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Starting from the B of Chan and Tsou and using the results of DeTar,

Kang, Tan, and Weis, we

obtain expressions for the cross section and density-matrix elements of vector mesons produced in
inclusive reactions. The behavior of these quantities as functions of energy, missing mass, and

momentum transfer is explored.

I. INTRODUCTION

With experiments of the type a+b-c+d
+X (anything) at ultrahigh energy imminent, it is
of some theoretical interest to investigate pre-
dictions for density-matrix elements of resonances
produced in inclusive processes. The cross sec-
tion for this process can be written as a discon-
tinuity in the forward four -to-four amplitude.

The dual resonance model (DRM) provides a natu-
ral framework for our investigation, because it
specifies the eight-point amplitude as well as a
simple prescription for focusing on the case where
two pairs of particles form resonances. The re-
sulting amplitude (for 0o“p” - 00“p”) is a linear
combination of B,'s, and we can use the results of
DeTar, Kang, Tan, and Weiss (DKTW)! to take
the desired discontinuity.

The paper is divided into five sections. Follow-
ing the Introduction we define our notation and set
forth the approximations and assumptions made,
along with some motivation for these assumptions
and approximations. Section III contains a de-
scription of the calculation; results obtained are
in Sec. IV. Finally, we comment upon the results.

II. BACKGROUND
A. Notation and Kinematic Region

For the most part, we follow the notation used
in Ref. 1. In considering a +b — x + X (anything) we
are interested in the amplitude for a+b +x
-a+b+%, where the bar denotes the antiparticle.
We use

g =a(py+ by + Py)?) @2.1)
and let
gz =a(M?) = a. 2.2)

Here M? is the missing mass squared. We also
use s for the center-of-mass energy squared and
t for the momentum transfer squared between
particles a and x.

We deviate from this notation when obtaining

3

from the eight-point function the combination of
six-point functions which constitute the amplitude
for the case of two external vector mesons. Then,
since we shall be dealing solely with momenta of
groups of particles adjacent in our diagrams, we
adopt the notation of Chan and Tsou,?

a”(i<j)= a(py +Die+0 " +PJ)2, )

Xgy==ayy =1,

2.3)
(2.4)

Also, throughout the paper, in all DRM diagrams,
all momenta are ingoing.

The kinematic region in which we shall be work-
ing is the fragmentation region of particle a. In
this region

$,M?~ 2.5)

while ¢ is held fixed. We do not assume that s/M?
is large. (However, see comments at the end of
Sec. I1I.)

B. Assumptions and Approximations

We start from the results of DKTW. They find
that of the 60 different diagrams contributing to
the six-point amplitude, only four contribute to
the discontinuity in the fragmentation region.
These four are shown in Fig. 1(@). Therefore, in
obtaining the amplitude for Voo - Voo from eight-
point functions, we need only consider the pairs
of poles in two-particle subenergies which yield
combinations of By's with external particles or-
dered as in one of these four diagrams. Hence,
the B,’s which we consider are those shown in Fig.
1(b). The amplitudes of these graphs we denote
by A’, B, C’, and D', from left to right.

Linear trajectories are assumed. In the nu-
merical evaluation, all internal trajectories are
taken to be the “7” trajectory, a(s)=s, with
a(my?) =0, a(m,®)=1, except where it is obvious
that what should be used is the actual mass of the
m or the p —as in the calculation of the invariants,
for example (s =2m, 2+2p,*p, not s =2m2+2p,*p,).
This assumption is made for simplicity. If one
desired, one could insert a more “realistic” vacu-
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(a)

(b)

FIG. 1. (a) The four DRM diagrams which contribute
to a +b—x + X in the fragmentation region of a. (b)
The four DRM diagrams which contribute to a +b—V +X
in the fragmentation region of a.

um trajectory in the appropriate channels. Since
our main interest lies in ¢/ dependence, however,
we can tolerate a vacuum trajectory with intercept
zero. We comment further on this in the final
section.

III. CALCULATION

It is easy to show that a simple application of
the Mueller® technique to reactions involving the
production and subsequent decay of vector mesons
yields the following expression for elements of

the density matrix of the vector meson x in the re-
actiona+b—-x +X:

Py = (1/N)Disc2(abx(\')|T|abx (V) , (3.1)
where
N = Y Disc,2(ab% (\)| T|abT()) . 3.2)
x

The one-particle spectrum is

1 do  T(dyac+1)
—E, —5=——g— 3.3
Op TP T(ag) T @.3)

where we include the total cross section o,, to
maintain scaling even with a vacuum trajectory
with intercept zero.

Consequently, in the fragmentation region of
particle a we wish to compute the DRM diagrams
shown in Fig. 2. We denote these four diagrams
by A, B, C, and D from left to right. To obtain
the expressions for A, B, C, and D, we first
need the expressions for A’, B’, C’, and D’,
which are obtained by taking the residue of B, at
the appropriate poles.

Consider first A’. We are interested in the
a,=a,=1 (x),=x,,=~2) pole. We find it con-
venient to use the multiperipheral configuration
of By, represented by the duality diagram of Fig.
3(@). Using the expression of Chan and Tsou,?

1
= x x x x x. - 2 - x - x
Bs‘f At 1p Qg (At Aty g Uy 1201 13U F180 ) P15, F16(1 — ) 23 (1 =t 1) 981 — 0, )75

2

x(1 _uls)’se(l _u“)"sv(l _unuls)’=24-rzs-¥s4-1(1 _ulsum)"as"‘srﬂs'l(l _u“u!s)&e-ns'!se-!

~x56-%67~1 *25t¥g34=%X24=% Xggt X 45=Xg5 =X,
X1 _ulsum)xsv *56-x67-1(1 "'uxzuuuu) 25" ¥347%247%35(1 —umu“u“) 36" ¥45-%35-%4¢

+Xeg=Xqq=X Xoat Xoge=Xos=X
X (1 =y 0y gty o 47" ¥5677467757 (1 gy, 20 01 g Uy ) 726" P85 77257736

- - +Xqp=Xoa™
X1 =t gl Uyl 1) 37" 74675367547 (1 = Uy Uy g Uy 4 Uy Uy )27 ¥3677267737 (3.4)

we first expand terms containing u,, and/or u,, in Taylor series in those variables. We then do the Uy,
and u,q integrations and take the residue at the double pole x,, = -2, %,4=-2. [Details of this procedure and
of steps leading from Eq. (3.5) to Eq. (3.6) are given in Appendix A.] We thus obtain

X 363 X5 X3 ba X b
x X, Tx X
o
P)\)\I‘HDISCMZ {§+§+§+§ }
X X X
X%g bX%g bd &pd &p
A B C D

FIG. 2. Diagrammatic representation of density-
matrix elements.

