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Finite-dispersion-relation techniques as developed by Aviv and Nussinov are employed to calculate the

decay rate for g m+m p in an essentially parameter-free manner. The amplitude for this decay is

obtained by crossing from the scattering process qm ny which has the A, resonance in the s and

u channels and the p trajectory in the t channel. A single Breit-Wigner resonance of width 85 MeV

for the A, meson directly leads to a prediction for the rate and photon momentum distribution in

good agreement with experimental measurements. The so-called broad-narrow model can give

agreement if couplings of each component to gm and ny are properly chosen, but all pictures of the

A, with two narrow components give inadequate results.

I. INTRODUCTION

High-energy scattering techniques and ideas
incorporating duality have led to useful insight and
to successful predictions for several low-energy
decay-type processes. For example, the results
of octet dominance in hyperon S-wave decays have
been obtained without use of current algebra
through incorporation of the absence-of -exotic-
states requirements of duality by Nussinov and
Rosner ' and by Kawarabayashi and Kitakado. '

More recently, Aviv and Nussinov made a very
interesting proposal which they called the finite
dispersion relation (FDR) to treat three-particle
decay processes; they applied this method, in
particular, to ~-m7iy. In this approach, a fixed-t
dispersion relation of finite contour radius is
written for a given amplitude of the process. The
low-mass resonances, i.e., the nearby poles,
contributing to the s and u channels are included
as usual; the high-mass contributions, i.e., the
distant poles, are represented by the t-channel
Regge poles according to duality arguments. In
the physical region of a decay process, the high-
rnass contributions also exhibit the pole structure
of the t channel which is usually present in a pole
model, e.g., the Gell-Mann-Sharp-Wagner
model. 4 Furthermore, in the present work the
residue functions of the Regge amplitudes are re-
lated to the low-energy resonance amplitude by
means of finite-energy sum rules (FESR).' The
advantages of FDR over the conventional pole
model can be summarized as follows: (a) It avoids
problems with subtractions. (b) The inclusion of
the t channel through duality a.nd t-channel cou-
plings determined by means of FESR avoids the
intriguing problem of double counting which may
be present in the pole model in which poles in all
channels are included independently. (c) The t

channel structure is more complete.
As a result of their investigations with the FDR

approach, Aviv and Nussinov found an enhance-
ment in the rate I' „„ofa factor 5 over previ-
ous calculations, in agreement with the experi-
mental bounds. This method was also applied by
Gounaris and Verganelakis

' to q- myy; they found
tremendous enhancement, a factor -90 over the
pole-dominance model. The pole-dominance
model gives I'„, = 0.6 eV, the FDR result is
VO+30 eV, ' and the experimental value is 81+32
eV.' From this we see that the pole-dominance
model grossly underestimates this particular de-
cay rate, and, since the FDR method gives rea-
sonable results, the g-myy calculation serves to
test the soundness of the ideas behind FDR.

In fact, tests of the ideas behind FDR have not
been restricted to the decay processes described
above; it has been applied to scattering processes
in the medium-energy range, as suggested by
Barger and Phillips' and carefully tested by
Baacke and Engels. ' These authors ' found that
the elastic mp I, = 0 amplitudes so calculated are
in good agreement with the results of phase-shift
analysis. Further, applications to current-algebra
sum rules have been carried out recently by Ellis
and Weisz and by Gounaris" with satisfactory re-
sults.

In the present work, we shall apply FDR to the
decay q-mmy, which is related to the "scattering"
process rpr - yTt by crossing. The pole structure
of the amplitude for this process is very simple
in all three (s, t, u) channels, and the existing ex-
perimental decay width is quite accurate. ' We
shall demonstrate that the FDR approach can
again give good predictions, and also we are led
to information about the A, meson and models for
explaining the splitting, which has not been readily
available in the past from the experimental mass
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distributions.
Consideration of the pole structure for ~- yn

shows that the A, meson contributes in the s and
u channels, and the p meson in the t channel.
However, it is necessary to study how one should
treat the A~ meson in FESR calculations of meson-
meson scattering in the context of the narrow-
resonance limit. Since numerous models have
been suggested to explain experiments with A,
mass structure (or lack of it), it is of consider-
able interest to see what these models predict for
the A, contribution in g-nary, according to the
FDR method. This process provides, in principle,
an independent method for studying what the A, is
made of and, a priori, the various A, models
might well produce considerably different predic-
tions for 1 „

