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The width Fof the decay g' g7m is estimated in the (8, 8) model of chiral symmetry
breaking. Under plausible additional assumptions we find F & 0.27 MeV together with an

experimentally uninteresting upper limit. In particular, the (8, 8) model is —at least under

present extrapolation errors in the Dalitz plot of the decay —consistent with any F above our
lower limit and below the experimental upper limit F ( 2.7 MeV. The actual width may be
expected to be around 1 MeV in perfect agreement with the (8, 8) model. Our assumptions
include that the dimension l„of the chiral-symmetry-breaking Hamiltonian density has the
particularly attractive value 2. For this value, the conventional (3, Q3 (3,3) model predicts
F & 0.065 MeV. Despite the large extrapolation errors the decay g' g m7( therefore clearly
distinguishes between the two models and might be decisive. For any given extrapolation the
estimated F of the (8, 8) model is at least 13 times bigger than the prediction of the (3,3)

(3, 3) model for l„=2. For l„=3 a prediction can also be obtained in the (3, 8) EB (3, 3)
model with a c-number b. It reads F ( 0.25 MeV and is roughly compatible with the expect-
ed width. The g'(958) is taken to be a possible ninth pseudoscalar meson throughout. It is
however emphasized that nonexistence of an SU(3) scalar meson might be a plausible alterna-
tive in the (8, 8) model.

Recently Riazuddin and Oneda' and Weisz,
Riazuddin, and Oneda' have estimated the width I'
of ihe decay g' ~wv in the (3, 3)$ (3, 3) model of
chiral symmetry breaking. The present paper is
devoted to an estimate of I' in the competing
chiral-symmetry-breaking scheme, ' ' the (8, 8}
model. For reasons to become clear later, we
shall restrict ourselves to l„=2 [with I„ the di-
mension of the chiral-symmetry-breaking Hamil-
tonian density u(x)]. For this value, the predic-
tion of the (3, 3}8(3,3) model is I'(0.065 MeV,
which is considered to be unacceptably
small. ""0"In the (8, 8) model for l„=2, we
predict a value of I" around the expected 1 MeV.
Details of our results are given at the end of the
paper

We mention already at this point that the (8, 8)
model contains no pseudoscalar SU(3)-singlet op-
erator. " This might suggest that the (8, 8) pre-
dicts that there should also not be a pseudoscalar
SU(3)-singlet particle. Whereas this attitude is
certainly not excluded experimentally, we attempt
here a conventional treatment of the mixing prob-
lem. In doing so, we find that two possible at-
tractive assumptions are contradictory in the

(8, 8}. These are (I}the SU(3) formula

&q, ls, lq, &
=0

[with S, the scalar SU(3)-scalar density of the
model] and (II) validity of the soft-pion limit for
the matrix elements

&q. lsglv(q)&

(with S)8 the positive-parity operators of the
model).

The incompatibility of assumptions I and II will
be derived in the paper [Eq. (21)]. The basic rea-
son for this incompatibility is the nonexistence of
a pseudoscalar SU(3)-scalar field for the q, .
Namely, the pseudoscalar operators S„of the
model transform according to 8+10+10 under
SU(3). This implies that f„,SP' (i.e., the eight
component of the 8) is the only I = Y=0 pseudo-
scalar operator of the (8, 8). Thus

&q, l
s„"

l n& 0-=
if and only if

&'qo I f8p os» I n &
= o

The soft-pion limit applied to (q, lSP lw(q)) evi-
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dently leads to a linear combination of the form

cp &q, ls&'In& =c"f,~,(q Is~gin&

for any a and p. In particular, the soft-pion limit
applied to &q, lSelv(q}& [with 8e, e =1-27, the
positive-parity 2V component of the (8, 8}]yields
a nonvanishing proportionality constant c . Ac-
cording to a reliable SU(3) formula,

&q, ls, lv(q)& = o,

and thus, assuming the soft-pion limit to be valid,
we have

&qol f s„'In& = o,
and in turn

&q, ls„sin& =o.

Qn the other hand, we shall see in the paper that
&tV, ls, lq, &

=0 implies &q, IS~Is&$0 (with S~, o. =1-8,
the symmetric 8), which, since &q, ls lv& is pro-
portional to c &q, l f,~,s„'I n& in the soft-pion limit,
would then imply that &q, ls„8ln& eo. Therefore,
assumptions I and II are contradictory. The only
doubtful assumption that went into this derivation
is the formula &o, ls, lg,&

= 0 [the further SU(3) as-
sumptions are found to be valid later on in the
paper] and thus we have investigated assumptions
I and II separately.