345 4.5 4.5 4.5
6 3 3 6 3 6
o XU o X o w3
8 8 8 8

FIG. 3. (a)- (d) The duality diagrams for the B 8’s
used in obtaining A, B, C, and D, respectively.
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TABLE I. Expressions for A, B, C, and D.

(1/a')A =—€+p, € ** [pzB o(Qgzs @) Uaps Uaps Cph» Vg Uax3s Faxds %) P5Bel o r Qg —1h0)

+ppBgl...,a =10z, —1,...)+pBelaz—1,a -1, a5 -1,...)]

—epye' * [PBo(@az =1, . ) #P5Bs(@az =1, ., Gax =1, 00)
+ppBylagz—1,0 =105, —1,...) +p B gz —2,0 = 1,05, —1,...)]

—€spge’*e [pgBglagz -1, =1,...) +p3Bgla,z— 1, -1,05,-1,...)
+ppBylagz—1,0 2,05, —1,...) +pBgl@ag — 2,0 —2,05, - 1,...)]

—€ pz€ ¥ [paBg(eaz— 1,0 = 1,05, —1,...) +ppBgl@pz — 1, @ — 1,05, =2,...)
+pyBglayz— 1,0 — 2,05, —2,...) tPaBel@az —2,a - 2,05, - 2,. )

—(€* € */2a')Bg(a,z -1, -1,05,—1,...) .

(1/0'})B = =€’ *~pge+ [P Bg(@az, @) Uy 1 Oab » @p%r ¥Bx» Wax 7 » Yaam ¥a3) P pBe(@z—1,...)
+p3Bglaz—1,0—1,...) +p, Bgla,z—1, @ 1,053, - 1, )l
—e'*opoer [pBgl... a5, —1,...) +0pBg(@gz—1,...,05,—1,...)
+p3Bglaz—1,a =1, a5, ~1,...) +p,Bgla,z—1,a-1,05,-2,...)]
—e'*epy€s [pgBglo.yge =1, . 0,051, ..,03,5—1,...)
+ppBelagz—1,...,0z, =1, ..., 0p3—1,..., 03,51, ...)
+pgBglagz—1, @ =105, —1,...,a,5-1,...,05,3-1,...)

+p Bgla,z—1,a —1l,a3,=2,...,05-1,...,053—-1,...)]

—exepoee [pgBolen. sz =1, ..., 05,5 =1, ...) #PpB(@az =1, ..., 07, —1,...,05,3-1,...)

+p3Bglagz—1,0 =105, -1,...,05,5—1,...) +p,Bg(@z -1, - 1,05, —2,...,05,z—1,...)]

+(er€*/2a")[Bglaz -1, - 1,05, —1,...) =Bgla,z~-1,a -1,05,—2,...)].

A’z (apg +1)[ (0tgy +1)Bg(0tyg, @y, gy Qgqy Cygy Olggy Qs Oggy Ugg) + (Qgy = Olgg = Qgy) Bl ooy @ys=1,...)
+(Qgpt Qgg = Qug = Qg )Bg(. vy @y =1, @ =1, .. .) + (Qge+ Qg = Qgq = @) Bg(ayg =1, 0y =1, @)= 1, ...)]
+(0tgq = Qgg = g ) (A +1)Bg(ayg =1, . . .) + (Qgy = Qg = gy )Bg(@yg =1, ..., a5 =1,...)
+(Qy + Qg = Qg — ) Bglayg =1, 0y, -1, @, =1,...)
+ (g + Qg = Qgg = Qg) Bo(y3 =2, ay =1, a5 -1, ...)]
+ (Olgq+ Upg = Oy — g ) (@gy +1)Bg(ayg =1, @y =1, . ..) + (0, = @gg = Qg )Bgltyg =1, @y =1, 0, =1, ...)
+ (Qgy + Qg = Qg = 0;)Bg(ayg =1, @ =2, o, =1, ...)
+(Qgy + Qgg = Qg = ) By (g = 2, @1 =2, @y~ 1, ...)]
+(Qpg+ Qg = Oy = Oge)[ (Qgy +1)Bg(ayg =1, @y =1, a5 =1, .. .) + (Qgy = Qg = 0y ) By (g =1, 0y =1, ;5 =2, ...)
+ (0 + Qgg = Qg — 0g)Bgl(ayg =1, @y, —2, ;5 -2,...)
+(Olgy + Qg = Qg = @) Bo(tyg =2, @y =2, a5 =2, ...)]

+(Qgq + Qg = Qg = @) Byl =1, @y =1, @y, - 1,...), @.5)
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TABLE I (Continued)

(1/a'®)C==€-p e *+ [p3Be(Quz &) U3y » Xp3 » XpBs %35 Yaaix s Xax7» Fax) HP5Bel. .., @ —1,..0)
+ppBg(..., @ —=1,a5,—1,...) +pzBgla,z -1, —-1,05,-1,...)]
—€p € ¥ [paBglaaz—1,...) +p3Bgl@uz—1,...,05,—1,...)
+pyBgl@gz—l,a—1,a3,—1,...) 4pgBgla,; -2, — 1,05, - 1,...)]
—€py€’ ¥ [pgBglaz—1,...,0p5=1,...,0,,z-1,...)

+p3Bglaaz—1,...,05,—-1,...,0,5-1,...,0,¢-1,...)

+ppBeglaz—1,a-1,a5,—1,...,0,3—1,...,Q,,5—1,...)
+pgBgla,z =2, -1,03,-1,. .., ap3—-1,...,a,,3-1,...)]
—€pz € ¥ [PaBgl@az—1,...,Q0,z—1,...) +p5Bg(Quz—1,...,03,=1,...,0,,5-1,...)
tppBgl@e—1,0 - 1,05, ~1,...,0,,5-1,...) +pzBgla,z -2, 1,05, ~1,...,0.,3-1,...)]