In Sec. II we employ the FDR method to derive
the decay amplitude for q-mmy. In Sec. III, the
A, contribution is treated in depth for the purpose
of seeing what can be learned regarding the split
or nonsplit status of this elusive meson and to
calculate contributions as predicted by the various
A, descriptions appearing in the literature and
tabulations. The pictures found to be discriminated
against are those in which the A, has two narrow
states of the same internal quantum numbers, the
so-called high-low model, or two different spin-
parity states, as found in certain experiments"
or, e.g., in four-dimensional generalizations of
the harmonic-oscillator quark model. " In Sec.
IV, we discuss another criterion for the choice of
the radius of the contour of FDR and demonstrate
that the prescription given by Aviv and Nussinov
indeed satisfies this criterion. We further investi-
gate the sensitivity of our answer -for the rate of
g-nmy to changes in the contour radius -to varia-
tions due to possible Regge form factors and
changes in the actual forms of the Regge trajec-
tories. Final conclusions and further discussion
are reserved till Sec. V.

q
~V+

q,

FIQ. 1. Diagram for g—xn y with four-momentum
and polarization vectors labeling particle lines.

II. THE q ~ m~ AMPLITUDE WITH FINITE
DISPERSION RELATIONS

= (q, + q, )',

wiR

=(k + q, )',

v =-,' (s -u) .

Under s -u (v —-v) crossing B(v, t) =B(-v, t).
At low energies (say, &2 GeV), the internal

quantum numbers of the external particles are
such that only the A, contributes in the s and u
channels. The relevant resonance amplitude can
be written as

It shouM be noted first that the process g- any
does not have a bremsstrahlung diagram. There-
fore, the amplitude which we consider for g- may

is as illustrated diagrammatically in Fig. 1. In
Fig. 1 the 4-momenta and polarizations 1abel the
outgoing and incoming particles. The amplitude
for this process is

A = (e")e„,~ qfqa~k~B(v, t),
where the Mandelstam variables are defined as

B„,(v, t)=-4g„, g„„ t-u-m, 2(m„2-m, 2)m~ 2 t —s -m 2(m„'-m, ')m~ 2

S -PPlg@2
Q -PPlg2

where g„„and g»„are the physical coupling constants for Apy and A,~, respectively, when the A, is
on its mass shell. These couplings are defined such that the decay amplitudes for A, - ny and A, - gm are
given, respectively, byT,=g„, e"(k)h"~(K)[(k -q)„e„„„k'q'+(k -q)~e „„k'q']
and

T „„=g „h""(K)(k-q)„(k -q)„,
where K and q are the 4-momenta. of the A, and v, respectively, h""(K) is the polarization tensor of the A„
and k is the 4-momentum of the y or the g, depending on the process.

The p trajectory gives the only known contribution (excluding small contributions from daughters, which
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are assumed ignorable in the literature} in the t channel where yg -v'v . This is described by the ampli-
tude for odd-signature p-Regge-pole exchange

B„(v,t) =
() . ()

[v"p"' '+(-v)p"' '], (3)

where I'(a (t)) is used to eliminate ghost states when a (t) goes through negative integers and also contains
a nonsense-wrong-signature zero (NWSZ). We may assume that P is weakly dependent on t, at least for t
small, and take it as constant for simplicityP' (See Sec. IV for further discussion. Taking out the NWSZ
does not affect our conclusions. )

Following Ref. 3, we write a fixed-t dispersion integral of finite contour of radius N:

B(v, t) = . , ' dv' = Bz(v, t)+-B„(v, t),1 B(v', t)
2%i v —v

(4)

where

1 v 2v' ImB(v', t)Biv, t =——
v p v -vI2 2

V'

and

1 vB(v', t)
(6)

CN

where N is large enough such that the Regge representation for B(v, t) is valid for v aN; C„ is a circle of
radius N centered at v =0.

Substituting Eq. (2) and Eq. (3) into Eq. (5) and Eq. (6), respectively, we obtain

BI(v, t) = -4g„, g» „~
2t+ m»p -m„—2m, -m, (m„-m, )m»,

v —(m„, ——,m„-m, +-, t)

from the resonance contribution, and

t} ~ „ In Na &i&x

I'(,(t)}~ N, (t}-2
from the Regge amplitude. The Regge coupling P
is determined from the resonance coupling by
means of the FESR. The lowest-moment sum rule

p PPp(&)+1 1 N

I'(a (t)} ap(t}+1 v,

a„,(t) =-,' + 3t/2m~',

this recurrence occurs at
2=X 2.m+ 2mA

This leads to

0 3mA2 2mI) mar & 2 & 2 2

=2.65 Gev'

(12)

(13}
is used to obtain the Regge residue at t=0,"

x [m„,2 -m„2 —2m, ' -m„2(m„2-m„2)m„2],

(10)

where N Np + z t, and the p trajectory is taken as

a (t) = ~ + t /2 m '

It may be noted that the same N is used as the
"cutoff' in the FESR as in the FDR, except that
in the former t =0 explicitly.

