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The phase difference between strong and electromagnetic contributions to the scattering
amplitude is derived from diffraction theory. The results are consistent with relativistic
calculations. Bethe’s phase is shown also to be consistent with relativistic calculations.
New expressions for the amplitude are obtained to all orders in Z;Z,e%/#iv for the point-
charge and extended-charge cases. Cross sections calculated from the original expression
and from the point-charge solution are compared with those of the extended-charge solution.

When charged strongly interacting systems col-
lide, both strong and electromagnetic interactions
contribute to the scattering amplitude. Bethe!
showed that with certain assumptions the modulus
of the amplitude F(q) for elastic scattering of a
point unit charge by a nucleus of charge Z may be
approximated by

| F(9)|=1£(q) + fo(@)e*"?) (1

where f; is the strong-interaction amplitude, f, is
the electromagnetic amplitude apart from its
phase, n=Ze%/fiv, #q is the momentum transfer,
and the phase ¢ is given by

¢~ ~21n(aq/1.06). @)

Both f; and the form factor for the charge distri-
bution were taken to be proportional to exp(—%azqz).

Subsequently, West and Yennie,?® using rela-
tivistic methods, derived for the phase ¢ the ex-
pression

¢=-2In(a’q) -y, (3)
where y=0.577... is Euler’s constant and
a’'=3a?+c2+d?)V?, (4)

It was assumed that the charge form factors of the
target and incident particles are exp(—ic?q?) and
exp(-3d?q?), respectively, and that f, is propor-
tional to exp(—ia?g?).

We point out that no reinterpretation of ¢ in Eq.
(2) is needed in crder that Eq. (2) be consistent
with Eq. (3). Bethe assumed d=0 (point charge for
the incident particle) and c=a. Therefore from

o= =2In(ag/N2) -y
~ -2 In(aq/1.06),

which is Bethe’s formula Eq. (2).*

Using relativistic methods West and Yennie also
showed? that for point charges and arbitrary f,,
¢ is given by

2t |1~ fi(q")/fs(@))a’
=-2Insindo~2 [ Ll ACUEHCI) P
¢ 20-2) 7o ¢ 6
Equation (5) can be derived from diffraction the-
ory. We use techniques similar to those of the
Glauber approximation.® The scattering amplitude
is given by®

F@)= £ [ T - exPyam, (®)

where 7k is the incident momentum and b is an
impact-parameter vector. To exhibit the effects
of the Coulomb interaction we write®

x(B) = x.(8) + x:(0) , (7

where x.(b) is due to the Coulomb interaction alone
and x,() is due to the strong interaction alone.

The purely strong and purely Coulombic amplitudes
fs and f, are given by expressions similar to Eq.

(8),
@)= 12 [ &P -, s, @)

Using Eqs. (6)—(8) together with the identity

1= fXetXs) = (1 — g¥Xe) 4 (1 = g¥Xs)

Eq. (4) a’=a/¥2 and from Eq. (3) ~ (1 =e*Xe)(1 = e'Xs), (9
we obtain
ik iqs b, iXa(d ixs(d)) 42
F(q) = fq) + fi(q) - é_nf ' P(1 = e Xe™®)(1 = &*Xs™)d% . (10)

If we invert Eq. (8) with j=s, we obtain

{3
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1=

L=eXs®=@rie) [ e Tr(gdt, (11)
and the amplitude F becomes

F(q) = 1,(q) + F(@) + 2m)™* f (g T 01T =T ) (e *e® = 1)bdb d*q' . (12)
For a screened Coulomb field with screening radius R and for ¢>R™', we may write®
v D) =2n1n(b/2R), b<R
=0, b>R. (13)
Since R is of atomic dimensions, Eq. (13) will be valid for 7%2¢%>> 16~ (GeV/c)?. Furthermore,®
f.(q)==2nkq?exp{-2i[n In(qR) —argl'(1 +in)]}. (14)
For n< 1, Eq. (12) with Eq. (13) becomes”

- R

F@)= tim [ 7@+ 1@+ in™t [ @)@ [ 013 =3110) 10/ 2000a0) (1)
e R G Js(g') 2w o ]
= ;131 [fc(q)—f‘ fs(q)exp<~znn lf G=0TF 709 [1~dyRIT=q"])] 2m1n2>_] . (16)

Therefore the phase ditference ¢ is

1 a’=2k dqu r fs(ql\) = fs(qi) !
=-21lnsin6 -2y — lim 21nkR+—f = _.,,.-(1- >+<JR - ’l)———~1>] . 17
p=-2nsinig=2y { s Ta-aFL\' " ) PRI G ol
We have assumed, as is usual in high-energy diffraction theory,’ that f,(q) is strongly peaked in the for-
ward direction and that the ¢’ integration is taken over the physical region ¢’ < 2k. For (¢/2k)?<« 1, we ob~
tain”

2k d%q’ f(q") 2kR dzq’ .
lim 7% T:——_,,—,—[l JRIq -G --—-jl = lim '1f 1-J,(q 18
fom Jy 1G-Q'F o 1-4"1) A0 R T 1= ola)l 18

= lim [2In(kR) +2v]. (19)
R—o>w
I we perform the angular integration on the remaining integral in Eq. (17) we obtain Eq. (5).