+(er€'*/2a")[Bglaz -1, =103, =1,...) =Bgla,z -2, - 1,05, -1,...)] .

(l/a’Z)D="E'pa€'*' [p‘aBG(aa:?'a'a'ix’abE!ab'ﬁia?xlaaix » 35 %g) +paB€(""a'ax—1"")
pBg(o .. 055—1,...,005=1,...,0,5,—1,...)+pgBg(. .., 05, ~1,...,Q,5,—1,...)]
—€cpze*. [PﬁBs(aa;—lv . --)+P¢Be(a¢i"‘11---:a‘a',"'li-/-)

+ppBelagz—1,...,05,—1,...,0,35-1,...,¢ 1L,...)

adx —
+PgBg(aaz—1,...,05, =1,...,0,5,—1,...)]

—€eppe’ ¥ [paBgla,z—1,...50p5—1,...,035-1,...)

HBglagz—1,...,05,=1,...,a,3—1,...,0,35-1,...)

+P,,Be(aa;—l,...,a;,—l,...,ab3—2,...,aag,-—l,aa;;—l,...)
+P:?BG(aa§_1"'-’aix—1"-'!ab-b—li--"aaix-l’auif—l’"‘)]
"'E'pxg*'u’ﬁBG(aa;_ll"-’aa;;-l"*' )+PaBe(aa§—1"--'aﬁx_l"”’auii'_l"")

PpBe@az—1,.. ., 05, =1, e5-1, .., 0,5, — L a1, ..
pgBe@az—1,. . g~ 1.0, Cpgy— 1,33 -1,...)]
+(€r€*/20")Bglagg—1,...,03,=1,...,05-1,...,0,3,—1,0,35~1,...)

_Bs(aai_1""’aix_l’""auﬁx‘l'aaﬁl_l"")] .

where Bg(ayg, Oy, 05, Qgy, Oy, Ogq, Ugs, Quq, Og) is the standard six-point function? and the ellipses in-
dicate the omitted a,;’s are unchanged. This amplitude receives contributions from all the daughter trajec-
tories. In order to restrict ourselves to the leading trajectory (i.e., the vector meson) we employ the
method of Ref. 4. Having done so, it is easy to pick off the Voo vertices to obtain the expression for A
given in Table I (see Appendix A). In the same manner, the expressions for B, C, and D given in Table I
are obtained. (Appendix B contains an outline of the main steps.) From this point we shall neglect all
€ *p, and €'*+ p- terms since in the end we set p; =~p, .

Next we take the discontinuity in (A +B +C +D). To do so we use the results of Ref. 1.

Discy2 Bg(a,, @y, 0y, @4, @5, O, @y, Qg, Q)

n(az)“s a, \1/ a,\%
=I“(1+z:t$) (-E:> _E: Hay/ay, @,/ a5y, as, Oy + Qo= Olg, Oy + Qg = Oy y =0l = Ol + Ay + O, Q)

3.6
where (3.6)
I(QI’ﬁl;a21BZ’ Qg, ﬁa, Ys 6)

=J' dyldyz y;%-lyz:ﬂz-l(l - a,yl)a‘-‘ (1 —Blyz)ﬂs(l -y, —ﬁ1y2)7(1 -y _y2)56(1 -, _.ye) .
0
3.7)
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TABLE II. Expressions for the discontinuities in A, D, and B +C.

ag,\*%z (@ _a
ngDisc.ZA =€.pa€'*cp¢[ (#) I a'; ’Ea—b- ;aa;laa;’atﬂ'aa;’o'o

0 =2 -
_Z(Eu_) of 1("’ 1 a 1;aa;—l,ad;—l,a,;—l,aa;—1,0,0)

?
a-1 Qap  Qgp

200 = =4 - -
) o 1("‘—2 2 2;a,;—z.a,;—z.a,;-z,a,;—z,o,o)]
Qgp Qap

+(£u_
a-2

20,3 =2
o ® o] [+3
+€-pb¢'t-pb[< ‘;") ‘4 DI(-&:,E:;;a.;—l,aa,-l,a,;—l,aa;—1,0,0>
20, = =2
Qgqp a% a-1 a-1 _ -1 -1 __100]
—(m) Dl<aa° N jagz—1,0,3 1,0,z -1,0,7-1,0,

20,3 =1
op glhe op, ! ke _(%ad ) ox L @ a-as=-1o0,s -1.0,0
+(€ Ple * pb +€ pbe * P‘)[ ( a ) DI(aab 'aao .aﬂ,’adx ’ a:’ad! ’ ’

20,53 - -
+(°‘¢° ) o I(O’ 1,%T];;aai-1xa¢?_2vaa'§‘17“05_2'0’())}
a

®gp

o ! 20, ==2 - -
€ e*(u,,, ) 0% I(g_l a 1;ad-1,0:,,;—1,0.;'11%5"1'0'0) .

-\ *ex [ a «a
__.P.L) e I(— = 03 OG5 a,; -1, a,3-1, 2, 0)

wai=l /o @
I » T3 Og3s Qgz—1, 31, @3-2,2,0
Qpz M3

-\ 2tax =2 a a
) 1( a1, @z -1, @;3-2, @32, 2, 0)]

Wax -2 a o
DI y T Gzl 0,z -1, 0,51, @,3-1,2,0
Qpz  Qpx

-2
—Qp= a-1 a-1
..(_.n> (H DI(—C‘—b;—' —ah—;; o z—-1, 0,31, a,3-1, a,3-1, 2, 0)]

’
a Qpx Q3

—, =\ Xax
— (€ P € * py+€- ppe’ *  p,) [(_z°_> (‘-gh‘> ~ DI( 2 L;auifaa;'-l’ @iz-1, a,3-1,2, 0)
H