The approach of Aviv and Nussinov' is followed
in choosing the cutoff, or the radius of the circu-
lar contour in the FDR, N (or N, ), as the average
value of MA,

' and MA ', where A', is the Regge re-
currence of the A, . With the A, trajectory as

From Eqs. (4)-(13) one sees that the decay ampli-
tude will be completely determined if gA, andA2r yg„„,are determined. A further justification for
choosing (13) will be discussed in Sec. IV.

To conclude this section, let us note that Eq. (4)
can be obtained in the conventional way with the
contour closed at infinity:

1 "2v'ImB(v', t)
f2 2

N

with ImB(v, t) = ImB„,~(v, t) substituted in the
above expression. This is no more than a state-
ment of local duality. In the case where an am-
plitude needs a subtraction, FDR enables one to
determine the subtraction constant.
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III. THE A2- MESON CONTRIBUTION AND

DETERMINATION OF g& „and g& „

The couplings of g„,, and g„,„,appearing in
Eq. (7) are the physical coupling constants and
are determined from the decay widths of A, -my
and A, —ng, respectively. Since the A, might not
be a conventional resonance, we shall investigate
in more detail its role when it contributes to the
direct channel, especially in the narrow-resonance
limit as applied in FESR. In the present case,
since the contributions of the A, come from the
tail of the resonance where s and u & (m„-m, )2,

the narrow-resonance limit is indeed justified.
There exists direct experimental evidence on
A, -mg, but not onA, -my. We shall use the vec-
tor-meson-dominance model to calculate the latter
from the decay A, —~p.

A. Calculation with the A& as a Single Meson

g+~~0,&'/4v =1.79 GeV ',

g„~„,~'/4v =0.619 GeV '. (14a)

The results obtained at CERN'4 showing two-
peaked structure for the A, meson in m p colli-
sions at 7.0 GeV/c pion momentum were placed
in considerable doubt when the Northeastern
University-State University of New York at Stony
Brook collaboration" could not confirm the split-
peak structure in a similar experiment under con-
ditions nearly duplicating those of the CERN
missing-mass groups. The need for a third ex-
periment has been mentioned, "since the latter
effort was done with somewhat poorer resolution
than CERN 's, but such a third experiment was
suggested not worth the cost unless resolution can
be improved over both earlier experiments.

Assuming that the A, consists of a single con-
ventional resonance, we take the mass M„,=1300
MeV, and the width I'„=85 MeV. The fractional
decays into pm and gm are given in Ref. 7 as 76%
and 16%, respectively. A fit using SU(3) relations
reported in Ref. 17 found similar numbers. In
comparing these values with past best branching
fractions, one sees that in approximately one year
the pw branching ratio has been reduced and the
qm fraction increased significantly. The main rea-
son for this change is the large branching ratio
found by a Berkeley group for Az —qm'. " (If the
A, is actually unsplit, as suggested by Ref. 15,
then the difference in charge state has no signifi-
cance. )

With the branching ratios of Ref. 7, the coupling
constants are calculated as

These follow from the expressions for T„,„and
T„, „given after Eq. (2), which are used to cal-
culate the decay widths,

where

[A. (x, y, z)]' =x'+ y'+z' -2xy —2yz -2zx.

Either the p decay width or the results of recent
~-p interference experiments" leads to a p-y
coupling constant ef~ ' given by

f '/4v =2.56+0.22.

Then

g+~, ~ '/4v = o.(g„~,o, ~'/4v)(f, '/4v) '

=—5.1&&IO ' GeV 4,

which gives

(14b)

I"~& ~ =0.9 MeV,'r y

or a branching ratio of 1%0 for the ny mode. "
These numbers, Eqs. (14a) and (14b), when sub-
stituted into Eq. (4) lead to"

(15)I'q „, = 0.148 keV,

when an error of perhaps 20% should be included
due to the uncertainties in the A, partial widths. "
This compares favorably with the experimental
average value '

=0.123 ~ 0.028 keV. (16)

In Fig. 2, we plot the photon energy distribution
obtained in our model. The experimental data are
taken from Cnops et al." The solid curve labeled
FDR is the result given by the present FDR cal-
culation; the dashed line gives the purely phase-
space prediction. Clearly the solid curve gives a
very good fit to the data, improving considerably
on the dashed curve at high p values. The curve
can be calculated absolutely, but the data are
given in relative intensity units in Ref. 23, ne-
cessitating normalization to be adjustable.

