign associated with n0 is conventional,
and results from our having used the fermion num-
ber operator above. We recall that antiparticles
have quantum numbers which are the negative of
their physically observed values (e.g. , negative en-
ergy, etc. ). Keeping this in mind, we shall omit
the minus sign in referring to (3.7), with the ob-
servation that the physical number density is to be
understood.

A second expression of interest, which also fol-
lows from the two-point function, is the pressure.
Writing the chemical potential for fermions p~
(particle and antiparticle) in terms of the total
number of fermions N~ =N- N and the previously
defined chemical potentials p, and p, , the pressure
is easily shown to be

I'(p, ) = n(P, pT}dp'r ~

0
(3 5)

At zero density P(0) = 0, and n(P, p, 'r) is the total
fermion number density given by Eq. (3.5). It fol-
lows immediately that the pressure is given in
terms of the two-point function by the integral

Two features of the equations above for n, (p, P) will
be noted. First, a factor of y' occurs in the trace
along with the causal propagator. This is a conse-
quence of our having used the adjoint g(x) rather
than the Hermitian conjugate gt(x) in defining the
two-point function. The second remark concerns
the occurrence of two integration contours in the
complex p0 plane. The latter results from the use
of a normal-ordered number operator, and repre-
sents the subtraction of infinite effects due to the
definition of the vacuum. Apart from these two
points (3.5) is formally identical to the nonrelativ-
istic expression for the number density. It is triv-
ial to show that in noninteracting systems (3.5}re-
duces to the usual expression for the particle num-
ber density at temperature P '.

jf p 4
P( p)r= idyr -lim ~(e' 0* +e '~0* )tr[y G~(P, yr; P}]. (3.9)

It is instructive to apply this equation to the problem of a noninteracting gas of relativistic fermions,
whose particle and antiparticle densities are given by Eqs. (3.7) at zero temperature. The result is the
pressure for a relativistic two-component noninteracting gas —a result which is both well known and



2284 BOWERS, CAMPBELL, AND ZIMMERMAN

which follows from simpler arguments than those above. However, in the following paper we shall use
the same general method in deriving an approximate result which includes interactions; it is best appre-
ciated when divested of unnecessary algebraic details. Starting with (2.9), and evaluating the trace, we

find for the pressure due to particles

(3.10)

(3.11)

At finite temperature the integrals may be evaluated in terms of tabulated functions. For our purposes we
consider the zero-temperature limit (P ~), in which the chemical potential reduces to the Fermi energy.
The latter is given by the value of Po at which the imaginary part of the Green's function changes sign.
From (3.10) we find the particle chemical potential to be [q~ ~pz where P~ is given by (3.7)]

/1(qz) =E/

P(„) ~t"d, I )t
d'P I' dPo( (2,2o -(2, 2(() ~P

((+ 0 (21/) J 2vi E2 po —Ep+ f2p2 —E2 —k po+Ep —2e
xo

The poles of the integrand in the complex P, plane are shown in Fig. 1 [note that the singularity P, = -E~
—ie does not occur in (8.10), since n/, (P) =0 for the particle contribution to the pressure] It .will be noted
that for a given momentum only two occur at a time, the position of the positive energy pole with respect
to the real axis being determined by the sign of (P- q/, ). As a result of the factors exp(+iP, x'), the infinite
terms -(p, E~+-ie) ' and (p, +E& —ie) ' cancel, and the expression for the pressure reduces to the form

&(~, &)=2) d/1' 2, 221~(P, &).

(q 2+ m2)1/2 (3.12)

Repeating the analysis for the two-point function S~(p, 0, i1, p) yields the antiparticle contribution to the
pressure of the noninteracting system. The expression analogous to (3.10) is

P(p, ) = dp'lim , t
p (e(2o* (2o' )

~ ( ~( (3 10')
((+ (21/) g „21/i E2 P2 —E2+ie P2+E2 —iC P, +E2+k

&(i1 &) =-2 d/1' 2„,&&(f, P) (3.11')

The corresponding antiparticle chemical potential

The poles at zero temperature are shown in Fig. 1;
only two occur for a given value of the momentum,
and the singularity p, =E2+ie is eliminated by the
requirement that 21/, (p) =0. Proceeding as above
we find the antiparticle contribution to the pressure
of the noninteracting system:

(((S/ ) a/, 4vp2dp
+2 dp(q/, } 2, (3.14)

0 J(( 1/

the factors of two arising from spin degeneracy.
Integration yields

(3.15)

&(f )=F 31/2 ~ (x 2 + //22)1/2

u(q&) = -E~

(q 2 + 1222)1/2 (3.18)

Pp Ey m PpE~ m Pp +E~
m

(3.16}follows from the Green's function appearing in
(8.10'). The minus sign in (3.13) corresponds to
the appearance of negative energies associated
with antiparticles, while that in (3.11') follows
from the contour integration in the p, plane. The
physical value of i1(q/, ) which is positive appears
in the upper limit of the integration over dp. '.

