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The phase difference between strong and electromagnetic contributions to the scattering
amplitude is derived from diffraction theory. The results are consistent with relativistic
calculations. Bethe's phase is shown also to be consistent with relativistic calculations.
New expressions for the amplitude are obtained to all orders in Z&Z2e /Av for the point-
charge and extended-charge cases. Cross sections calculated from the original expression
and from the point-charge solution are compared with those of the extended-charge solution.

When charged strongly interacting systems col-
lide, both strong and electromagnetic interactions
contribute to the scattering amplitude. Bethe'
showed that with certain assumptions the modulus
of the amplitude I'(q) for elastic scattering of a
point unit charge by a nucleus of charge Z may be
approximated by

I &(q) I
= If, (q) + f,(q)e'" ~

I

where f, is the strong-interaction amplitude, f, is
the electromagnetic amplitude apart from its
phase, n =Ze'/I'v, 8'q is the momentum transfer,
and the phase (t) is given by

P = -2 ln(aq/1. 06) .
Both f, and the form factor for the charge distri-
bution were taken to be proportional to exp(-sa2q').

Subsequently, West and Yennie, 2 3 using rela-
tivistic methods, derived for the phase P the ex-
pression

y = -2 ln(a' q) —y,

where y =0.577. . . is Euler 's constant and

a' = -'(a'+ c'+ d')"'

It was assumed that the charge form factors of the
target and incident particles are exp(-sclq') and
exp(-4 d'q'), respectively, and that f, is propor-
tional to exp(- sa'q').

We point out that no reinterpretation of a in Eq.
(2) is needed in crder that Eq. (2) be consistent
with Eq. (3). Bethe assumed d=0 (point charge for
the incident particle) and c =a. Therefore from
Eq. (4) a' =a/}(2 and from Eq. (3)

Equation (5) can be derived from diffraction the-
ory. We use techniques similar to those of the
Glauber approximation. ' The scattering amplitude
is given by'

y(q~)
~ e&((( b (1 jx(b})d25
27

where Sk is the incident momentum and b is an
impact-parameter vector. To exhibit the effects
of the Coulomb interaction we write

x(b) =x.(&)+x (&)

where X,(b) is due to the Coulomb interaction alone
and x, (I)) is due to the strong interaction alone.
The purely strong and purely Coulombic amplitudes
f, and f, are given by expressions similar to Eq.
(6),

j(«)= —I "8"( -('«&"&)&( (&, j=s, c.'

Using Eqs. (6)-(8) together with the identity

ej(Xc+Xs}—(] &jXc) + (] e&(Xs)

(] e (Xc)(1 ejXs)

(8)

(t) = -2 ln(aq/&2) —y

= -2 ln(a q/1. 06),

which is Bethe's formula Eq. (2).'
Using relativistic methods West and Yennie also

showed2 that for point cl}arges and arbitrary f„
p is given by " [&-f.(q')/f. (q)]q'p=-2lnsin28-2 ' „' -- dq'. (5)

we obtain

&(q) = f ( )+f (««)
—

~ f «" '(( —e'"'")()- ') ('(. «&&
If we invert Eq. (8) with j = s, we obtain
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Xs( ) == (21&if)- &.
'-'q f,(q)d q,

and the amplitude I becomes

F(q) = f (q) + f (q) +!2)&) ' f (q').J,(b i q - q
'

i
)(e'x'") —I)bdf)d' q'.

For a screened, " 'oulomb fieM with screening radius & and for q»g ', we may write'

~e„(b) =- 2n ln(f)/2R), 5 & R

(12)

Since Ii is of atomic dimensions, Eq. (13) will be valid for h'q'»10 " (QeV//c)"'. Furthermore, '

f,(q) =- 2n-t&q 'exp[ 2i[-n in(qR) -argI"(1+ in)]).
For n «1, Eq. (12) with Eq. (13) becomes'

f pB
s( )= bi if( )+/( )+( -' /( ')s* 'J q(( — 'Ib)b (b/bs)bsb

= bern /(q)+/(q)eee -'ee ' - -, , * (( —Z, (SI&b-&)'I)] —b(ebeb)
d'q' j.(q')

R~~

Therefore the phase difference P is

1 "='" d'q' fs'O'J . , fs(q')
(t) =-2!nsin, 0 —2y —lim 2 luke'+ — —..==—.

, —., 1 ——— + j,(R iq-q'i) —— —1
I q -q' I' f.(q)

' f., (q)

We have assumed, Rs is usua! in high-energy diffraction theory, ' that f,(q) is strongly peaked in the fo-
ward direction and that the q' integration is taken over the physical region q'-- 2k. For (q/2k)'«1, we ob-
tain

d2 &
— f {q')—
1 —J,(ji iq —q'() —.— = lim w

'
iq -q'I' ' f.(q) ~

= 11m [2 In(ax)+2y]. (19)

If we perform the angular integration on the remaining integral in. Eq. (IV) we obtain hq. (5).
We have thus demonstrated that the results obtained bv r-let. 'vistic methods [which are calculated to