The contribution of the high-energy amplitude
alone to I'„„ is 0.059 keV, and the low-energy
amplitude alone gives 0.02 keV. Let us remark
that it is crucial to use the low-energy form Eq.
(7) in Eq. (4). If one uses the B„,of Eq. (2), the
predicted rate would be 0.062 keV instead of Eq.
(16).
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For our FDR calculation n = ()yy) and y' = (rye), since
F',"' described the decay of meson i into the my

final state and G', ' describes its production from
the mg initial state.

The narrow-resonance limit of the amplitude
Eq. (17) is readily found to be

dN

d Py

100

P„(MeVi

200

FIG. 2. Photon intensity distribution vs photon momen-
tum in g t"m y. The solid curve labeled FDR gives the
result of the present finite-dispersion-relation calcula-
tion; the dashed curve is the result following purely
from phase space. The data are from Ref. 23 and do
not give an absolute normalization.

B. Prediction from the Coupled-Resonance Model of the A2

In 1967 it was suggested '4 "that the A, (1300)
meson contained two J =2' particles which could
mix to cause possible complicated mass shapes,
calculable via a mass matrix approach. With this
method, the amplitude for a reaction proceeding
from an initial state r to some final state n
through the two particle A, system is

T (s) =E"(s)D '(s)G" (s),

where the decay and production vertex vectors
are, respectively,

Fn(s) (E())) E(rt&)

and

Gr(s) (G(r) G(r))

(17)

a[(m, 2
iy~m& -m 2-+iymmm)~

+ 4t2(rn + )y) )2]1/2) (18b)

The function D (s) is s minus the mass matrix, and
its inverse will be parametrized as"

D '(s}= 1
(s —s,)(s —s )

s -m, '+iy, m, -((m, + m, )-((,+m) *-m,'+', m ) '

(18a)

where the mixing element is, in general, complex,
$ =c+id, and

s, =~(m +m2 i(y&m, +y,-m, )

~14 MeV2 (20}

for the more general case of two mesons. For the
single-Breit-Wigner A2 resonance, E, and G,
are zero and the experimental branching ratios
I'„and I'„„determine ~E(&"y&G;"&~2 =13.7
MeV' as an absolute prediction within the frame-
work of this FDR-FESR calculation. Models with
a broad and a narrow component in the A, can
readily satisfy condition (20), provided most of
the coupling to the mp and nq is through the broad
component. However, for two narrow resonances
of width, say 25 MeV each (and masses 1290 and
1310 MeV given in Ref. 7), as in the high-low pic-
ture of the A„ it, would appear that the largest
))F', y'G& "'+E'2'y'G2'"'(' that can be made, regard-
less of the assumed ratios of mp and mg couplings,
is 5 MeV', which is well below the lower limit in
Eq. (20). This number of 5 MeV' is a model-
independent upper limit for two narrow-width
J~ =2' objects (making up the A, ) based only on
the total width (or coupling) available. Specific
descriptions of how the heavier particle couples
to mp and mg compared with the lighter particle
will generally lead to a smaller than 5 MeV' value

iE(ry&G()l))) + g, (r y)G(r)) )i2
1 1 2 2

Models ascribing different J" to the two peaks
will yield a result considerably lower than 5 MeV',
as one of these particles does not couple to mp or
y(y( Then, the. largest ~E;'y'G;'"'+Em'y'O;'"'P can
be is 1.2 MeV', which follows from a width of 25
MeV for one 4 =2' particle.

The very special case" "of a J =1 ' meson

( ) (E l())G()rEOI)G( ))( '
) 1 (19)

where )y),' =-,' (m, '+ m, '). Arguments can be made
to limit the size of the off-diagonal elements in
energy units by the A, width; this makes deriva-
tion of (19) obvious. m' Equation (19) indicates a
single pole in the limit, but with residue modified
from that for the no-mixing single-Breit-Wigner
case.