The total pressure is given by adding (3.11) and
(3.11'). Recalling that the distribution functions at
zero temperature are unity below the Fermi mo-
mentum, and vanish above it, we have

p(/, / i (f ~~((,)f=

The total pressure of the relativistic ideal gas of
n, = (p2.'/3&'} particles and n((= (p/, '/3&') antiparti-
cles is given by (3.15). It is seen, as expected,
that noninteracting particles and antiparticles be-
have as two distinct perfect gases, each contrib-
uting to the total pressure. As is well known, the
introduction of interactions results in a shift in the
position of the pole of (3.10), though the chemical
potential is still given by the value of P, at which
the imaginary part changes sign.

Equation (3.15) has the familiar asymptotic limit
for high densities (omitting the antiparticle contri-
bution)
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(3.17)

which is characteristic of a noninteracting extreme
relativistic gas.

The discussion above demonstrates two features
of the relativistic many-body theory: first, the
obvious presence of antiparticle contributions as
long as their density in the system is nonzero; and
the near identity in form of such equations as (3.5)
and (3.9) with their nonrelativistic counterpart, the
major formal difference being the factor y'. The
latter is crucial, since it leads to positive values
for physical observables calculated from the con-
tribution of poles whose real part is negative.

In concluding this section we note" the thermo-
dynamic expression for the total energy density p
of a system in terms of its pressure P and rest
mass-energy density po =nom, where no is given by
the first of (3.7):

(3.18)

The pressure is expressed as a function of the
Fermi momentum. This expression for p includes,
in addition to the rest-energy density (the first
term on the right}, the contributions to the energy
density due to the particles' kinetic energy, inter-
actions (through the pressure), and work of com-
pression. Equation (3.18) may be evaluated after
the pressure has been found. Using (3.9) one may
express the energy density in terms of the fermion
two-point function.

Equations (3.9) for the pressure, (3.18) for the
energy density and (3.15) for the number density
represent the equation of state in parametric form,
entirely in terms of the two-point function. In a
similar manner, it is possible to derive expres-
sions for other macroscopic observables describ-
ing a relativistic many-body system.

IV. INTERACTING GREFN'S FUNCTION

The results of the previous three sections con-
stitute the basis of a relativistic many-body theory
of baryons which includes a pseudoscalar Yukawa
coupling. %e turn now to a method of solving these
equations. In this section we shall specify the
boundary conditions which go into our determina-
tion of the equation of state for strongly interacting
superdense matter. The fermion two-point func-
tion will then be set up in terms of these boundary
conditions, and includes the effect of interactions
to lowest order in the coupling constant. To this
degree of approximation the self-energy reduces
to a sum of two terms; one is density-dependent,
while the other contains the divergence associated
with radiative corrections. We discuss regulariza-

(4.1)

The noninteracting Green's functions at zero tem-
perature are given by '

p'+ m, 1-n, (p) n„(p)
2Z& P, -E- i~+eP, -E&+k

1

Po+E p
—lE

(4.2)

1
n~(k) = „, o+ (4.3)

where E p is given by Eq. (2.12), the 4-momentum
k" =(k', k) with k'=k"k„, and the zero-temperature
limit of Eq (2.13) is.

(4.4)

The pressure will be given by (3.9) which, under
the assumptions above, may be written in the form

tion of the latter and arrive at a finite expression
for the corrected two-point function in terms of the
physical parameters (mass and charge) in vacuum.
Renormalization to effective parameters is also
discussed. Finally we comment on the approxima-
tions involved.

In order to formulate the problem of an equation
of state for strongly interacting matter, it is nec-
essary to specify the finite density and temperature
boundary conditions, and to limit the interactions
which will be considered. As a preliminary step in
our study of relativistic many-body systems we
make the following assumptions:

(i) The system is in its ground state (i.e., zero
temperature);

(ii) it consists of )V electrically neutral spin--,'

baryons of physical rest mass m;
(iii) interactions between baryons are described

by a one-particle exchange (Yukawa coupling) as
described by (2.1};

(iv) the density of antiparticles is assumed to be
zero, and their subsequent production ignored;

(v) the baryons are assumed to be stable;
(vi) gravitational effects, even in the asymptotic

limit, are ignored on the local level.
In a subsequent paper the restrictions (ii) and

(iii) will be relaxed, and a system of baryons from
the first octet considered, with interactions de-
scribed by the exchange of members of the first
pseudoscalar meson octet.