-\ 20ax -2
(2202 (2, a1, agz-1, @32, @5-1,2,0
@ Qpx Apx

-— —
2a a 03

€ €'* (=, 2ax -2 a «a
__<_Ax) [1( Dt %Ll ag -1 a-10, o)
x

a «
- DI (%E' e az-1,0,:-1,a,;-1,a,;-1,1, 0)],

[+ a a ]
DI( )_;azo ﬁz, (!3, psn 4 6) El<a ’ a H (!2, ﬁZ' aar ﬁav Y, 6)
abd ad

Qap Qqp
a \%2*B fa-1 a-1
-< ) I( ’ 3a2’32!a3u331716 .
Qap Qap
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TABLE II (Continued)

a—ﬂ,g Discy2(B +C) =2cos(Ma,z)€ P **p,

o=

- Q3 ax o o

X[(—#) I<a = 'ag, 3 Qg% Uax, Qay + 0y » Qg3 +0ax— 1,10y 70)
o bx a

[+ Sy

[+7 -3 O ax [¢] o

- ("'_bx a2 I( 0 10— 1,0,5,0,3 +04y vaa§+aax—1v"aar-0>}
—Opx az Qpx Qgp

+2 cos(Ta,z)e *pp€’™* py

=

—-apza %ax [*] o

X <__’..a_b> DI( ’ 10z —1,0,5—1,0,3 +0,4,,0Q,3 +anx_2’1-aar'o>
o? Qpz Qgp

- %3 -1 -1 a-1
..(ﬂg_‘?_b) ax DI(——‘;_ ,‘; ; 10,3 =1,0,5 1,049 +04y , Qa5 +0,—2,1=04,,0 )}
(@-1) x a

—(€*pa€ * ppet™ax +e ppe * p e T%F)

_o [ —apzagp \%a3 a
><[Ol < DI ’ ;auiyaa;—l’aa?+aaxvaa!"'aax'zvl"aax70
ab a? bz  Qgb

agz-1

—-Opz O a% o o

- 8% 7ab DI( ;aa;—I,aa;—l,aa;+aa,,a,;+a"-2,-a",0>:|
ol Opx  Qab

—(€*pp€ * pae'™aT +e pye ¥ pyeTIT%3)

—Qpp a s
o X %ad \"ax (o] (o]
X . [|— — :a.==1.0,c.a.=+Q a +a -1.1-a 0
('ab;>< a? ) D. (a',; ’aab' ax s “ax » Sax ax»“®a¥ ax ’ ax»

€+ €*cos(Ta,y)

al

-0 QO o, 51 - -
[(—M> ax l(a—l 9——12;aa;-1,aa;—1,aa,+a"-1,a,;+aa,-—2,1—a,,,0>

(@—1)2 apz ' Qgp

-1
a—1 [ =050 \%z a-1a-1
—<-—ab;)< (0:1;2 > 1(%; Tagp ;aa;—2,au;—1,aa;+aa,—2,a,;+a¢,—2,l—a“,0)].

Note that / is symmetric under simultaneous interchange of «, and 8,, @, and 8,, and ag and g,.
Before we take the discontinuity we rewrite the By’s which contain a,5 =1 or a,; - 2 by use of recursion

relations of the form
Bo(aa;’ a, Oy, Uy Oy = 1, U5 > Ugge 5 Yz aai')=B6(a¢?: Q, Qgey Uy, Oygy Uiy, Uggy +1, %z +1, L Fry +1)
_Be(a&" a-1, Oy Oy, Oy, Oy, Qg +1, e +1) Loy +1),

(3.8)

This gives us an expression with all a,3’s unchanged, thus enabling us to factor out that I" function which
arises in taking the discontinuity and also to avoid difficulties which would otherwise arise from our
choice of a(0)=0.

We now take the discontinuity (being careful to evaluate a,, at s +ie and a;7 at s —i€), use the symmetry
of I, and insert our trajectory [a(s)=s, a(m,?)=a(m,?)=0, a(m,?)=1] to obtain the expressions listed in
Table II.
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We can now evaluate these expressions numerically. In doing so it is convenient to use the fact that the
last argument of each I is zero. This enables us to write

I(al ’ B],;azaﬁzy asy Bs, Ys 0) =j dy]_dyze(l ~y1 _yz)yl-az-lyz-ﬂz-l(l - a1y1)a3(1 -Blyz)es(l - 0!13’1 _313,2)7
o

L =BTk ~7)

jirmo T(=B)TU + )T (=y)T(k +1)(j +k =B,

)ﬁlﬁk

1
X [ dyyy,m L - ayyy) YA L - yy) "B
0

-5 Ty =By)T(k —v)B, "™
2 T(TG DT ()T & 110G +k —F;)

><l"(k +j =B, +1)'(=a,)

Tk+j—-a,=B,+2)

where ,F, is a generalized hypergeometric series.

We should at this point comment upon the state-
ment that s/M? need not be large. The expression
(3.10) for the discontinuity in the B,'s is correct
for large M? and large s, regardless of their ratio.
However, it neglects terms of order 1/M2. In
calculating some of our amplitudes, the factors
multiplying DiscBg can be large. In particular,

P, is of the order of (s -M?)/m,, DI is typically

of the order (1/M?)I, and terms containing two p,’s
also contain at least two factors of M2/s. Conse-
quently, for s/M? small enough, problems can
arise if the larger terms should cancel for some
reason. Such cancellation does in fact occur for
cos[ma()]=-1.

In practice, our expressions seem adequate,
even in the region of cancellation, for s/M? down
to four in the density-matrix elements, and down
to two for the cross section. Hence our evaluation
of the density matrix does not extend to as large
a value of M2 as does our evaluation of the cross
section.

IV. RESULTS

A. Cross Section

In Fig. 4 we plot the differential cross section
(1/0,,)d?c/dtdM?

as a function of t’=¢ =tmax. The cross section is
plotted at different values of £ = M?/s, since for
large s the quantity

(s/0,,)d?c/dtdM?

has scaled and depends only on £ and ¢. It should
be noted that our differential cross section satis-
fies

1 d?%
jg‘;W dtdM?=(N(s)) , 4.1)

2F1(k—7—aay "azyj‘*‘k‘az—ﬁz*'l;al); (3-9)

—
where (N,(s)) is the average number of vector me-
sons x produced. Using variables which are more
accessible experimentally, we display in Fig. 5
plots of the one-particle spectrum (E,/0,,)do/dp 3
as a function of p,, ? for fixed p_,/p;,.(1ab). The
one-particle spectrum also depends only on this
ratio and p 2 for large s, and so we do not specify
S.

