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We examine the range of validity of various approximate expressions for invariant phase space and

"transverse-cutofP' phase space by checking against Monte Carlo calculations. We find that there are

discrepancies for the transverse-cutofF case in the transition energy region between the isotropic and

one-dimensional regimes. Since the location of this transition region is multiplicityMependent, there are

observable consequences for energy dependence of multiplicity distributions.

I. INTRODUCTION

The study of models for multiparticle production
in high-energy collisions, which has been of in-
creasing interest in recent years, requires the
evaluation of integrals over a phase space of large
dimensionality. Such integrals in general cannot
be evaluated exactly in analytic form. The most
direct numerical procedure is to use Monte Carlo
methods, but this can be expensive in terms of
computer time. For some particularly simple
cases, where the matrix element can be expressed
as a product of identical factors, it is possible to
reduce the multidimensional integrals to simpler
quadratures. This has been done in particular for
the calculation of the total invariant phase-space
volume' and also for the case of "transverse-
cutoff phase space" or "longitudinal phase space"
when the matrix element consists of independent
transverse-momentum damping factors for each
particle. ' Generalizations to somewhat more com-
plicated cases have been made. ' While these over-
simplified models are not expected to be correct,
they are extremely important in understanding
which observed experimental features are simple
consequences of kinematics and which give more
insight into the structure of the matrix element. ' '

The accuracy of these so-called "statistical"
methods is not uniform in energy or multiplicity,
though the expressions can be evaluated with arbi-
trary precision. Monte Carlo methods, on the
other hand, are subject to considerable statistical
uncertainties, but once they converge the accuracy
does not depend appreciably on energy or multi-
plicity.

In this paper we examine the range of validity of
the approximate formulas for invariant phase-
space and transverse-cutoff phase-space volumes
for n identical particles by checking against Monte
Carlo calculations. We confirm the fact that the
best approximate formulas for invariant phase

space are uniformly valid to within a few percent.
For the transverse-cutoff phase space, however,
there is a considerable discrepancy in the transi-
tion region between low energies, where the behav-
ior is similar to invariant three-dimensional phase
space, and high energies, where the behavior is
that of one-dimensional invariant phase space.
The energy range over which this transition occurs
is multiplicity-dependent, and therefore there are
some consequences which affect the predictions
of such models.

In Sec. II we discuss invariant phase-space cal-
culations. Section III contains the discussion of
the transverse-cutoff phase-space volume, and

in Sec. IV we discuss the behavior of multiplicity
distributions. The results are summarized in Sec.
V.

The calculations were carried out using a Monte
Carlo precedure based essentially on the method
of IQttel et al. '0 The details are not important
for this calculation in which only total cross sec-
tions are considered. Details of the Monte Carlo
calculation and studies of various model predic-
tions for differential spectra will be presented
elsewhere.

II. THREE-DIMENSIONAL ISOTROPIC PHASE SPACE

In this section we discuss invariant three-dimen-
sional phase space and compare approximate ana-
lytical evaluation with Monte Carlo results. For
the sake of simplicity we consider the phase space
for n identical particles with mass m. The numer-
ical results correspond to m=140 MeV, but the
general features remain the same for the case of
unequal masses. The phase-space volume is given
by

(2.1)
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(in the center-of-mass frame), where n is the

multiplicity, W is the total energy, and p, is the
momentum of the ith particle.