O{n)] and the results of diffraction theory (which are calcul-ted to all orders in n) agree to O(n). For scat-
terjLng of hadron;. oy heavy nuclex, or for h~gh-energy heavy-&on exverxments bemg performed, the pa-
1'R1118'tel n -'=q/,

bZ2&e
"/if vis no't BB1RH. (eve'n Rt. hlgl1 ene1'gles) Rnd CRlculRtlolls good to f11'st ox'de1' 1n n will be

inaccurate. I et us therefore use diffraction theory to calculate the complete amplitude in such cases. %e
shall assume that the c.1arge form f".ctors of the target Rnd incident nuclei. are exp(-;c'q') and exp( —sd'q'),
respectively and that the xnczdent-~]tucleus-target stron~-interact&on amplitude ~s

fs(q) fo exp( s u q )

!!,(b) =-. yP (!1)+ nE, (0-'/r' ), .

where x'= &:"+d.', y)" (I)) is the Coulomb phase-shift function for a point charge, and E,(x) = -Ei(—x), where
Ei. is the exponential integral. There are many ways of separating the Coulomb and nuclear effects and of
separating the point-charge and charge-distribution effects. The final result may be written for example,

) i F pq
( ), .I,„!!. 2is (siq/s) J'„(~q".;).'."'"'"[1 —8'"s'-"'"

I!dx

~ CO

+fb'&/ ) '''eJ eZ (eqe)(e'" "*"' q)e"""e "' "' '
where 1"'(q) ic the poini, -char~e 'olutio, .1"'

I "(q).--:-!& I q 'exP [-2i[n 1n(~2aq) —argl (I+.n) I I + jr(q)I'(I+ in), F,( in; 1; o"q')s-'
(21)

(22)



r
1020

-20-

-40- p . 208pb -10
1".c —'""c
12 GCV

I (38V

o.~1 r =—
i.o[-

0.6

0.2 // I GeV
~C

-0.2L—'- —
-'-- —--—

~--"c
-1.0 '; 260 MeV
-I 5'

i

-20
-25 '

12c

Q20r
0.15

0.10-06 1

/
—1.0

/ 0.05
Le
0 0004 0008 0 0.004

—t (GeV/c)~

FIG. 1. Percentage error in calculated cross sections
when compared with the "exact" solution Eq. (21)„as a
function of the squared momentum transfer. The solid
curves compare cross sections calculated using the phase
given by Bethe and by %Vest and Y'ennie, Eqs. (2) and (3),
with cross sections obtained from Eq. (21). The dashe~.
curves compare the point-charge solution, Eq. (22), with
Eo. (21.). The dotted curves are obtained by nlodifying
Bethe's calculation to take into account the q dependence
of the average Coulomb phase shift of the nuclear scatter-
ing. The arrows indicate the t values for which Coulomb
Gild strong-interaction contributQ3ns to the cross section
are approximately equal.

suits. It is clear from our calculations that for
collisions ln which tl ~ 0.1 Eg (21) should be used
in analyses of data in the Coulomb-nuclear .inter-
fel"ence region.

Vjfe wish to thank Professor Qeoffrey F. Chew
for his hospitality at the Lawrence Berkeley Lab-
oratory.

in which ~E, is the confluent hypergeometric func-
tion.

As an illustration, we consider the ease 0 =0,
c=a [so that Eqs. (2) and (3) are identical]. We
compare in Fig. 1, cross sections Dear the Coulomb
interference region obtained from (i) Eq. (1) with

y given by Egs. (2) or (3), and (i.i) E(q) =-E"(q),
with those obtained from the ™exact"solution Eq.
(21). The parameters a and f, were chosen to
correspond Rpprozlmately to appropriate stx'ong-
interaction data. Their precise values are un-
lxnportant since we are comparing theoretical ex-
PX'8S S1ODS .

We see from Fig. 1 that with Eq. (2) or (3) errors
in the cross sections of -20/„- occur for p-Pb scat-
tering, -I.0% for C-C scattering, -1/o for p-C and
m -C scattering, -0.2% for u-o. scattering, and
-0.03% for p-p scattering.

It is interesting to note that the point-charge
solution Eg. (22) is generally no more accurate
(and often less accurate) than Eq. (2) or (3), even
at very small angles.

In. obtaining his result, Bethe made the approxi-
mations that the average Coulomb phase shift of
the nuclear scattering be evaluated at q =-0 and that
the calculation neglect terms of O(n'). The re-
markable accuracy of Bethe's result for p-p, a-o.,

-C "dp-Csctter g t "p'.tf" 'he '

compensating effects of these two approximations.
Figure j. Shows that neglecting the q dependence of
the phRse generally induces RD error opposite in
sigx to that induced by x eglecting tex ms which are
of higher order in g. (The dotted and solid curves
generally lie on opposite sides of the t axis. ) We-
also see that for p-C, rj-C. ~-+, and p-p scat-
tering, retention of the q dependence of the phase
(dotted curve) generally increases the accuracy of
the results significantly. It is straightforward to
modify Eg. (2) to tak:. the q dependence into ac-
count by means of a simple rapidly converging
power series in q . However, for n='O. l, the q
dependence modification still yields inaccUrate x'8-
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