The experimental limit on 1"„„canbe directly
cast into limits on the absolute value squared of
the residue E', &'G', ')'+E', ~'G2 'j'. Let the F's and
G's be defined so that )F"y'G""' ~' =13.7 MeV' for
the single-Breit-Wigner case written in the form
of Eq. (17). Then Eq. (16), I'„„„=0.123+0.28
keV, implies that

~E( y)G( )+))E( y)G( )))~2
1 1 2 2
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and a J =2" meson making up the A, requires
extra attention, because the mesons couple dif-
ferently to np and mq. Let us denote this J =1 '
meson by A. The couplings of A to the ny and mg

systems are given by

and

T~,„=g„-,„e„-"(k)(q+k)„.

The conventions are those appearing in the expres-
sions below Eq. (2), except that the corresponding
quantities characterizing the A, are changed to A.
The A contribution to B„,(v, t) is

B(A) (v t) B(A) (v t) (22)

The high-energy amplitude still has the form (8).
However, the residue function is determined by
both the contributions of (the narrow) A2 and A.
The contribution from the J~ =2" component of
the A, is still of the form (10); the contribution
from A. is given by

P(A) =3N ' g„,„g„,„(m~ -—-'m„—-m,) . (23)

The decay formulas for A -mp, ay, and mg can
be calculated to be

1 1
„~ o=—.—. g„—~ 0, ~'[m„—z(1, m, '/m„—~, m '/m„—')]~

24 4n

Bres (» t) = -gg((ygi((((

1
+(v -v)

yv —(m„-' --,'m„' -m, '+ ,'t)-
(21)

which is incidentally also the low-energy contribu-
tion to B(v, t), i.e.,

gA y7fgAqfI 0'6 gA2yn'gA2gfr '

Denoting the contributions of A, to the low- and
high-energy amplitudes by B~""and B'A2', we
have

B&» z p 20B&A2)

B&A'S 0 22B&A2'

This gives the prediction

r„„„&0.019 keV,

which is well below the experimental number listed
in Eq. (16). Thus we feel that this model" ~" is
also strongly ruled out as a possibility for the A,
(should it turn out to be split).

Still another possibility discussed in the litera, -
ture is that only one of the components of the A,
couples to the wp and (((7. It is possible to satisfy
the sum rule (20), with one of the G; and/or
F( (i =1, 2) being zero, only if the nonzero coupling
is to a broad state of total width about 80 MeV.

IV. DETERMINATION OF THE p7FY COUPLING
CONSTANT AND THE CUTOFF

PARAMETER No

In this section, we shall examine the question
of uniqueness of our choice of No especially in
the sense of the narrow-resonance approximation.
The choice of N is not a new problem in the evalua-
tion of FESR. To put the question in perspective,
we briefly review: Let us differentiate Eqs. (4)
and (9) with respect to N, obtaining

ImB(N, t) =
() N ("' '

dp 7T ~ (~) V

dN I'(a (t)) N

24 4n'

1 1
F„-~ „= 1

—g„-~„, [m„-A(l, m, /m„-, m„'/m„-')] .
a,nd

(v/N)'"
a (t) -2n —1 (25a)

For definiteness, we take the masses (this leads to
to very little error) and widths of A, and A to be ihe
same, e.g., 1300 MeV and 25 MeV, respectively.
The couplings calculated from the above formula
are

g„—~, '/4(( =0.547' GeV 2,

g„—,'/4(( =1.56&&10 Q, GeV ',
g„—„,'/4(( = 0.261',„GeV ',

where X, and X„„are the branching ratios for
these two modes of the A decay. Since y,„+X„
~i, the maximal value of g„- „g„-„,is obtained

1
A y ff AI)r

for X 7I p X +I) Q which leads to

IrnB (N, t) = N +"' '
F(a, (t))

—=0.dP
dN

(26a)

(26b)

This result, Eq. (26a), is again a restatement of
duality, and (26b) is obvious because the Regge

ImB(N, t) = N (, ((
F(a(,(t))

dP (( ~ ((( 1
dN F(a (t)) a (t)+1 '

respectively. The solutions of these two equations
are
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(28)
P

where we have described the pmm and pqy vertices
by ~p w~p' x &I) and (/pqy/~m~puxp~p"& & p
respectively. The factor 1/m„ is used to make
f „„dimensionless. We have from (27) and (28)

f~„„f„,=2m 'm, P. (29)

Using f~,„'/4n =2.56~0.4,"we get

residue function cannot depend on the cutoff since
the choice of its value is at our disposal.

