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lar process

e- e+t',
then one obtains a lower limit to the lifetime =2.0
x10" years in the case of electrons and =1.3x10"
years in the case of free protons. Setting p'/2m
& 100 eV, we obtain p.s 4.3 x10' and 1.0 x10' eV
for the decays of free protons and electrons, re-
spectively. The limits on the imaginary masses
of tachyons derived here are lower than those in
Ref. I (but lifetimes are smaller, resulting in

larger limits to the coupling constant). It must
be emphasized, however, that the limits on the
neutral tachyon masses set here as well as in Ref.
1 are meaningful only if the coupling constant
mediating reactions (1) and (2) is sufficiently
large and, in the case of reaction (2), if the fluxes
of neutral tachyons are adequate.
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ments on a preliminary manuscript of this note.
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Following some original ideas of Salam, Mathur, and Okubo, further theoretical consider-
ation is given to a possible singlet contribution to the electromagnetic current of hadrons
using spectral sum rules connecting the leptonic decays of vector mesons. Unfortunately,
experimental uncertainty prevents meaningful analysis and conclusion.

I. INTRODUCTION writing the electromagnetic current,

Much attention has centered on the sum rule re-
lating the leptonic decays of the vector mesons
p, (3F), and &:

—'m~1'(p- ll ) =m I'(+- l l )+m&I'(p- ll ),
(1.1)

jP(x}=V„'(x}+~ V„'(x)+yV„'(x),

with y some constant to be determined.

II. SUM RULES AND MATRIX ELEMENTS

(1.3)

which is based on vector dominance, ' Weinberg's
first sum rule, ~ and a hadronic electromagnetic
current of the usual form,

The vacuum to single-particle current matrix
elements are written

j™(x)= V„'(x)+ ~ V„'(x), (1.2)

where V„'(x), a =0, 1, . . . , 8, are a nonet of vector
currents satisfying the chiral algebra. ' Implica-
tions and modifications induced by inclusion of a
singlet component in the electromagnetic current
can be studied through the sum rules of Weinberg, '
Oakes and Sakurai, ' and Das, Mathur, and Okubo, '
in both the SU(3) and U(3) symmetry limits, by

(Ol V„"'(0)lp) =gpss„(k),

(Ol V„""(0)I K*& =gree„(k),
&o I V„'(o) I ~ &

= g e „(k},
(ol v„'(o)ly&=g, e„(k),
(ol v„'(0)l~&=h e„(k),
(0 I V g(0) I P &

= h ~e „(k),
(OI V t' ' ' (0) I K& = j'„k

(2.1)
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where the vector mesons (p, K*, 4i, pp) carry polari-
zation e„(k) and momentum k. The s scalar exci-
tation is of second order in the breaking of sym-
metry, but is retained in what follows. Weinberg's
first sum rules for chiral U(3) anal S'U(3) take the
ferms, respectively,

while identical results hold for chiral SU(3) with
the provision that the term involving h, &2 and Jg

'
in the first of Eqs. (2.5) is suppressed.

With an electromagnetic current of the form
given in Eq. (1.3), the leptonic decay rate of p, &,
and (t) is given by

+ p, i, (m ) dm' = s5,i„p., '(m') (,)

(2 2)

r(v ~i) ,
",='",'i.o((" )'~, (2.6)

r
Q&!m')

+ pe~Pi(m ) dm = s6,i, + s'6,p6pp,

a, 5=0, 1, 2, . . . , 8

where p~'~ and p&'~ are the spin-1 and spin-0 spec-
tral functions of the vector currents, dia~xml in
all indices except 0 and 8. In the meson dominance
scheme,

pl'~ (m ) =g 6(m —m )

p4~~5~. s.7(m') = gr ~26(m' —mr ~'),

pp&"(m') =g '6(m' —m ')+gq'6(m'-me'),

p "(m') = h~'6(m'- m ')+he'6(m'- m&'),
2.3)

p "(m') = p "(m')