The prediction for 1 in each of the two cases is
different, and thus the decay g'- qnn might fur-
thermore be useful to distinguish between two
different possible schemes of (8, 8) chiral sym-
metry breaking. The present experimental infor-
mation'3 consists in the upper limit I'& 2.7 MeV.
This agrees with both the (3, 3)d3 (3, 3}and the (8, 8)
for I„=2. Within the (8, 8} it only implies weak
restrictions. A prediction closer to the expected
value and to the experimental upper limit I' & 2.V

MeV has been obtained ' in the (3, 3)8 (3, 3) model
with a c-number 6 for l„=3. It is I'&0.25 MeV.
We shall emphasize below that to us l„=2 still ap-
pears to be a particularly attractive choice. The
arguments are essentially those of Ref. 14. We
would like to make two additional introductory re-
marks.

First, we never consider any soft-meson limit
except the soft-pion limit. Instead, our additional
theoretical inputs are dimensional arguments and
l„=2. This is partly as in Ref. 2. Our assump-
tions would be perfectly unambiguous in the (3, 3)
8 (3, 3). In the (8, 8) they lead to the one ambiguity
connected with gg' mixing discussed above. This
ambiguity has not prevented us from obtaining a
result in clear distinction from the (3, 3)8 (3, 3)
model. Present information from meson-baryon
scattering incidentally does not imply a definite

distinction. ""
Second, we adopt the linear Dalitz-plot extrapo-

lation of Refs. 2 and 10. The errors of this linear
extrapolation are always taken into account. We
have no convincing way to discuss the additional
error coming from the assumed linearity. Refer-
ence 2 expects about 50%%uc in the final result. If
the error is at most 50%%uo, none of our conclusions
is affected in any essential way.

It was shown in Refs. 1, 2, and 10 by standard
current-algebra techniques that I' can be written
as

2 2

r=~ —,o„„,

In the above, f, =0.95 m, and

for the SU(3)-singlet and -octet components lq, &

and g,& of the lq& and Ig'&. The physical states lq&
and q'& are eigenstates of the Hamiltonian such
that &qlH(0)lq'& =0. We shall also use

&q I
T"(0}Iq'& = 0 (5)

with T"„ the trace of the new and improved energy-
momentum tensor. This plausible relation can
also be derived from &olH(0}lq'& =0 together with
(alH(0)la) =&aIT& la) =2m, for a =q, q', 7}8, and oo.
As usual, m„,' is given by the Gell-Mann-Okubo
mass formula for the pseudoscalar octet. Con-
sidering

it is then easy to compute
I pql. We find (Refs. 1

and 2 have Ipql =0.21)

lpql =0.17.

Furthermore,

&q, I T"„Iqg =2pq(m, ' -m„') .

(8)

The 64 scalar and pseudoscalar operators S 8

(definition: Sgs =S e +S 8 for n, P =1-8) of the
(8, 8) model obey SU(3}SSU(3) transformation
properties as noted in several places. The posi-
tive-parity SU(3} singlet, octet, and 2V compo-

The numerical value of $ depends on the slope in
the Dalitz plot of the decay. Including the errors
quoted in Refs. 2 and 10 we have

9 keV&$ =15 keV&28 keV.

We start by considering gg' mixing under our
assumptions and write (p'+q' =1)
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nents of the S are

S =+S (&a)

nate &(}ls,l(I'& from Eq. (12) by use of Eq. (13).
Due to Eq. (5) the result is then an expression for
o „„asa linear function of the following matrix
elements:

8

S = Qd~SPs

and (e =1-2V}

(&b) &&plZ «- «)5(l&p& =»',
with

(14a)

8

~e= — Q (epo S'; ~ (8c)e 30 po s

We need in particular the I=0, V=0 component S»
to be computed from

20-~&-. s=5 s-st& o5sp-45~5ss.