Now let us examine the FESR, Eq. (9). There
is no problem, in principle, when N is large
enough and the widths of all the contributing reso-
nances are included. In the narrow-resonance
limit, however, ImB(v, t) is just a sum of 5 func-
tions. When N varies from the right of one reso-
nance to the left of a neighboring one, the right-
hand side of Eq. (9) is a fixed value and the left-
hand side of Eq. (9) varies continuously; therefore
a proper choice of N is obviously necessary.

As stated in Sec. II, our choice of N is the aver-
age value of m+' and m&', following Ref. 3. This
prescription is not unique; there are other criteria,
e.g., the choice of N can be such that when ex-
trapolated in t to the p pole the amplitude has the
appropriate pmm and pgy coupling constants in the
numerator of Eq. (8).

When f-m ', we get from Eqs. (4) and (8)

lim (t -m~')B(v, t)= lim (I-m ')B„(v, t)
t~mp2

=-4Pm 2. (27)

As t -m, ', B(v, f) can also be expressed in terms
of the p couplings to nm and qy, i.e.,

E„o„„=(2e/3f )f„,„, (32a)

&„zz = 3 '"F,o„cose[l -2&2r tane]. (32b)

From the experimental rates of n'-2y and q-2y
we obtain

r =2.71 +0.55 or 1.94+0.55,
which are obtained with I'.. .„=7.74 (1 + 0.12)
e7' or 11.2 +1.2 eV,"respectively. These values
with Eqs. (32a) and (32b) lead to

(33)f~„„'/4v =0.095a or 0.108a,

respectively. On the other hand, if we use the
value of f „determined from the rate ~-my,
we have

0 25 I I w l ~
r

0.20 "

f,„'/4n =0.118o.or 0.092a. (34)

The errors associated with (33}and (34} are also
about 2(Pjp. We see that the agreement between
the results in Eqs. (30) and (33) or (34) is very
good. This strongly supports our choice of No as
the approximate value, which was obtained by fol-
lowing the usual prescription.

To investigate the stability of the result, Eq.
(15), we have varied the cutoff N and given an ex-
ponential form factor e" to the Regge residue in-
stead of ihe fixed value given in Eq. (13). In Fig.
3, we plot I'„, and f~„„'/4v as a function of a
for both the single-Breit-%igner and high-low
models. We should emphasize that the curves
calculated for the single-Breit-Wigner case give
the upper limit for the various possible broad-

f „„'/4v =0.115m, (30)

f „=3 '"f „„cos8~-3g,sine~,

where 8~ is the g-g' mixing angle estimated from
the mass formula tan8~=-0. 19 (Ref. 27); f,„ is
the &ivy coupling constant (Ref 28); g, is th.e
pseudoscalar singlet- ~-y coupling constant. The
couplings g, and f „„are related,

(31)

g, =ru2 f,„/3&3,
where r =1 is the quark-model result 2' Using
vector-meson dominance, we have the w'- 2y and
g - 2y amplitudes

which probably should be good to 2(8D due to vari-
ous uncertainties.

There is no experimental information on f~„„.
We can make, however, an estimate using broken
SU(3) relations, to compare with the prediction in
Eq. (30). Consequently,

0. i 5—
Ol

I

+

Cw

I
Q. I 0-

0.05-

0 00
-0.4 -0.2 0.0 0.2

a (GeV )

0.4

FIG. 3. Plots of predicted values for I z „„&and
fp Ijy /4x as a function of a, where the P -Regge re si-

due function or form factor is e". Curve I: l z „„&for
a single Breit-Wigner resonance (or the upper limit for
the broad-narrow picture). Curve II: Upper limit of
I'„«& for the high-low model. Curve III: & ~f

p ~&
/4n

for a single Breit-Wigner resonance (upper limit for the
broad-narrow picture). Curve IV; ~ ~f

p z&/4x upper
limit value for the high-low model. The horizontal dot-
dash lines give the experimental bounds on the rate for

7t~ decay.
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FIG. 4. Plots of I'&, «y and of f&&y /4x as a func-
tion of No. The notation given in the caption of Fig. 3
applies.

narrow models, and the curves for the high-low
models are upper limits obtaining vixen couplings
to the two narrow resonances to nq and ny are op-
timal. The curves labeled I and II give I'„
vs a, to be read on the left scale, and III and IV
give o. 'f~„„'/4v vs a, to be read on the right
scale, for the two (single-Breit-Wigner and high-
low) cases. The width F„„„varies slowly with

s, but f~„'/4w is rather sensitive to a. The
PRy

single-Breit-Wigner predictions are within the
experimental error bars for zero or small values
of a; thus, one sees that the broad-narrow model
can be made to give excellent fits to experiment.
However, one sees from Fig. 3 that simultaneous
fits within experimental error bars to I'„„,rep-
resented by the dot-dashed lines, and to f~„z are
not possible in the high-low picture. Figure 4
shows plots of these same two quantities as a func-
tion of N„ the radius of the finite integration
contour. The single-Breit-Wigner model, and
therefore the broad-narrow model, again give good
results, although slightly higher values of N, will
improve them. The high-low model can give ac-
ceptable predictions only at the expense of reduc-
ing N, considerably, i.e., N, ~2.0 GeV .