General features of note, besides the expected
rapid decrease as ¢t (p,) increases, are the de-
velopment of structure around ¢’=-0.5 or -0.6
GeV?/c?, the broadening of the distribution as M?
increases, and the gradual change of slope as ¢

(arbitrary units)

2
bdf dM

ue
(o8
al

d%o

0 2 4 6 8 10 12 1a
I (Gevé/c2)

FIG. 4. (1/0,,)d%0/dt dM? as a function of ¢’ for
£=M?/s=0.1, 0.2, 0.3, 0.375.
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increases. The dip which develops as M? increases
is a signature effect® due to the cos[na(t)] factor
contained in Disc,2(B+C). The dip occurs near
the nonsense wrong-signature point ¢ = -1 GeV?/c?
or t'~ -0.6 GeV?/c?. For smaller M?, the steeper
slope of the other factors ebseures the cosine
modulation. The broader distribution for larger
M? is expected from the factors of (a,,/a)**’ and/
or (-a,;/a)*®, The slope change is due in part
to the cos[ma(t)] and in part to the fact that A, B,
and C, which have steeper slopes, are fading
away compared to D.

B. Density Matrix

The independent elements of the decay density
matrix of the vector meson in the Gottfried-
Jackson frame are plotted as functions of ¢’ at
fixed M? and s in Fig. 6. As expected, p,, starts
near one at {'=0. It decreases to a minimum be-
tween t'=-0.5 GeV?/c? and t'= -1 GeV?/c? and
then increases again. It continues its gradual rise
(with loeal minima near £=3,5,7, ... GeV2/c?) and
eventually (¢'~ -8 GeV?/c?) seems to level off at
a value of 0.82 for M2/s=0.2. This is in qualita-
tive agreement with the results of Fenster and
Uretsky and of Kang and Shen.® Sinece we are
graphing the density-matrix elements as functions
of t’, whereas the minimum is related to the fac-

10 — 3
5 :
k px[l /P (Iaby*.90
21 inc -
\
\ -
IOE_ \\\ . pxu /‘7 (Iob):'75 B
Eon ne .
5: \\ ]
L N R = T
@ oLy N ’ pxll /p (lab) *-60 N
c K \\ inc
i e \\\ E
~ F \ 3
£ sk \
ER N —
v,q 2r \\,, ........ 4
8|% 5 R\ N—
©lT 10 N E
el F \\ 4
o 6° [ \\\ _:
IO-ZF \\ =
[ \;
93l | L Lo PN

1 L " . L
¢} 2 4 6 8 1.0 1.2 1.4
Ip 17 (Gevare?)
1°

FIG. 5. (E, /0,,)do/dp,3 as a function of p,? for
Dx1/bin =0.6, 0.75, 0.9.

tor cos[ma(t)], the minimum in p,, migrates to the
left as M? (and consequently |fmax) increases.

C. g0~ ox

This has already been considered in depth by
Bebel ef al., by Thomas, and at intermediate en-
ergies by Kang and Shen.® We reproduce our re-
sults for

(Ex /oab)d U/dpxa

at fixed p, ,(lab)/pinc (lab) for completeness and
purposes of comparison to the same calculation
with different internal trajectories (see Fig. 7).

V. COMMENTS

The question arises whether these model calcu-
lations can be taken seriously. Without even con-
sidering possible consequences of the DRM’s
unitarity problems, the phenomenological short-
comings of the model are well established.® Be-
sides these problems common to all DRM calcu-
lations, our results are additionally suspect owing
to our insistence on using the pion trajectory
everywhere. In light of these questions we com-
ment upon the expected significance of our three
sets of results.

We feel that the most significant results for the
cross section are the qualitative features as func-
tions of { or p,%. The rapid decrease as p,? in-
creases (hardly startling), the development of a
dip as the slope decreases (M? increases), and
the change in slope as a function of p, 2 are re-
garded as legitimate predictions; whereas the s
and M? dependence [since ay,(0) = @,z (0) was
chosen equal to zero] and more quantitative fea-
tures such as the actual slopes and when the dip
begins to appear would require a more detailed

0O 2 4 6 8 10 12 14
-t (Gev/c?)

FIG. 6. py and pyg in the Gottfried-Jackson frame
at £=0.1, 0.2.
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by /p (00
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-2 PR SR S
10 (¢} 2 4 © 8 10 1.2

|P|2 (Ge\/z/cz)
1
FIG. 7. (E,/0,p)d0/dp,® for 00— 0X;p/Pine =0.6, 0.9.

analysis - if, indeed they can be predicted with
confidence. We should mention here that the dip
occurs in the amplitude from a particular f-chan-
nel trajectory and contributions from other tra-
jectories could obscure it (although in 77p -~ p°X
one would expect to see predominantly 7 exchange,
based upon exclusive processes). Also, integra-
tion over M2 would wash out the dip since its posi-
tion in p,? varies with M2, The slope change would

be expected to persist, even after such an integra-
tion.

Qualifications on our results for the density ma-
trix are less necessary than for the cross section.
In particular, a major part of the M? and s depen-
dence [ (M?/s)*v©] cancels and consequently we
are inclined to take the M2 and s dependence more
seriously than in the cross section. General fea-
tures predicted for p,, are a rather rapid decrease
to a minimum around '~ =0.7 to -0.9 GeV?/c?
and then a gradual rise to a “large” value as the
central region is approached. This contrasts
with the exclusive calculation of Jones and Wyld*
in which p,, decreases monotonically in the region
considered. The dip we observe is not present in
the exclusive calculation because as one goes to
the Regge limit the signature factor factors out of
all the amplitudes. (Consequently, Jones and
Wyld’s neglect of the crossed graph does not af-
fect the density matrix.) In the s/M?~ « limit
of the inclusive reaction, the dip in p,, also dis-
appears.