The rest-mass density of the system po = mno is
parametrized by the Fermi momentum as in Eq.
(3.7) [s,—= 0 according to (iv) above]:

Po = PPESo
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&(P,) = —. ~}"( I&)
Q

d4p

(2 ), cos(Pot) tr(r'G~(P, qr)l

(4.5}

The variable Fermi momentum 0 - q~ - p~ will be
discussed later. In the integral over p„ it is un-
derstood that t approaches zero from above.

The strong interactions between baryons will be
included to second order in the coupling constant.
This implies that the baryon two-point function is
determined by the set of equations in momentum

space:

Gr(P, Cp) =S~(P 0z)

+Sr(P, qr)~. (P, qr)GE(P, 'f~), (4 6)

where the self-energy is

Ec(Pi A) =fgo Jl (2„)gr Ss(P —ki Cg)rory(k).

(4.7)

The last equation results from the Fourier trans-
form of (2.7), the approximations in the integrand
consistent to the second order

GF(P, 7F) —SE(Pi lt) I

O, (k) =~,(k),

and the ansatz

~.(P, k) =r.

(4.8)

(4.9)

(4.10)

In addition to the "exchange term" given by (4.7},
and shown diagrammatically in Fig. 2, there re-
sults a "direct term" corresponding to the Feyn-
man diagram of Fig. 3 which is also of second or-
der in g,. Because of the pseudoscalar nature of

+ = X(p,q'}
peqp' pAF ptqp

(0}

/
/

I
I

7 o
5 p- k, qF

(b)

yS

FIG. 2. (a) Baryon Green's function in momentum
space (4.6) . The propagators and self-energy are density-
dependent. (b) The baryon self-energy to second order
in g. The baryon propagator is density-dependent, while
the boson operator and vertex function are independent
of density to second order. Solid lines represent baryons,
dashed lines bosons, and circles the elementary vertex.
Each line bears in addition to its 4-momentum a density
label when apprcpriate.

the interaction, however, the last term vanishes
identically. "

The finite density expression for the self-energy
is obtained by using either Wick's theorem" or
Schwinger's functional derivative" approach. The
generalization of either technique to the relativistic
many-body formalism encounters no difficulties,
and has been discussed elsewhere. '

It will be noted that the boson propagator is inde-
pendent of the density of baryons. From the defi-
nition of the polarization operator (2.7) and (2.6) it
will be observed that D~(k, p) will in general depend
on the baryon density. However, these corrections
are proportional to go' and, insofar as we retain
terms of order go' only, they are dropped. Similar
reasoning shows that the density dependence of
I', (P, k, q~) is of higher order than the second. In-
verting (4.6) yields G~(P, q~) in terms of S~(P, q~)
and the self-energy. The latter is shown diagram-
matically in Fig. 2. Using (4.5} it is then possible
to construct the pressure. Equation (3.18) may
then be integrated to obtain the total energy density
of the system. The parametric equations P=P(p, )
and p=p(p, ), where p, =p, (p~), constitute an equa-
tion of state for the system.

At zero density (4.7) reduces to the usual self-
energy correction of relativistic quantum field the-
ory. It is to be expected that divergences present
in the zero-density theory will arise at finite den-
sity as well. Examination of the integral in (4.7)
shows this to be the case. It is therefore neces-
sary to regularize the integral, a procedure which
may be performed in exactly the same way as in
relativistic field theory. As is well known this is
accomplished, along with renormalization to ob-
served parameters (mass and charge), by requir-
ing that the two-point function be singular on the
mass shell.