We have also investigated the effect of the tra-
jectory functions. If we take the trajectories to
have unit slope, instead of the values in Eqs. (11)
and (12)

a (t) =0.415+ t

and

a+(t) =0.31+t

(giving m„. '=3.69 GeV'), the radius of finite con-
tour becomes N, =2.5 GeV'. Repeating the calcu-
lation, we obtain

r' 0.16keV for a single-Breit-Wigner model
0.056 keV for the high-low model.

Again errors of about 2(@ are attached to the
above values. The single-Breit-Wigner model or
any model with a wide component is still favored.

V. CONCLUSION

The method of combining finite dispersion rela-
tions and finite energy sum rules appears to be a
useful way of predicting three-body decay rates
from known couplings and Regge-pole exchanges.
In ~ - yv both p exchange in the t channel and A,
exchange in the s and u channels are required;
neither pole by itself saturates the width of g-any.
Perfectly satisfactory agreement between calcula-
tion and experiment for F(7}-vvy) on one hand and
between calculation and the broken-SU(3) predic-
tion on the other are found with the A, as a single-
pole resonance. This calculation, however, does
not discriminate between a single-Breit-Wigner
model or the two-pole models with a broad reso-
nance (e.g., broad and narrow mixed or interfer-
ing resonances of the double-pole model in Refs.
25 and 26). But, within the framework of the pres-
ent calculation and within the assumptions herein,
the A, meson as a single, 85-MeV-width reso-
nance leads to a parameter-free prediction of the
g-m'w y decay rate which is in fine agreement
with experiment. We feel that this is rather strong
support for the position taken by Bowen et al."
On the other hand, with a wide and narrow system
of two resonances, the calculated value for the
decay rate of g- my can be easily brought into
agreement with measurement if the couplings of
the two mesons to qm and my are chosen with the
broad resonance dominating in both channels. How-
ever, the case with the broad resonance coupling
to one channel and with the narrow resonance domi-
nating the coupling to the other channel (in either
a mixed or interfering situation) is strongly ruled
out.

Regardless of parameter adjustments, models
with narrow, separate resonances fail to satisfy
or saturate the width relations, yieMing predic-
tions for widths and couplings well below experi-
mental limits. Therefore, we feel that the numer-
ous versions of the high-low model"'~'4 are un-
reasonable descriptions of the A, meson and
should not be included in future particle data
tabulations (see, e.g., Ref. 7).

Our results were shown in Sec. IV to be stable
to reasonable variations in N~, the contour inte-
gral radius, and to variation of the Regge form
factor. We feel from this and the earlier brief
report of the results ' that one may safely say
that the A» whether a compound system or not,
has a broad, -85-MeV-width resonance in it which
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produces the lion's share of the coupling to mq

and mp states. This is consistent with the usual
phenomenological treatment of the A, as a single
broad object in, e.g., many t-channel Regge-pole-
exchange models.

ACKNOWLEDGMENTS

The authors would like to acknowledge useful
conversations with several of their colleagues at
Iowa State University and the National Accelerator

Laboratory. Particularly, B.-L. Young and K. E.
Lassila are grateful to Professor S. Treiman and
Professor J. D. Jackson, respectively, for their
hospitality during their visits at NAL. The first
author would also like to thank Dr. J. Uretsky for
his hospitality during a summer visit to the
Argonne Laboratory. The second author acknowl-
edges support through the Faculty Improvement
Leave program of Iowa State University during
his NAL visit.

*Operated by Universities Research Association Inc.
under contract with the U. S. Atomic Energy Commission.

~S. Nussinov and J. L. Rosner, Phys. Rev. Letters
23, 1264 (1969).

K. Kawarabayashi and S. Kitakado, Phys. Rev. Let-
ters 23, 440 (1969).

~R. Aviv and S. Nussinov, Phys. Rev. D 2, 209 (1970).
4M. Gell-Mann, D. Sharp, and W. Wagner, Phys. Rev.

