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Improved Optimal Bounds Using the Watson Theorem
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A method is presented to find an optimal lower bound on the quadratic functional integrals
which appear in the derivation of bounds on the hadronic contribution to the muon magnetic
moment, or on the K» form factors, when one knows that the function and its derivative
take some definite values at the origin and that its phase is given on a part of the unitarity
cut.

I. INTRODUCTION

Recently different authors established rigorous
bounds for the hadronic contribution to the muon

magnetic moment' and for some form factors of
weak currents' in terms of certain input informa-
tion taken as known. From the mathematical point
of view the problem is the same for all the bounds
quoted here, namely, to find the lower bound of
the quadratic functional integral
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p(x) If(x) I'dx
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under certain conditions. The form factor f(x) is
an analytic function in the complex plane cut from
1 to ~. The weight function p(x) is non-negative on
the cut and has the form

a lower bound of the hadronic contribution to the
muon magnetic moment.

II. DERIVATION OF THE RESULTS

To obtain the lower bound of the integral ex-
pressed by Eq. (1}, we shall first transform the
complex cut plane into the interior of the unit cir-
cle Izl = 1 through the conformal transformation

(x —1)'" i-
(x —1)"'+i '

For g on the cut one has

ef8
t

tan —', 8= (x -1)"'.
The integral I becomes
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in the case of the hadronic contribution to the muon
magnetic moment, and

where

q(e) IG(e") I' de,2' ~ -m
(4)
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in the case of the Kf3 decay form factors.
The input information was represented by a set

of values taken by the function f(x) or (and} its
derivatives at some points xf. The purpose of this
paper is to study how one can improve the lower
bound of the integral I when one enlarges the input
information by including the phase of f(x) as known
on a part of the cut. In fact, from the Watson the-
orem' the phase of the form factor f(x) is equal
(modulo w} to the phase of the corresponding elas-
tic scattering from the elastic up to the inelastic
threshold. This problem has already been the sub-
ject of simple consideration by Micu and Radescu4
for a bound on the parameter d'(0} (the derivative
at zero momentum transfer of the form factor of
the strangeness-changing vector current diver-
gence) from K„decay and by Auberson and Li' for

q(e) = x I(» —1)"'
I p(x),

G(e' )= f(x)

The new function G(z) is analytic inside the unit
circle Izl = 1. The form of the integral of Eq. (4)
can be simplified again if we take into account the
function

1 ef8+ Z
D(z) = exp — inlq(g) I,e dg

4m' ef8

which is analytic for Izl & 1, has no zeros, and
satisfies almost everywhere the boundary condi-
tion

ID(e") I' = q(e) .

Then
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where the function
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F(z) = D(z)G(z) (7)

is also analytic inside the unit circle pi = 1.
Now we must obtain the optimal lower bound of

the integral I given by Eq. (6} under the following
conditions:

(a) The function F(z) has the value F(0} in the

point z =0,
(b) The phase of the function F(e'e) is 4(8) for hei

less than a certain n.
We note that the phase of the function D(z) ex-

plicitly given by E|I. (5} can be immediately com-
puted in the needed region and so, once the phase
of G(e' ) = f(z} is known from the Watson theorem
for hei& o. , the phase 4(8) of the function F(e'e) is
known as well for hei& a.

Other optimal lower bounds can also be looked
for when the condition (a) is replaced by

e ) e[e)F(eie} eie[e) [F(eie}]n (9)

for hei & n. It is convenient to write the condition

(9) in the form

(a'} the function F(z) and its first derivative take
the values F(0) and F'(0), respectively, at the
pointz =0, or

(a") the derivative of the function F(z) is F'(0} at
the point z =0.