Comments made for the 00 - VX cross section
are also applicable to the 00—~ 0 X cross section.
The situation for quantitative predictions can be
expected to be worse here since the ¢ channel will
not even be a pionlike trajectory ordinarily. The
qualitative features, however, are again consid-
ered valid predictions.
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APPENDIX A

Starting from

1
By = ,[, AUy g dity (U, AU g1y ,™1205"13% ) J14U, 150, 6¥18(1 =0y, J29 (1 =20, )*34(1 — 1, ) 95(1 —y5)58(1 =y g) 6

x(1 _unum)"zg-"zs-*srl(l —ulsum)"ss"‘“"‘“" 1 -u14u15)"46"‘45"‘58'1(1 -,

+ Xqq = - + - -
X (1 —umulsu“)’% 347¥24=%35(] _umu“uls)"se ¥45-¥35-%46 (1 — Uy Uy

X57=X58=Xg7~1
uw) 57~¥56=%67

um)"ﬂ*"se"‘qe"‘w

- Xoat Xq5=Xog5 =X - +X48=Xqg=X: Xont Xqg=Xoa=X.
X (1 =ty Uty hy5) 207 *357 5257796 (1 =gy Uy U o} 977X 4677367597 (L — 1y gty gy 51, ) 27" %367 726757

A1)

we make a Taylor expansion in «,, and «,, and integrate over these variables to obtain

Bs= 2 Z;

IR RN V'y(i, xgg))/(i',xe.,)'y(j,x“—xza—x“—l))/(j’,xs.,—xsa—xe.,—1)y(k,x25+x34—x24—x35)
2WJaRyE,m oJ aRT,

XY’y Xy +X5q = X yg = X57)¥ (I, X6+ Xgg = X5 = X3q)

XY, Xgq +X 4= Xgg = Xgq)V (M, Xgq + Xgg = X = Xg7)
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1
xygt JHRHIHItm,, Xyt RERIFIH Am, xpstilHRIFU AL A M - 45.
xf du,gdu, du, u, 18" Uy 14 Uyg15 (1 —uyg)ae (1 —u, )
o
Xg5=Xg4~%X45=1 X48=%X45=%56~1 Xggt Xq45=Xg5=X,
X (1 —vyg)*58(1 —uyqtey,)"857 307 48" (1 — 2ty gy )67 %457 567 (1 —uy g, yu, ) 96" 45735754

1
Xypti+ jHRH+ x1gH/+i'+R'+1'+
Xf duy,du,gu,,*12 MUy ¢F18 ™ (A2)
0

where

.y TI@E-=x)
€, x)= '(-x)T'¢+1) * a3)

Performing the u,, and u,, integrations and noticing that the remaining integral is a By, we can write

Bg=‘ hZ)[ . J'Zk . Y€, Xa5)vC’, xgr)y (7, xu"‘zs"xs4'1)7(jl’xsv"xse‘xm‘I)Yae,xzs*'xu'xu‘xss)
2723 308 S MY 1 &

XYR') Xgg+ Xgq =X gg=X57)Y (ly Xpg + Xgg = Xp5 = Xgg)¥ (U X3 +Xgg= X3 = Xg7)
XY(M,y Xpy+Xgg=Kopg=Xgy) (Ko +1+i+j+R+1+ m) " (g +1+8 4§ +R + 1"+ m)"?
XBg(yg+j +k +L+lem, x gtk +k' + 1+l m, x5 +5 + k' + U+ 1+ m, Xy, Xy, Xs5gy X355 Xag X3g)+
(a4)
If we take the residue at x,, =x,,=~2 we obtain Eq. (3.4):
A’= (g +1)[ (g, +1)Bg(ayg, @yy, @5, @y, Qysy Usg, Oggy Uy, Agq) + (Ugy = Qg = Agy)Bg(e oy 0y =1, ...)
+ (@ + Ugg = Qg = Q) Bl vy @y =1, 0, =1, .. .)
+(Qgy + Qg = Qge = Q) By =1, @y =1, oy -1, .. )]
+(Cgg = Uy = A ) (@ +1)Bg(ayg =1, . . .) + (A = Qg = 0lgy)Bgl(yg =1, .., @y =1, ...)
+(Qgy + Qg = Qg = 0gp) Bg(ayg =1, 0y -1, @, -1, .. )
+(Qgy + Qg = Qgg = 0 ) Bg (g =2, 0, =1, @, -1, ...)]
+(Qlgq + Upg = Oy — g )[ (@ +1)Bglayg =1, 0y =1, ...) + (0gy = 0lgq = 0y)Bg(atyg =1, 0y, =1, @, =1, ...)
+ (0 + Qgg = Qg — @) Byl =1, a;, =2, 0y =1, ...)
+(Qgq + Qyg = Qgg— @) Bg(yg =2, @y, =2, @y ~1,...)]
+ (Qaq + Agg = Oy = Agg)[ (g, +1)Bg(ayg =1, -1, @) =1,...)
+(Qgy = Cgg — Agy) Bg(ayg =1, 0y =1, @, - 2,...)
+(Qgy + Qgg = Qg = 05 By = 1, @y, -2, @) =2, ...)
+(Qgq + Qg = Ogg = @yy) Bg(yg =2, @y =2, 0,5 =2, ...)]
+ (g + Qgg = Qpg = Qg)Bg(ays -1, ), =1, a.-1,...). (A5)

[Note: We use Bq(x,s, ...) and By(ay,, ...) interchangeably.] In order to eliminate contributions from
daughters, we write the coefficients of the B,’s in terms of particle momenta and retain only those terms
linear in both (p, -p,) and (p ; —p,). These are the only terms which result when both resonances (in s,,
and s,,) are vector mesons. This yields A’ without any daughter effects:

A"==a"q pofq" pBe(yg, ...) +q"* ps Byl .y 0y =1,...) + 4Py Byl =1, 05 -1,..)
+q' py By, -1, @, - i, a-1,...)]
=% pfa" peBe(tg =1, .. ) + 4" Py Bo(yg =1, ..y @y =1, ...) + 4" p Bo(ayg =1, ayy =1, 0y =1, ...)
+q' Py By(ayg =2, 0, —1, 0. -1, ...)]
—Q?q pa" peBy(s =1, ay=1,...)+ q"*ps Byloyy =1, ¢y =1, s —1, .. .)

+q" pyBglays -1, ) =2, a5 -1,...)+ q'*pyBg(ay, -2, Q=2 0 -1,...)]
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—a'2q pyq’ pe By =1, =1, 5 —1,...)+q" ps Bgloyg =1, oy =1, =2, .. .)
+q" pyBglayg=1,0y,-2, 0)5=2,...)+q" pg Bg(ay3 =2, @y, =2, 0y5-2, .. J]
—5a'qq'Bg(ay =1, o, =1, 055-1,...), (a6)

where g =p, =p,, q4'=p, -pg, and o’ is the slope of the trajectory. Replacing g by €(2) and ¢’ by e @')*
factors off the Voo vertex and yields the equation for A found in Table I, after identifying numerical labels
with the appropriate literal labels.