=g h 6(mn- m ')+g~he6(m'- me'),

p " (m') = f '6(m' —m ')

Applied to U(3) or SU(3), the equations are modi-
fied, respectively,

p~t&(m') „,m =s~6,b,

f =3y (2.8)

and, for chiral SU(3} symmetry,

-"("-:""-:),".'
The sum rules of Oakes and Sakurai (OS} take

the general form for the vector mesons,

p"'(m') „,
m 4 m abx

(2.9}

(2.10)

and those of Das, Mathur, and Okubo' (DMO),

(2.11)

for 4.b an isospin-conserving, unitary-symmetry-
breaking expression written in generality, '

with cv =g, (I/W)g~+ yh~, (1/&3)ge+yh for
V=p, &u, and p, Using Eqs. (2.5}and (2.6), it
follows that Eq. (1.1) is modified by the singlet
piece,

-', (I+a)m, l'(p- ll )= m„i'(&o- ll )+m&1'(P- l l ),
(2.V)

with, for chiral U(3) symmetry,

p~', &(m')
dm = Sl~ah+ Sl~gP~bo 3m

(2.4) b, i,
= A 6,~ +Bd,i, + C6~6i 0

+D6~6is+E(6~6ip+ 6~6~ }, (2.12)

where, obviously, s, +s, =s, s,'+so=s'. Equations
(2.4), thus, are more restrictive than their chiral
counterparts, Eqs. (2.2), and are equivalent when
f„=0.' From Eqs. (2.2), we find for the ease of
chiral U(3) symmetry

gp gr*
~ +f.'

mp ms+

ghf
2 + 2m$ mb)

fg ~2
2+ 2ym$ m~

(2.5)
A' /gal A~g~

+ 2 =0
m@ m(g

where d„b are the symmetrical structure con-
stants. Attention will focus on octet breaking,
C =D =E = 0, but application of other breakings is
straightforward. Coupling of either the 08 or DMO
sum rule to Weinberg's first sum rule gives a
redaction in the number of arbitrary parameters
and definite predictions for the ratio of leptonic de-
cay rates as a function of y.

III ~ RESULTS

Experimentally, one tests Eq. (2.V) for a possi-
ble singlet contribution via a deviation from the
usual sum rule, Eq. (1.1),

6 =-', ~m r(p-11)
= m I'(&o - l l ) + m&I'(P - l l ) ——,

' m I'( p - I l ),
(3 1)
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and examines the ratios

r(y- ii)
I'(p - I I )

m ' [(I/W)ge+yhe]'
2

m(4, gp

I'(~ - i I )
r(i —iT)

mp s [(I/~)g +yh ]'
m(d gp

The Orsay' results give

5 =0.60+0.78 MeV',

x,„=0.21 + 0.06,

y,„=0.15+0.06,

while the Bologna-Cern" experiment yields

5,„=0.60+1.40 MeV',

x,„=0.27 g 0.14,

y,„=0.06 + 0.05,

and the DESY" results are

Oex =0.11+0.94 MeV',

x,„=0.17+ 0.08,

y,„=0.14+0.06.

(3 2)

(3.3)

(3.4)

(3.5}

the OS sum rule, Eq. (2.10),

m 2=m 2
Id P

2mg~ ' —my
' —m '=2f 'mg* 'm 'g

(3 'I)

2

gy =gp 3 2

2
2= 2

gp 3 2
p

2
2 2 m$

3m'
P

&~'=g
p

h e = -(I/~2)ge,

(3.6)

Substituting in Eqs. (3.2), it follows that,

.=- ' [I-y(-:)'"]'
9 m~

= 0.167[1—y(-,' )"']',

y = — (I +y&6)s9m

(3 9)