The function F(z) can be developed into a series
of orthogonal polynomials p„(z) =z",

F(z) =F(0}+Q F„z", (8)
n= 1

where the first term of the series, F„ is set equal
to F(0) according to the condition (a). The remain-
ing coefficients F„are not arbitrary, but subject
to the condition (b):

F pn e ')[e[e)-ne] +i+ Enon ei[e[e)-ne] 2F(0) sine (8) (10}

The limit p- 1 is introduced here in order to handle a Poisson kernel which will appear later.
Due to the orthogonality relation of the polynomials p„(z }=z" on the unit circle, the integral (6) can be re

written as

I= IF(0) I'+g iF. I' ~

ns'-1

The extremum (minimum) of this expression can be obtained using the Lagrange technique which takes into
account the condition (10). One obtains for the extremal coefficients the values

, F(0)F„=z p"
g J

g(8)el[ [ )4)ee] nde- (12)

where the Lagrange multiplier function )).(8) is real and satisfies

)).(8}= -)).(-8)

(14)

Separating here the Poisson kernel, one finds in the limit p= 1 an integral equation of the Fredholm type
which must be satisfied by the function a(8),

(because F(z) is a real analytic function F(z) = [F(z n)]n). The function ]).(8) can be obtained by introducing
the parameters F„ into the condition (10}. After the summation of the series one obtains

"a -~(e'-8)

2% '-. ( ))z) e[ce))[-ee][e)de + c —sing(8)
&

&ce-e)
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2K J sin —,'(8' —8)
(15)

The extremal value I(F(0), 4 ) of the right-hand side of Eq. (11) is obtained upon introducing there the coeffi-
cients (12), summing the series, and taking into account that X(8) satisfies Eti. (14). The result is

ra
I(F(0),@}=iF(0) p 1+—, ))(8) sin@(8)de (16}

In a similar way, when the condition (a} is replaced by the condition (a') or (a"), one obtains the follow-
ing extremals:

1I(F(0),F'(0},@)= iF(0) P + iF'(0) i'+ — [F(0)]).,(8) +F'(0)X,(e)][F(0)sing(8) +E'(0) sin(4(8) —8) ]de, (17)-a
r R

I(F'(0), C }= iF'(0) $ 1 +— )).,(8) sin(4(8} - 8)d8
7T J (18)
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where the functions A,
y

A,g and A,, satisfy the following integral equations:

1 ~, sin[C (e') -C(e) ——,'(8' —e)]
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&ee Q
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' ] ~ e eoe[e(e'&-ete&]tee'= ei [e[e& —e].

(19}

(20)

(21)

Finally, concerning the applications of the re-
sults previously obtained to the physical problems
already enunciated in the Introduction, we recall
that

1 e~ 'm'
48m' Ic m,' (22)

where &&i(0) is the value at zero momentum trans-
fer of the propagator of the divergence of the weak
strangeness-changing vector current, which in the
model from Ref. 6 takes on the value

&(0) = (1.0lf.~.)' (24)

Now f(g) in the integral I is the K» form factor of

where 5a„ is the hadronic contribution to the muon
magnetic moment, f(x) from the integrand of I be-
ing the electromagnetic form factor of the w me-
son (the momentum transfer given in units of 4m„')
with f(0) =1, and

the divergence of the weak strangeness-changing
vector current, normalized in the SU, symmetry
limit as

f(o) =-f,(o) = I .

The momentum transfer on which the form factor
depends is measured in units of (mr+m, )'. In the
inequalities (22) and (23) I represents one of the
extremals derived before with the weight p(x)
given by Eqs. (2} and (3), respectively.

The elastic-scattering phase shift involved in
the calculations are 6(/= 1, T = 1) for vn scattering
from the elastic threshold t =4m„' up to the in-
elastic one t=16m,' and 6(I=0, T =-,') for wK scat-
tering from the elastic threshold t= (mr+m, )' up
to the inelastic one t= (mr+3m, )'. The angle n
corresponding to these two inelastic thresholds
are o. = 120 and n =91, respectively. Practical-
ly, for computations, the angle n can be taken
somewhat larger than the actual values (as done
in Ref. 6). In this way the bounds can be numeri-
cally improved, the inelasticity not being expected
to introduce great errors.
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