APPENDIX B
1. Diagram B
The duality diagram corresponding to the most convenient configuration for us is found in Fig. 3(b). The
B, is obtained from that used for A by a simple transformation of variables:

1
- x x. X14,, X %, - X - x. - X,
By= J Aty A3tk gtk 5tk gy 11120 513Uy V152 70T (1 =202 (1 =24y )" 4 (1 =0y )5
o

X (1 _uls)"sv(l _um)"m(] —ulzuls)"24"‘23"‘34'1(1 _ulau“)’fss-ra-:-us-l
X (1 —uuu!s)"“"“ls"‘“"(l _ulsum)’zs-rzv‘*m-la _ulzulsuu)"zs-xz«f'"34-*35
X (1 =y qthy gty o J*387785 Fa5™5a8(1 — gty gy ¥20 5257536 %35 { 1t Juugn (1 —ay,) 41y, ]} 56" *a7 %577 %46
X{L =ty [t gy (1 =y qhy) +0 gy ]} Fa6" 37~ ar %56 {1 =ty Jth gy (1 =2 o U g Uyy) +Uypthygthy ]} 27" 26" 367 %37 .
(B1)
Making a Taylor expansion in «,, and %, and performing those two integrations yields

Bs=_i J?x m i j’Z}zl l,?’(i,xzs)y(j,x24—x23-—x34—1)y(k, Xog = Xoq +Xgq = Xgs + MY (L, Xgy = Xgq +Xg5 = Xp5 =)
ki dm 47,50 R,

., .,

XY’y %16) V(') Xgg = Xgq = %16 = 1)V R, X5 = Xgq+ X g7 = X4e) V(I Xgg =X gy + X g7 = X3)

XY (M) Koy = Xpg +Xgg=Xpp) Xyp+ 1 +E+ 7 +R +1)7F (Xgy +1 +2"+j +B + 1"+ m)~?
XBg(Xyg+J+h+l, Xy +R+ 1 X1+ 7 +R + U+ 1+ My Xgy, Xys +R', Koy, Xas + B +1 ) X4y Xg,)

(B2)

Taking the residue at x,, =x4, = -2, disregarding terms not linear in both (p, -p,) and (p¢—p,), and factor-
ing off the Voo vertex gives us

(1/a'?)B==€ *pgle'*° pyBg(lg, Oy, Oy, Oay,y Olysy gy Olggy Qgny Ogr) +€' ¥ pB(on o, @) =1,...)

+€ % p Ba(ovuy ays=1, 000 =1, .., a5 =1,...)
+€ % piBolvsy Ays=1,. .., @y =1,...)]

—€ ple’*pgBgla,g=1,...)+€ * pBg(a,g -1, ..., a;,=1,...)
+e*ep B =1,.. ., 0,=1, ., 0,=1, ..., a5-1,...)
+€' ¥ paBe(ayg =1, .0 @y =1,..., a5 =1,...)]

—€ple’* pgBglayg =1, o, =1,...)+€'* pB(a3 =1, ay, =1, @) -1,...)
+€'* p Bo(ags =1, @, -1, o =1, .., oy =1, .., gy =1,...)
+e€' ¥ p Be(ayg -1, 0, -1, 0y, -1,..., a5 —1,...)]

—e p'le'* pgBglag—1, oy, =1, 0, =1, ... ) +€ *pBy(ay, —1, ay, — 1, @, =2, ...)
+€* p Be(ay -1, @), -1, 0, =2, .., a,5=1,..., ag-1,...)
+e€’*p.Bo(ayg =1, 0y, =1, @, =2, ..., a5 ~1,...)]

+(€ e'*/2a" [ Bg(ay3 -1, @y, =1, @) =1, ...) =Bg(ayg =1, 0y, =1, 0, =2,...)], (B3)

which leads directly to the equation of Table I.
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2. Diagram C

Following the same steps as in part A of this appendix, but omitting the words this time, we have
1
By= _,£ ity 3ty A5 Qyg Gty gty 13U, F14U, F15U " 23U ) F18(1 — 10 ) 24(1 =1, )45

x @ —1y5F56(1 =, )67 (1 =y y12(1 — Uy gUygST7F2T7H127 (] gy g, FF85F347Fa5m1
X (1 —u14u15)"4ﬂ"‘45"‘56'1(1 _ulsuw)"m"se'*m‘l(l —u“u“uls)"se"‘ﬁ*‘45"48
X (1 =ty g1y 5u, o) 477 26" ¥56=%57(1 —UyglhygUyslhy ) 377786  F46™ 747 {1 —Uyglttag (1 —1y,) +“14J}’25_'2‘"34-135

x{1 = Uygtipg (1 ~ 1y ) +“14“15]}xze-xzsﬂ”-x”{l =Uygltepg (1 ~ 1y 0y,1,) “‘14“15“13]}‘27_'26"”"37

== 2 2 Y@, x)v(7d, X, —Xgg=Xyp = 1)y (R, Xp5 =Xy + Xgq = Xg5)Y (I, Xpg = X5+ Xg5 = Xgq)
i,k 0,m 87,5 k"1’

XY (M, Xoq = X + %36 = Xy )Y (', Xe7)¥ (' Xy = X =X =1)y(k', X7 =Xy + X = Xy + m)
XYWy Xgg = Xgq +Xg7 = Xpq =) (Kpg + 1+ + 5+ + 1+ m) (kg +1+3"+ 5 +k +1')"2