Letters 8, 261 (1962).
R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166,

1768 (1968);K. Igi and S. Matsuda, Phys. Rev. Letters
18, 625 (1967); 18, 822 (1967).

G. J. Gounaris and A. Verganelaski, Nucl. Phys.
B34, 418 (1971)~

~Particle Data Group, Rev. Mod. Phys. 43, S1 (1971).
R. J. N. Phillips, in High Energy Physics, edited by

P. Urban (Springer, New York, 1970); V. Barger and
R. J. N. Phillips, Phys. Letters 31B, 643 (1970).

J. Baacke and J. Engels, Nucl. Phys. B51, 434 (1973).
J. Ellis and P. H. Weisz, Nuovo Cimento 4A, 873

(1971);G. Gounaris, Phys. Letters 41B, 329 (1972).
'D. J. Crennell, U. Karshon, K. W. Lai, J. S. O'Neall,

and J. M. Scarr, Phys. Rev. Letters 22, 1327 (1969).
M. Gell-Mann and G. Zweig, paper presented by

G. Zweig, inProceedings of the Fourteenth International
Conference on High Energy Physics, Vienna, 1968,
edited by J. Prentki and J. Steinberger (CERN, Geneva,
Switzerland, 1968). A summary of this work along with
predictions are included in a rapporteur's talk by
H. Harari in the same proceedings (see p. 197).

~SThe reader may refer to the paper by Aviv and
Nussinov, Ref. 1, for detaQs of our procedure in the
use of FESR at t =0.

~4G. Chikovani et al. , Phys. Letters 25B, 44 (1967).
~5D. Bowen et al. , Phys. Rev. Letters 26, 1663 (1971).

J. Rosner, Bull. Am. Phys. Soc. 16, 610 (1971).
K. W. Lai, in Phenomenology in Particle Physics

(California Institute of Technology, Pasadena, California,
1971), p. 257.

M. Alston-Garnjost et al. , Phys. Letters 34B, 156
(1971).

~GJ. Lefrancois, in Proceedings of the International

Symposium on Electron and Photon Interactions at High
Energies, 1971, edited by N. B. Mistry (Cornell Univ.
Press, Ithaca, New York, 1972), p. 51.

The width of A 2- 7t+y has been estimated to be 0.5
MeV by Y. Eisenberg et al. [Phys. Rev. Letters 22, 1322
(1969)] from data on photoproduction, Y +p —n +A &+.

2~For an over-all fit of various meson decay widths in
the Gell-Mann-Sharp-Wagner model, including g- ~my,

see A. Baracca and A. Bramon, Nuovo Cimento 69A,
613 (1970).

This value is calculated from information given in
Ref. 7.

3A. M. Cnops, G. Finocchiaro, P. Mittner, P. Zanella,
J. P. Dufey, B. Gobbi, M. A. Pouchon, and A. Miiller,
Phys. Letters 26B, 398 (1968).

24K. E. LassQa and P. V. Ruuskanen, Phys. Rev. Let-
ters 19, 762 '(1967). A more general discussion with
relativistic parametrization is given in Ref. 25. Other
later investigations emphasizing various aspects of
particle mixing in the A 2 region are: Y. Fujii and
M. Kato, Phys. Rev. 188, 2319 (1969); T. J. Gajdicar
and J. Moffat, ibid. 181, 1875 (1969); R. C. Arnold and
J. Uretsky, Phys. Rev. Letters 23, 444 (1969);J. V.
Beauprb, T. P. Coleman, K. E. LassQa, and P. V.
Ruuskanen, ibid. 21, 1849 (1968).

P. V. Ruuskanen and K. E. Lassila, in Proceedings of
the Third Topical Conference on Resonant Particles,
Athens, Ohio, 1967 (unpublished).

Since the basis for the intermediate particles is
arbitrary, a a =1 (where a performs a unitary trans-
formation on the basis states) can be inserted between
each of the factors in Eq. (17). Unitarity requirements
on T then lead to a bound on the off-diagonal elements.

27R. H. Dalitz, in Physical Problems in Biological
Systems, edited by CbcQe DeWitt (Gordon and Breach,
New York, 1970), p. 253.
28f„& is dimensionless and is defined by

&~, q~j "„(o)
~ ~, p, ~) = m, 'f~,q e„,),qe '(p)qp~,

G. Belletini et al . , Nuovo Cimento 66A, 243 (1969).
K. E. Lassila and B.-L. Young, Phys. Rev. Letters

28, 1491 (1972).