For n = 2 this integral can be trivially evaluated
to give

0/wl =, (, ) (2.2)

which rapidly increases from threshold and ap-
proaches a constant for W»2m. For n& 3 the

integral cannot be evaluated except in the nonrela, —

tivistic (W«nm) and extreme relativistic (W»n/s)
limits where

~n-I W2n-4
n„(w)'"=

2(n —1)!(n —2)! (2.4)

n„(w) = (av)" '(2 m')"

X
/ C+ Coo

dc/o. ' "I,(aw)[K, (am)1 ~ (2 5)

respectively. These are the only cases for which

the integral (2.1) can be calculated exactly.
The multiple integral (2.1) can be shown by vari-

ous methods to reduce to the one-dimensional inte-
gral representation' "

and

(2//)$(n 1) /2 /nn/2 (W ggyg}(8n 5V2

2" (n I)'/' r(-,'(n -1)) (2.3)
There have been two approaches to evaluating
this. Campbell' and Campbell, Lepore, and Rid-
dell' have used the method of steepest descents
to obtain

P'I, (PW) 4w m " 4n —2» WIO(PW) 2 mKo(Pm)

(av) / W P
' Pm I,(PW} K,(PI)

(2.6)

where P is the solution of

1 —an WIO(PW) nmKo(Pm)

P I,(PW) K, (Pm)
(2.7)

+„(p)= -' n (p)d'I (2.8)

4W m2 ff

K, (mP) (2.9)

[Eq. (2.5) being the inverse transform] and then
use stochastic methods and the central-limit
theorem to show that

(av)-2 s' w'
n„(W) =4„(p}e' }„,, !n@„(p)

A simpler procedure has been adopted by Lurcat
and Mazur, ' who first construct the Laplace trans-
form of Q„,

duced.
We have carried out Monte Carlo calculations

whose accuracy can be normalized by comparing
with the nonrelativistic and extreme relativistic
cases, so that they can then provide confirmation
of the accuracy of the other cases. For n= 2 the
Monte Carlo calculation agrees with (2.2) to within

1%, while (2.6}differs by a few percent. For 3&n
&8, the agreement between (2.3) and (2.4} (when

they are valid), (2.6), and the Monte Carlo result
is again always within a few percent, confirming
the accuracy estimate in Refs. 2 and 12 (Fig. 1).

III. TRANSVERSE-MOMENTUM CUTOFF PHASE SPACE

In the presence of a transverse-momentum cut-
off, the "phase space" is given by

+ O(1/n)

where P is the solution of

(2.10) n„(w)= 5'"(Zp, )5(Ep,.-w)Ilf(p~, ), ',
f g ~f0

(3.1)
an K, (pm) (2.11}

The next-order correction to this is essentially in
agreement with (2.6) and (2.7).

The stochastic method is equivalent to replacing
the exact 5 function in (2.1) with a sharply peaked
function, in analogy with the transition from mi-
crocanonical to canonical ensemble in calculating
a thermodynamic partition function. However,
the values of n involved are nowhere near thermo-
dynamic, and a certain amount of error is intro-

where f(p~) is the cutoff function and p, is the
transverse momentum, usually defined to be per-
pendicular to the direction of the incident system
in the production process. In general, the integral
(3.1}cannot by analytically evaluated, not even
for n = 2 or for the nonrelativistic and extreme
relativistic limits. However, since the observed
transverse momentum cutoff is typically 300 to
400 MeV/c and of the same order of magnitude as
the mass, such a cutoff can be neglected in the
nonrelativistic limit, and the phase space is then
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given by Eq. (2.3}. In the extreme relativistic
limit, the asymptotic behavior of Eq. (3.1) can be
obtained from a simple power-counting argument
and is given by

25

lnW)" '
Q„(W)s"= const x (3.2) 20—

In contrast with the isotropic case, Q„(W) is a de-
creasing function of W at high energies where it
resembles one-dimensional phase space. The
transverse-momentum cutoff thus makes the phase
space behave as if it were three-dimensional at
low energies and one-dimensional at high energies.