We also define S by S~ = S~~ —SB~.
The chiral-symmetry-breaking Hamiltonian

density of the (8, 8) model can be written as

0 & i('/m, ' & m„'/m, ' = 46,
T)p

&(}.Ias, l(},& = o,

&(),las„l(},& = o,

&(},lQ (4 —l, )5, l(},& =0,

&(4lassl(4& = (mrs -m, 2),
4~5

3~3

2W5m, '
&(7slas271(}s& =

+2

(14b)

(14c)

(14d)

(14e)

(14f)

u (x) = [zsp(x) +W3S, (x)].
8

2&5

The constant z has been estimated by several
methods. s"' The result is consistently"

I 2m~'+ mp 0
4 m~ -m, 2

(10)
&(),lQ (4 —l()6(l(},& =0,

2&5
&(} las, l(4&= pq(m '-m 2),

vS

and

&()plaS2 lqs& = 0.

(14g)

(14h)

(14i)

Computing the o term from the above we find
for ~„„.the following expression:

(z+z)ass+ (z+z)BS,
3, 3vY,

4vS
' '

5 5

~ (* j)BS., g'& . —
2 5

(12)

T"„=Q (4-l, )6, +2u . (13)

In order to compute 0„„.we may choose to elimi-

We shall assume in what follows that u(x) has di-
mension 2, at least between the pseudoscalar-
meson states. To motivate this value we note that
only then does the soft-pion limit for &((l Tspl((&

yield the correct result 2m '. It is furthermore
known that only this value" allows SU(3) for the
meson matrix elements of S„s, and Q((4 —l, }5(
= 5. We may also remark that in the attrac-
tive although more restrictive (8, 8) model pro-
posed in Ref. 3, u(x) has dimension 2. Note, how-
ever, that we in no way make the additional as-
sumptions made in that reference. We know from
our analysis of meson-baryon scattering data'
that for l„=2 we need a q-number 5 in the (8, 8).
Thus we allow for a q-number 5 and write 5
=Q(5( where the 5, have dimensions l, . It then
follows that

We shall critically discuss in particular Eq. (14h)
and also obtain as a possible alternative

&(4las, lq, &
=o. (15)

and

&v'lQ (4 —l()5(lv'@„)),
f

&v'las, lv'(q)&, (16)

In order to derive Eqs. (14) and (15) we start with
the uncontroversial results.

In (14a) the contribution of 5 to the mass of the
ninth pseudoscalar meson has been parametrized
by p, . Since p' is approximately the mass
squared of the qp in the limit u - 0, and since in
this limit the gp should certainly not be a tachyon,
we must have p.'&0. The value of p,

' could be
anything between y.'= m„,' and i('= 0 (as, for exam-
ple, in a theory with a c-number 5).

In proposing the further estimates made in Eqs.
(14) we use the value l„=2 in an essential way. It
is only for this value that our SU(3) and soft-pion
assumptions can possibly be correct. This has
been explained above. We shall throughout as-
sume SU(3) for the matrix elements of (4 —l, )5, ,
S„and S». As explained below there is no rea-
son to doubt this approximation. It yields directly
Eqs. (14b), (14c), (14g), and (14i). If SU(3) is
combined with the soft-pion limit" for the matrix
elements



DECAY q'- pm' AS A TEST OF CHIRAL SYMMETRY BREAKING 2103

&vlaSolv& = &lflaSoll~&

2vS
I H2

2
(18)

in agreement with SU(3} for S, . Validity of the
GeQ-Mann-Okubo mass formula is then equivalent
to having also the SU(3) relation,

&vlas, lv& = &q, las, lq, (19)

(use &vl Tools& —(g, l»olg, &). One might furthermore
assume, as done in Ref. 2, that differentiating
&KIVorlq& with respect to x„amounts to multiplica-
tion of the matrix element with i (P» P "o}„.-
(We are not entirely convinced that this procedure
is correct. ) This yields the Gell-Mann-Okubo
mass formula as shown in Ref. 2 and implies Eq.
(19). Equations (14d)-(14f) now agree with the re-
sult obtained by formally applying the soft-q8 limit.
Conversely, if this limit is valid it also implies
the Gell-Mann-Okubo mass formula. In summary,
we feel safe in using m „'= —,'(4mxo -m„o) .

It only remains to derive Eq. (14h). For this
purpose we use the SU(3) formula (also assumed
in the form &qoluolq, &

=0 in Ref. 2)

&q.ls.lq, &
= 0 (20)

If one accepts the Gell-Mann-Okubo mass formu-
la, this is the only place in which we have to
make use of SU(3} for S, . Due to the established
validity of (18) and (19) one may feel confident in
using (20). Then Eq. (14h) follows using (7), (13),
and (14g). Before turning to a critical discussion
of (20) and a possible alternative, we devote the
next paragraph to demonstrating that SU(3) should
in fact be valid for matrix elements of S„S~,
and Q, (4 —1,)5,.