In the limit f„-0, we recover the well known U(3)
mass sum rules. ' " In both cases, interestingly,

nl 2=m 2
td P

2m+~' —me' —m '=2f„'ms~'m 'g
(3.6}

and correspondingly for the Weinberg sum rule and

Within the limits of the error bars, the experi-
ments are compatible. However, the magnitude of
the errors in 5,„mitigate against meaningful ex-
trapolation of e and hence y from the sum rule.
Similarly, if we simultaneously solve the Weinberg
equation, Eq. (2.5) and the DMO sum rule with
octet breaking, Eq. (2.11), we find after some al-
gebra

= 0.111(1+y W6)

Again, uncertainty in measurement prevents mean-
ingful determination of y.

A discussion of quark-model predictions of y is
given by Mathur and Qkubo' and is not repeated
here, except to point out that the 4-quark model of
Maki and Hara, '4 with y = (

—', )'~s, is ruled out by the
present experimental data listed herein. Though
the situation is inconclusive now, experimental re-
finements will hopefully give greater insight into a
possible singlet component as seen through Eqs.
(3.1) and (3.2).

*Work performed under the auspices of the U. S.
Atomic Energy Commission, under Contract No.
W-7405-Eng. 36.
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scalar and vector mesons, since little is known about
the existence of scalar mesons. Furthermore, to the
extent that the axial-vector currents are not conserved,
pseudoscalar excitations are of lower order than their
corresponding scalar excitations, which are coupled,
with the exception of the ~ meson, to conserved vector
currents.
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Recent accelerator data on multiplicity distributions are reexamined within the context of
the Feynman fluid analogy. An interpretation of the data put forward is that the diffractive
component decreases logarithmically with energy.

q(z, Y) =Pz" a„(Y)/o...
and assume that at large Y it has the behavior

lnq(z, Y) =P(z)Y+s(z).

(2)

(3)

For very large energies the value of sa in (1) is
irrelevant; however, for present energies it may
be important. (The value assigned to a is a scale
factor and for our purpose is arbitrary. ) A hint
as to the value of so may be obtained from the fluid

The recent data' on prong distributions at high
energies (50-300 GeV) suggest a reexamination of
results based on the Feynman fluid analogy. The
previous' approach to this problem relied on cos-
mic-ray data. ' The available accelerator results
differ with the cosmic-ray ones and, presumably,
are more reliable. In this note we shall present
the results of such a reanalysis together with a
possible hint about the energy dependence of the
diffractive component of multiparticle production.

We review briefly the method used which is
similar to the one of Ref. 2. The reaction studied
was p+p- s negative particles (n =0 includes elas-
tic scattering) at a center-of-mass energy Ws.
Let

Y = a in(s/so) .
We shall return to the choice of s, shortly. Instead
of dealing with the cross sections cr„, we study
the partition function

Y =(n) = -2.9+lns. (4)

The analysis presented below makes this identifi-
cation. Had we chosen s, =1 GeV', as was done in
Ref. 2, none of our conclusions would change.
With such a choice (3) is not as well satisfied as
with choosing (4) and subsequently the errors on
p(z) are larger.

The values of q(z, Y) together with the best fit
to (3) are shown in Fig. 1, and the pressure, p(z),
is presented in Fig. 2.

One may now speculate on production mecha-
nisms which would yield such a pressure curve.
Following the discussion of Ref. 2, we would con-
clude that the rising part (zz0.8) of the pressure
curve was due to a multiperipheral mechanism,
while the relatively straight section (0& z a0.8),
one could naively say, was due to a mechanism
yielding

o„(Y)=e ""d„, (5)

with g-0.2 and d„ independent of Y.
An energy behavior such as s ', which would

be implied by a literal interpretation of Fig. 2 and

analogy itself. The inelastic average multiplicity,
(n), is proportional to the length of the plateau in
the one-particle-inclusive distribution, which in
turn is the analog of the length of the Quid contain-
er, Y. Thus it is plausible that the proper extrap-
olation of Y to present energies is to let