An approximate formula has been derived by
Kryzwicki from a stochastic method exactly analo-
gous to that described in the last section, and is
given by4

Q„(W}= ——+nb (p) + nm ' —— e Bv[y(P)]" w w W2 x/2

2w nh(P) P P n

O

O

l5—

IO—
n=4

where

+ 0(I/Wn), (3.3)

4(P}= v ~P, P,f(P,)&.(Pg, ),

(p) l &Pi Pi'f(P )Ifo(PVi),
'

—(p 2+mm)1/2

P is determined from W by

&p, p, f(P,)u.&,(P~, ) =

(3.4)

(3.5)

(3.6)

O I
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FIG. 1. The three-dimensional isotropic phase space
as a function of n and W for 2 ~ n ~ 8. Since Q„(W) can
easily be normalized to the nonrelativistic and extreme
relativistic limits, the absolute normalization on this
graph is arbitrary in order to suit the spacing of the
curves.

and f(p) is normalized to

f(P,}Pi~Pi =1 (3.7)

The corrections to Eq. (3.3) can also be calculated.
Since the observed transverse momentum spec-

tra are approximately Gaussian or exponential
with an average value (p, ) =300-400 MeV, "we
shall take f(p, } for the moment to be of the form

f(p, )=10e "&' Gev ' (3.8)

which gives (p) = 350 MeV for all n. Notice that
due to the phase-space factor $$) y pop and energy
momentum conservation, the actual transverse-
momentum spectra will not be exactly Gaussian
and (p~) is not directly given by the width. "

Although we can no longer analytically evaluate
the integral with the cutoff (3.8) for n = 2, it can
be reduced to

dp'
Q, (w) =-

a 0

(3.9)

and trivially integrated numerically. Thus we can
compare the results obtained from Eqs. (3.3) and
(3.9) and the Monte Carlo calculation. For n~ 3,
we directly compare Eq. (3.3), the Monte Carlo
results, and the asymptotic behavior (3.2).

For n =2, the Monte Carlo results agree almost
exactly with Eq. (3.9}, while for 2 &n ~7 the com-
parison of the Monte Carlo results with Eq. (3.3)
is presented in Table I and Fig. 2 ~ At both low
and high energies these two results are almost
proportional to each other, but the proportionality
constants differ in these two energy ranges. In
between these two limits, Eq. (3.3) gives a some-
what greater energy dependence than the Monte
Carlo (and exact) results Further. more, for n ~ 3,
the agreement among these two results and the
asymptotic behavior is almost exact at very high
energies. As seen, the statistical formula (3.3)
does give a good qualitative description of the
phase space, but the discrepancy should be taken
into account when detailed calculations with Eq.
(3.3) are attempted. ' In Fig. 3, we present the
Monte Carlo results for 2 &n &7 as functions of W.
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TABLE I. The ratio R of the approximate formula
(3.3) to the Monte Carlo (MC) results as a function of
n and W, where R =0„(W)Mc/Q„(W},~.

I I

I I If
I I I I I I I If I I I I I I I I

f

I I I I I I II

0.5
0.6
0.7
0.8
0.9
1.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
15.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0
150.0
200.0
300.0
400.0

0.84
0.84 1.26
0.84 1.26
0.89 1.26 1.10
0.89 1.26 1.12
0.89 1.26 1.12
0.84 1.26 1.38 1.50
0.84 1.23 1.41 1.54
0.84 1.19 1.38 1.54
0.80 1.19 1.38 1.59
0.77 1.15 1.38 1.54
0.73 1.15 1.38 1.54
0.71 1.15 1.38 1.54
0.71 1.15 1.38 1.54
0 71 115 138 1 59
0.71 1.15 1.34 1.59
0.71 1.15 1.34 1.59
0.71 1.15 1.29 1.54
0.71 1.15 1.29 1.45
0.69 1.09 1.25 1.45
0 67 109 125 1 38
0.63 1.09 1.25 1.34
0.63 1.03 1.25 1.34
0.63 1.03 1.22 1.29
0.63 1.00 1.22 1.25
0.63 1.00 1.19 1.10

1.00 1.12 1.10
1.00 1.06 1.03

1.03
1.03

1.41
1.68 1.64
1.68 1.64
1.68 1.66
1.68 1.64
1.68 1.64
1.68 1.64
1.68 1.64
1.68 1.64
1.64 1.64
1.64 1.59
1.59 1.59
1.54 1.59
1.50 1.50
1.50 1.45
1.45 1.41
1.45 1.41
1.41 1.38
1.38 1.34
1.25 1.25
1.15 1.19
1.09 1.03
1.00 0.97