According to present understanding, the origin
of a violation of SU(3) for matrix elements of
scalar operators is the possible contribution of
e-meson poles. Thus, if the c does not couple to
a scalar operator, SU(3) is satisfied for its ma-
trix elements. Since

(S»)o =
+= I 8 e=l-27

&v'Ias, lv'(q)&,

we arrive at (14d)-(14f). For (14e) a perhaps
more compelling derivation has been given in Ref.
2. It consists in differentiating

qclvrlx& = ff, „(p,+I,)„
(as given by the Ademollo-Gatto theorem) with re-
spect to x„. Incidentally, it follows from the above
by use of the relation 2m, ' = (al»la) for a = v and

K that

and since SU(3) should be valid for the vacuum,
we have (S„),=0. Similarly, it may also be seen
that (S,),=0. However, the preceding argument
does not hold for S, since it is an SU(3) scalar
and we expect (S,),eO. This is also implied by
saturation of the vacuum expectation values of the
pseudoscalar o' terms. "Furthermore, we shall
assume on the grounds of Ref. 8 that ([QD, 5]),
vanishes (Q~ is ihe dilatation charge). Namely,
we know' that for l„=2 we need a q-number 6 and
that most likely it cannot have a dimension '

E~ ~1.
The most simple assumption is then that 6 has a
q-number part 6, with a dimension and a c-number
part. The analysis of Ref. 8 then shows (even for
a reasonable amount of qq' mixing) that &5,&o

=0
for possible values of the width and the mass of
the e particle, such as, e.g., rn, =670 MeV and
I', = 600 MeV (or, e.g., m, = 600 MeV and I', =340
MeV). We take this as motivation for the assump-
tion &5,&o =0. These remarks imply that out of the
operators S„S„S»,and P, (4-1,}6,, at most
S, couples to the e. Namely, we have seen that
(S,), v0, whereas

&Sdo = (S»)o

= &6,&o

=0.
We continue to assume e saturation of ([QD, X(0)]),
with X(0}= S„S», S„and 5. It then follows
from

&[fQD So]&o =2(so& «
that &QIToo le(k)) e0 and (Qlsole(k)& xO, upon using

&QIQDle (k)) = -(I/m, )(2v)'5"'(k )(QI Tolls (k)).
Furthermore, we have, for example,

f&[Q s ]&.=2&s,&. .
The assumed r saturation now implies that

&QIQol~ {h)&&~ (1 )IS,IQ &

= (2v)' —5"'(k)&Q
I Tol~ (0))&~ (o ) IS,IQ)

=0

Since, as we have seen, &QIT„"le(0)&eO, the e de-
couples from S„ i.e., &Qls, le) =0. Therefore, S,
is not an interpolating field for the ~ and the ma-
trix elements of S, have no e poles. Thus SU(3) is
valid for the matrix elements of S8. The same
argument applies to S» and 6, . Of course, for S,
and S» the assumption that the e is an SU(3)
scalar would lead to the same result. This is not
so for 6, . We have given in the above a complete
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description of the argument (which is basically
due to Ref. 22) since we found that it is not gen-
erally known.

We next turn to a critical discussion of Eq. (20).
It implies that the soft-pion limit does not hold
for the matrix elements (r)JSeirr'(q)) and

(rI, ~S irr'(q)). First note that since SU(3} is valid
for S» and S„ it follows that (rl, iSeirr'(q)) vanishes
and (r), is JPr) is proportional to 5 8, where ac-
cording to Eq. (14h) the proportionality constant
is nonvanishing. However, noticing that

' 0.044(o„„,/m„')' MeV (for $ =9 keV),

0.074(v„„,/m, ')' MeV (for $ =15 keV}, (23)

, 0.13'l(rr„„i/m, ')' MeV (for ( =28 keV).

In the (3, 3)e (3, 3) for I„=2, the estimate"

= 0.68 -0.015p'm2 (24)

has been obtained in Refs. 1 and 2. Thus we may
conclude

I'&0.065 MeV (25)

Z [K &~ d44 )s-l
(X =g

= f(S4'+S~), (21)

27
=-4~30 Z [&~ (&~ —&ess}Sel

in the (3, 3}8(3, 3) with /„=2. The limit is assumed
for both p =0 and (i4/m, )' =46. The prediction ob-
tained in the (3, 3)d3 (3, 3) with a c-number 5 is
smaller for l„=2, and for 1„=3 it is I'&0.25 MeV.