XBg(xyg+j +k+1+ MAU, Xy gtk U X+ J + R+ 1 Xy, Xys +R, Xgg, Xog, Xgg +h +1, Xpq)
(B4)
and
(1/&?)C==€ p)[e'*  pgBy(ayy, Oy, Uys, Gpy, Uy, Ugg, Cys, Qugy Qpg) +€'* p By(o ., @y =1,...)
+€ X P By(ensy =1, @y =1,.. ) +€ ¥ pBy(ay, =1, @y =1, @y = 1,...)]
=€ p'le"*pgBg(ayg =1, ...)+€" * p By(ayg=1,..., @), =1,...)
+e' ¥ p By =1, gy =1, 0y =1, .. ) +€"*  pBy(ayy =2, @y, -1, a)s ~1, .. .)]
—€ ple'* pgBylay=1,...,0,-1,..., @e-1,...)
+€ ¥ psBy(aya =1, .00, apy =1, ah-1,..., a,-1,...)
+e€* pyBolong =1, 0y =1, @y =1, .y ag =1, ..., ap-1,...)
+€' X pBo(ay3 =2, =1, @y =1, ., 0 =1, .., 0 =1, ...)]
—€pde’* pgBg(ay=1,..., a-1,. c)HER D Be(ayy =1, =1, .., 0 =1,...)
+€* pyBo(ayy =1, 0y, =1, 04 -1,..., @,—1,...)
+€'*  pBy(ayg =2, -1, =1, ..., ap-1,...)]
+le /20 Bylayg =1, oy =1, 0y =1, ..) = By(ayg =2, 0y =1, 0y - 1,...)], (B5)

whence we obtain the equation of Table I.
3. Diagram D
1
By =,[, d“lsduzsd“ud“xsd“m“13"3“14‘““15"‘5“37‘“ Uag ™ (1 =23 )24(1 =, J95(1 —ue, )57

x(1 _um)"ls(l _uzs)!xz(l —Uyq uzs)*s'r-xz-z-*xz-l(l —ulsum)‘ﬂ"‘z’f"‘lﬂ'l @ -u13u14)’35"‘34"‘45'1
X (1 —uy u,, )16~ 45-%56=1(] = Uygly 4y )¥96™ 5% Fa5m 246 ] —yq[tp(1 —uty,) +u“]}"25+"34"24"‘35
x{1 —tysltg (1 =tyy) +u,, ]} 7477746 550-%57{1 —Uyglttgg (1w gty 5) +0y guy o[} ¥26=725% x95- 736
x{1 ~Uyg[Ug (1 —Upglyy) +Uyqthy, ]}7TRS6Y a0 R ar
XU =t 30gg) (1 =ty 7) —t 32014215 (1 —t0) (1 ~lUgy)[277726" *38=%57

_ ) ., . )
B i.l.kEJ.m 4’.1%:,1' v Xy, %390y (7, % =X = X1y = 1)y (J', Xpg = Xpy = %15 =1)

?
XY (Ry Xg5+Xgq = Xpq — X )y (', Hgp +X5g = Xgg = Xgy + M)
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|3

Xy (l, Xpg+Xg5 = Xg5 = X3e)Y (I'y Xgq + X7 = X gy = X6 =)

XY(M, Xy + Xgg = Xpg =Xgy) Kpg +1 +i + 5 +R + 1L+ m) " (xg +1 +3" +k +j'+1")7?

X Bg(yg +7 +R +1+ 1, %14, Xyg + 5 +R + U Xpgy Xgs + R + R’ Xgy, Xog + R 41, Xy +R +1+m, X57)

and

(B6)

(1/@'2)D = —€ * py[€"** pg Bg(yg, Uyqy Uysy Qog, Qgsy Osgy Oagy Uy s Q) +€"% 2 py Be(o 0y =1, ..0)

€% p Balowsy @pg=1, 000, @y=1, . 00 =1, . )+€ ¥ pBe(ooo, @5 =1, 000, 0y —1,...)]

—€ ple’* pgBglays=1,...)+€ *p Bg(ag =1, ..., a;5-1,...)

+€ ¥ p Bolaya =1, =1, a=1,...,0,5-1,...)

+€'* pBo(ag =1, ..., a=1, .., a=-1,...)]
—epfe’* pBglaya =1, .., a,-1,...,a,-1,...)

+€'*p Be(ayg=1,.0 0 ays=1,. ., au5-1,...,,0,-1,...)

+e'*ep Bo(ayg =1, 00 =1, 000 0 =2, ..., 0y =1, 0, -1,...)

+€* pBy(ayg =1, .., =1, ., =1, ..., ap=-1, a,-1,...)]

—€ple’* pgBglaya =1, ..y ap=1,. )+ * p Be(@yg=1,..,, a5 =1,..,, a,-1,...)

+€' % p Bo(ays=1,...,, =1, ., ap-1,..,a,,-1,0,-1,...)

+€' % pBy(ay3 =1, ..., =1, .00, @y -1, @y -1, ..0)]

+(€€'*/2a' [ Bglaya=1,..., 0y =1, .., 0 =1, .., 0y =1, 0, =1,...)

-Bs(als—ly ey 1115—1, ooy azs"ls am —1, oo -)]! (87)

which leads to D of Table I.

*Work supported in part by the National Science Foun-
dation under Grant No. NSF-GP-25303.

Ic. E. DeTar, Kyungsik Kang, Chung-I Tan, and
J. H. Weis, Phys. Rev. D 4, 425 (1971).

2Chan Hong-Mo and Tsou Sheung-Tsun, Phys. Letters
28B, 485 (1968).

“7A. H. Mueller, Phys. Rev. D 2, 2963 (1970).

‘The method is explicitly stated in P. Aurenche, Phys.
Rev. D 4, 1039 (1971). It had been used by other authors
before, e.g., Lorella Jones and H. W. Wyld, Jr., Phys.
Rev. Letters 23, 814 (1969).

5D. Bebel, K. J. Biebl, D. Ebert, and H. J. Otto,
Deutsche Akademie der Wissenschaften zu Berlin Report

No. PHE 71-13, 1971 (unpublished); G. H. Thomas, Phys.
Rev. D 5, 2212 (1972); Kyungsik Kang and Pu Shen, Phys.
Rev. Letters 29, 1283 (1972).

®Inclusive vector-meson production in the central
region (¢ large) is treated in S. Fenster and J. L. Uret-
sky, Phys. Rev. D 7, 2143 (1973), and Kyungsik Kang
and Pu Shen, Phys. Rev. D 7, 164 (1973).

"In comparing our results to those of Ref. 5, care
should be taken to compare to the fragmentation-region
results of these authors. In the central region only our
D survives and consequently the dips do not.

8Edmond L. Berger and Geoffrey C. Fox, Phys. Rev.
188, 2120 (1969).