10

10 2—

IP-3

IO 4

-I
0,4 I IO

W(GeV)
I 02

I I II

IQ3

FIG. 2. Comparison of the Monte Carlo results
{solid line), Eq. (3.3) (dashed line), and the extrapolated
asymptotic behavior in the full energy range (dash-
dotted line) for the transverse-momentum-cutoff phase
space for n = 2, 4, and 6. The normalization is given by
Eq. (4.1) with A, = 1/x and const= 1.

For large n, since the Monte Carlo calculation is
time-consuming and the statistical formula should
be more accurate than for low n, we also present
the results from E|l. (3.3) in Fig. 4 for 2 &s & 20.
In both cases, the phase space Q„has been
weighted by a factor X"/n! with X= 1/w, which is
useful for the discussion in the next section.

As seen from Figs. 2-4, the phase space (3.1)
does indeed behave like isotropic three-dimension-
al phase space at low energies, and behaves like
one-dimensional phase space at high energies.
The one-dimensional behavior starts to become
important when the average energy per particle is
about 1 GeV so that (p, ) = &2(p, ) =400 MeV and,
therefore, the transverse degrees of freedom are
saturated. Thus, in contrast to the estimation of
Ref. 6, the one-dimensional behavior is exhibited
at relatively low energies. '

We further study the behavior of the phase space
(3.1) with different f(p, ). A typical example is
shown in Fig. 5 for n=4. When normalized to the
same asymptotic behavior, the cutoff with smaller
(p ) exhibits the one-dimensional behavior earlier

and the phase space is larger at intermediate en-
ergies. Furthermore, for almost all reasonable
f(p, ), the phase space is always larger than ex-
pected from the asymptotic behavior in the transi-
tion region from isotropic to one-dimensional be-
havior. The relevance of this fact for the multi-
plicity distribution will be discussed in the next
section.

IV. MULTIPLICITY DISTRIBUTION AND
STATISTICAL MODELS

Since final states of different multiplicities can
be produced in collision processes with identical
initial conditions, it is important to know the
multiplicity distribution at different energies.
However, apart from effects of the energy-con-
servation condition, kinematics does not relate
the relative magnitudes of the phase space for dif-
ferent n, so some dynamical assumption is neces-
sary. (Of course, the transverse-momentum cut-
off phase space for fixed n is already more than a
pure kinematical quantity, since only dynamics
can determine the precise cutoff. ) In this section,
we discuss the effects of phase space within the
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n = 2wx, dp, p,f ( p, )K,(p 11.,), (4.4)

with P determined from

ties at intermediate energies.
For the Monte Carlo calculation, the phase space

Q„(W) was evaluated for definite n and W. This is
analogous to the microcanonical ensemble in sta-
tistical mechanics. In Ref. 4, the phase space
(3.3} is evaluated at a constant "temperature" P
with a certain energy dispersion, which is analo-
gous to the canonical ensemble. On the other
hand, the average multiplicity can be explicitly
evaluated from a "grand canonical ensemble"
model' to be

21
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W= 2wA. dP~ P~g~ f (P~)K,(J3g~) .

This has the asymptotic form

n —2wX ln(2W/2wm }+ bo+ 0(lnW/W2),

(4.5)

(4.6)

FIG. 6. Comparison of the average multiplicity as
a 5xnction of 8' for the Monte Carlo results, the canoni-
cal ensemble, the grand canonical ensemble, and their
asymptotic behaviors. The normalization is arbitrary.

with

b, =2why —2wX dP~P, ln(p, /m) f(P~),

y = 0.5772. . . . (4.7)

The correction terms to Eq. (4.6) are given in Ref.
8. However, in contrast with the situation in sta-
tistical mechanics, the canonical and grand canoni-
cal ensembles have an energy dispersion hW/W
~-,' and, at available energies, the multiplicity is
not very high so that we are not in a thermodynam-
ic regime, and so the results from models differ.
We describe these differences and discuss their
physical implications.