We next turn to our estimates in the (8„8}. The
assumption in Eq. (20) [leading to (14h)] yields

the soft-pion limit is seen to yield (up to a con-
stant nonvanishing factor) the same result for both
of the above matrix elements, namely, essentially
(rl, is4'+ S„47iQ). Thus from

(r},iS err'(q}) =0

and the soft-pion limit it would then follow that

(ri, is 4' +S»iQ) = 0, (22)

which would then imply the vanishing of the ex-
pression in Eq. (14h) upon making use of the soft-
pion limit for (rl, is err'(q)) . It could in fact be rea-
sonable to have SU(3) for S, and the validity of the
soft-pion limit for matrix elements of the type
(rr'(p)i err'(q)) but not for (r), (p)i err'(q)) . One
reason for this could for example be that in the
variable P q the extrapolation distance from the
soft-pion limit to the physical value is much larger
for (r4(p)i err'(q)) than for (rr'(p)i ~ err'(q)) .

We have seen that Eq. (14h) disagrees with the
soft-pion limit in matrix elements of the type
(r4i err). The only doubtful assumption going into
the derivation of (14h) is SU(3) for S, as assumed
in (20). Giving up that formula and using the soft-
pion limit instead, we arrive at Eq. (15) and
(rl, is„8iA) =0. This latter result is in agreement
with SU(3). We do not see at present any real
reason to prefer either set of assumptions. An
experimental decision might come from the decay
under consideration here. We repeat that it
might also be reasonable to neglect mixing alto-
gether in the (8, 8).

We conclude by presenting our numerical esti-
mates for I' taking into account the errors given
in Eq. (3). We have from Eqs. (1) and (3) the
width formula

7 for p, =0,i'""'i =v+0 o3 " '=
84 f ( / )'=46

In this case, the lower limit

l & 2.2 MeV

(26)

is most interesting in view of the experimental
value

I"&2.7 MeV.

Unrestricted validity of the soft-pion limit has
yielded Eq. (15) and in turn

2.5 for p, =0,i'""'i =2.5+O.O3
"

mr' mr 3.6 for (p/m, )2=46.

0.27& I'&1.8 MeV, (29)

obtained for various values of g and p, . Thus even
taking these errors into account we get a clear
distinction between the (3, 3)8 (3, 3) and the (8, 8)
for l„=2. Since the errors in the Dalitz-plot ex-
trapolation (i.e., the errors in () affect all pre-
dictions in the same way and since one might hope
that these errors can be reduced by future work
it is important to notice that the distinction be-
tween the two models is even larger for any given
value of t'. This may be read off Eqs. (24), (26),
and (28). For the widths the results are

I'( .8)) 100I'(' &g(s, s)

(28)

In this case we explicitly note both lower and upper
limits,
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and

Z (8~ 8) ) $3I (3 s) (3 3)

under the two alternative assumptions we have
made. Except for an experimental I' around 2

MeV already under present errors on $, a dis-

tinction between these alternatives is possible
[Eels. (2V) and (29)] using the decay t)'- i)ss.

We note in conclusion that the decay q'- pm~

clearly distinguishes between the (3, 3)6) (3, 3) and

the (8, 8) model for l„=2 and may be decisive.
The same decay can also distinguish between two
different forms of the (8, 8) model.
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The soft-pion limit directly yields expressions
proportional to (Q~ S ~ca ~7l) . These may easily be com-
puted from the value of r given in footnote 19.

J. Ellis, P. Weisz, and B. Zumino, Phys. Letters
34B, 91 (1971).

Our method can also immediately be extended to the
(3, 3g (3, 3) upon assuming SU(3) for the meson matrix
elements of+& (4 l&)8&, so, -and u&. For l„= 2 there
is no real reason to doubt this approximation. It should
certainly be valid for u8 and can be supported in case

of+&�(4

l, )6& by the sum rule o-f Ref. 24. The F of
Refs. 1 and 2 for I,„=2 may then be easily obtained.

24H. Kleinert and P. Weisz, Nuovo Cimento 3A, 479
(1971).