In relativistic quantum field theory one assumes
that the pole occurs at the physical mass and phys-
ical charge. " In this section it will be assumed
that the pole occurs at the effective mass. ' Con-
sider for the moment a system at finite tempex a-
ture containing particles and antiparticles. Defin-
ing renormalized quantities in terms of the renor-
malization constants Z„Z„and Z„

P

I

' k=Q
I

I0
75

FIG. 3. Second-order contribution to the self-energy
shown in Fig. 2{a). This expression vanishes due to the
pseudoscalar nature of the interaction.
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G, (p; a) =g,G,'(p; n),

D~(k; n) =Z, D~(p; n),

r, (p, k; n) = Z,-'r,'(p, k; n),

g„=Zi Z2Z3 gp y

(4.11}

(4.12)

(4.13)

(4.14)

[P —m „,—Z,"(P,a}]G'(P, n) =1,
[k'- q, '«-ll,'(k, a)]D'(k, a) =1,

(4.15)

(4.16)

where the completely renormalized self-energy
and polarization operators are

z,'( p, n) = z,(p, a) —z, (p, n)
i

J ™eff
(4.17)

II, (k, a) = II,(k, n) —II,(k, a) i," =&eff

(k, ,
)

dll, (k, )
0'eff dI 2 (4.18)

The effective masses are obtained from the ex-
pressions

m.„(a)= m, +
2 jeff

(4.19)

where the renormalized value carries a prime, and
the total density and temperature dependence is de-
noted by a; the requirement that the two-point
functions be singular at the effective masses (P'
= m, fr* and k' = p, ,«') leads to the equations

the coupling constant. In particular

m„,(a) = m, +O(g'),

Z, (a) = 1+0(go)

(4.23)

(4.24}

z.'(p, q ) =z.(p, q ) —z, (p, o)I,

(p )
dz(p 0)

d
(4.26)

with similar expressions for the boson two-point
function and polarization operator. The baryon
physical mass is given by

The last two results are in part justification for
the approximations (4.8)-(4.10}above.

The approach to renormalization just outlined is
of interest formally, and constitutes the logical
conclusion of renormalization of a relativistic
many-body theory in flat space-time, that is, in the
absence of such effects as gravitation. In actual
calculations, however, it may be advisable to re-
normalize to physical masses which are indepen-
dent of density, since for many theories [in partic-
ular, the one represented by (2.1)] regularization
may be accomplished at the same time. This is
the approach which will be followed below. The
procedure is identical to that discussed above,
with the exception that the pole of the two-point
function occurs on physical mass shell, and the
renormalized quantities are independent of the
density. The results, which will be used later, are

[p- m-z,'(p, q, )] G'(p, q, ) =1, (4, 25)

II,'(k, a)
p,«(n) = po+

3 $2 P ff2
(4.20) , z;(p, o)

0 t
4=m

(4.27)

Finally the renormalization constantsZ, and Z, are

) 1
sZ (p n)

8

all,'(P, a)
1 gy2

g = jeff

Q2 P ff2

(4.21)

(4.22)

The functions Z,' and II,' are given by Z, times the
Fourier transform of (2.7) and (2.8), respectively,
written in terms of the renormalized quantities ap-
pearing in (4.11)-(4.14).

Examination of (4.17)-(4.22) shows that the ef-
fective masses, as expected, are functions of the
density of all particles in the system to which they
may be coupled by the interactions contained in the
self-energy and polarization operators. Further-
more, it will be observed that the renormalization
constants are functions of the density and tempera-
ture as well. By (4.19}-(4.22), and the dependence
of Z(P, n) on g', it is evident that the leading-or-
der density-dependent corrections to these terms
are proportional to the second or higher power of

and is independent of density as are Z„Z„and Z, .
It will be noted that the physical mass is deter-
mined by the self-energy at zero density. The re-
sults (4.25)-(4.27) apply to the system described
by the assumptions at the beginning of this section,
and have been written in terms of the density (4.1).

V. CONCLUSION

lim P - 4aj~cn—= P„,
P&/m~

(5 1)

%e have presented and discussed, within the
context of a fully relativistic many-body theory,
the Green's function for a system of baryons inter-
acting via, the relativistic Yukawa coupling to sec-
ond order in the coupling constant. In the next pa-
per we give the results of a numerical solution of
the relativistic pressure (4.5) and energy density
(3.18) in terms of the self-energy (4.7), which has
been regularized according to (4.26). As a result
of this calculation, we will show that the pressure
and energy density approach the asymptotic values
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(5.2)

which leads to an asymptotic limit on the velocity
of sound"

C(
s g 3

(5.3)

The results of this numerical calculation will be
approximated by an analytic expression for P and

p, and the results discussed. The numerical re-
sults are being used as the basis for a calculation
of the critical mass and structure of a star at the
end point of thermonuclear evolution. This is the
first calculation to take into consideration in a de-
tailed manner the relativistic equation of state
which includes strong interactions in obtaining the
maximum mass above which a cold catalyzed sys-
tem of baryons is unstable against gravitational
collapse to a curvature singularity.
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