We have thus demounstrated that the results obtained by relativistic methods [which are calculated to
On)] and the results of diffraction theory (which are calculated to all orders in z) agree to O(z). For scat-
tering of hadrons by heavy nuclei, or for high-energy heavy-ion experiments being performed,® the pa-
rameter n =2 Z,e?/liv is not small {even at high energies) and calculations good to first order in » will be
inaccurate., Let us therefore use diffraction theory to calculate the complete amplitude in such cases, We
shall assume that the charge form factors of the target and incident nuclei are exp(~ic?¢?) and exp(—4d>¢%),
respectively, and that the incident-nucleus-target strong-interaction amplitude is®

fil@) = fyexp{~ia%q) .

We find that
Xe(0) = xZH(b) +nE, (D% /5, (20)

where »*=c¢*+d% yP'(b) is the Coulomb phase-shift function for a point charge, and E,(x) = -Ei(~x), where
F1i is the exponential integral. There are many ways of separating the Coulomb and nuclear effects and of
separating the point-charge and charge-distribution effects. The final resuit may be written, for example,
as

| in lad " oinalr i £42y
| F{g)| 2! FP(q) +ikr?e?in "“‘”a)jn Tl g™~ e’"E’*“a’}dx

; o~ o in : 1\ sinel  —y2e2 a2
+(21’2f,)/d2)€2m In (r/a)j Jo('rqx) !‘e*v'ﬁl(ﬂf“ - szuv ue raxS dy, ,
o

where F*'(g) is the point-charge solution®

FY(q) = —Snkg 2 exp{~2i[n m(3aq) —argT (1 + )|} + f(QT (1 +in) , Fy(~in; 1; 5a*q%) (22)
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in which | F| is the confluent hypergeometric func~
tion.

As an illustration, we consider the case d=0,
c=a [so that Eqs. (2) and (3) are identical]. We
compare in Fig. 1 cross sections near the Coulomb
interference region obtained from (i) Eq. (1) with
¢ given by Egs. (2) or (3), and (ii) F(q)=F(qg),
with those obtained from the “exact” solution Eq.
(21). The parameters a and f, were chosen to
correspond approximately to appropriate strong-
interaction data. Their precise values are un-
important since we are comparing theoretical ex-
pressions.

We see from Fig. 1 that with Eq. (2) or (3) errors
in the cross sections of ~20% occur for p-Pb scat-
tering, ~10% for C-C scattering, ~19% for p-C and
7~ -C scattering, ~0.2% for a-« scattering, and
~0.03% for p-p scattering.

It is interesting to note that the point-charge
solution Eq. (22) is generally no more accurate
(and often less accurate) than Eq. (2) or (3), even
at very small angles.

In obtaining his resuli, Bethe made the approxi-
mations that the average Coulomb phase shift of
the nuclear scattering be evaluated at ¢=0 and that
the calculation neglect terms of O(r?). The re-
markable accuracy of Bethe’s result for p-p, a-o,
7-C, and p-C scattering stems in part from the
compensating effects of these two approximations.
Figure 1 shows that neglecting the ¢ dependence of
the phase generally induces an error opposite in
sign to that induced by reglecting terms which are
of higher order inz. (The dotted and solid curves
generally lie on opposite sides of the --/ axis.) We
also see that for p-C, #»-C, a-a, and p~p scat-
tering, retention of the g dependence of the phase
(dotted curve) generally increases the accuracy of
the results significantly. It is straightforward to
modify Eq. (2) to take the g dependence into ac-
count by means of a simple rapidly converging
power series in ¢°. However, for nz 0.1, the ¢
dependence modification still yields inaccurate re-
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FIG. 1. Percentage error in calculated cross sections
when compared with the ‘“‘exact” solution Eq. (21), as a
function of the squared momentum transfer. The solid
curves compare cross sections calculated using the phase
given by Bethe and by West and Yennie, Egs. (2) and (3),
with cross sections obtained from Eq. (21). The dashed
curves compare the point-charge solution, Eqg. (22), with
Eq. {21). The dotted curves are obtained by modifying
Bethe’s calculation to take into account the ¢ dependeunce
of the average Coulomb phase shift of the nuclear scatter-
ing. The arrows indicate the ¢ values for which Coulomb
and strong-interaction contributions to the cross section
are approximately equal.

sults. It is clear from our calculations that for
collisions in which n= 0.1, Eq. (21) should be used
in analyses of data in the Coulomb-nuclear inter-
ference region.
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