In Fig. 6, we give n as a function of W for the
above three cases and also compare with Eq. (4.3).
As expected, the Monte Carlo result and the canon-
ical ensemble model disagree at low energies but
agree with each other at higher energies with lar-
ger n. The canonical ensemble and the grand ca-
nonical ensemble both approach the asymptotic
limit (4.3) with the same slope but differ by a con-
stant. This difference agrees with an analytical
result of Campbell" that the constant terms in the
asymptotic expansions for n do differ from each
other and agree only in the limit of large A. .

The transition from the low-energy to the as-
ymptotic region can be better understood from
Figs. 2-5 directly. Except for n= 2, each multi-
plicity becomes important only in a region where
the phase space is no longer isotropic, and the
transition behavior is important at intermediate
energies. At a fixed energy, the phase space for
lower multiplicity is always closer to the asymp-
totic behavior than for higher multiplicities. Fur-

thermore, as seen from Fig. 2, the actual phase
space is always larger than the value given by the
asymptotic formula. In other words, there is
more phase space for larger n than that given by
the asymptotic formula which predicts a purely
logarithmic increase of S. The average multiplic-
ity is therefore higher than and also increases
more slowly than that given by Eq. (4.3) in the
transition region. For the grand canonical ensem-
ble, the correction terms in Eq. (2.9) have been
explicitly calculated in Ref. 3 and shown to be pos-
itive in the transition region for the cutoff given
by (3.8). Such a positive term directly reflects
the behavior of n shown in Fig. 6. In Fig. '7, we
present a typical multiplicity distribution at a
fixed W. As seen, there is more phase space for
higher multiplicities than the pure Poisson distri-
bution expected from the asymptotic behavior.
Such a distribution is also in qualitative agreement
with the observed data. ' "

Obviously, the deviations from asymptotic be-
havior in the transition region depend on the form
of the transverse-momentum cutoff. For example,
for a slow cutoff with large (p, ), the isotropic be-
havior of the phase space will dominate in a larger
energy range and therefore n will indeed increase
like a fractional power of W. However, as seen
from Fig. 5, such a cutoff would require very
large (p~) and is therefore physically uninterest-
ing.

V. CONCLUSION AND DISCUSSION

To conclude, we have studied the general proper-
ties of multiparticle phase space and numerically
checked some approximate formulas. For the iso-
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FIG. V. Comparison of the multiplicity distribution
expected from the actual phase space and from the
Poisson distribution given by the asymptotic behavior.
These two distributions are normalized to the same
total cross section at a fixed W= 3.

tropic phase space, the approximate formula in
Ref. 8 is in excellent agreement with the Monte
Carlo result. For the transverse-momentum cut-
off phase space, the lowest-order statistical for-

mula in Ref. 1 gives a good qualitative description
but the discrepancy can be as large as 50% at in-
termediate energies and for moderate values of n.
The effects of the phase space on multiparticle
processes were discussed within the statistical
model and shown to be in qualitative agreement
with the observed data. A comparison between the
canonical and grand canonical ensemble models
was made, and these two models were shown to be
equivalent for the description of n even at relative-
ly low energies.

Obviously, both kinematical and dynamical ef-
fects are important, and phase space alone will
not be able to give an accurate description of the
observed data. For example, in proton-proton
collision processes, the leading-proton spectrum
is very much different from the secondary-pion
spectrum. Such effects should be definitely taken
into account. For example, a leading-particle ma-
trix element can be input to the phase-space inte-
gral (3.1).' At each step, more dynamical informa-
tion is incorporated toward the understanding of
the observed phenomena. In this work, we have
limited ourselves to the study of some "kinemati-
cal" aspects which may be expected to have an im-
portant role in more detailed dynamical models.
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