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We find that the equation of motion for spin-2 and spin-1 particles with an anomalous
magnetic moment in a homogeneous magnetic field can be diagonalized by applying the
Foldy-Wouthuysen transformation. The energy eigenvalues are then easily obtained by
observation.

The traditional method for obtaining the energy
eigenvalues of a system is to solve the eigenvalue
equations. ' ' This method becomes increasingly
complicated when anomalous-magnetic-moment
couplings are introduced and higher-spin particles
are involved. " It was only recently that the en-
ergy eigenvalues for the motion of a Dirac particle
and a spin-1 particle with an anomalous magnetic
moment in a homogeneous magnetic field were
calculated. ' ' A simpler method for obtaining the
eigenvalues of a system without solving the equa-
tion of motion was proposed by Tsai and Yildiz. ''
They observed that, even though the second-order
form of the eigenvalue equation is not diagonal, it
can be diagonalized by going to the fourth-order
form.

The purpose of this paper is to present an even

simpler method, by applying the Foldy-Wouthuysen
transformation, ' ' to obtain the energy eigenvalues
of the spin--,' and spin-1 systems with anomalous-
magnetic-moment couplings in a homogeneous
magnetic field. The transformation method of
Foldy and Wouthuysen is well known in its applica-
tion to the reduction of a relativistic equation to
the nonrelativistic form. One of its virtues is that
the Dirac equation for a free particle and for a
particle moving in a homogeneous magnetic field
can be diagonalized by this transformation. 6"'
The extension of this feature to the cases when
anomalous-magnetic-moment couplings a.re intro-
duced and higher-spin particles are involved en-
ables us to obtain the energy eigenvalues easily.

For the spin--,' system, the eigenvalue equation
is
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The application of the canonical transformation Uy/ p e ~'~ ' implies
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e)K~ ~ rn=y' mc s(e+fsin(e+yj — vH +y coa(e ——soke)2m
(2)

where we have used the relations

(y, y}=0, [y &r H, y w~]=0, w~~=w, ~+w ~, t'2—=-(y w~)'=w~ —eqo"H, e "'~ =cost'8 — sin(8.

The choice of 8 such that tant 8=t'/m enables us to obtain a diagonal Hamiltonian

X,'~2=y (m'+w ~ —eqf H)'~ ~ - o'H+y3P3 (4)

The corresponding eigenvalues are then

2- i/2
po=+ p, '+ [m'+(2n+1 —qo, )eH]'~2 — o H (6)

where we have used the quantization condition

w~'=(2n+1)eH, n=0, 1, 2, . . . .
This is precisely the same result obtained in Refs. 2 and 4.

For the spin-1 system, we start from the eigenvalue equation"

(m'+w')P„—w„(wP) +feq(1+ w)F»@"= 0,
which implies the subsidiary condition

m'w" P„-ieq(1 —w)w" F P"= 0

Substituting Eq. (7} into Eq. (6) and picking up the spatial components, we obtain

(6)

(P } Q, =(m'+w')P, +feq(1+v)F, &Q —,(1 —w)w, w, F Q»

or in the matrix form (in the following, without loss of generality, we consider the case when H is along
the z axis and P, =0)

(P')'4= m'+w, ' —eq(1+w)S H+, (w~' —eqS.H)S H —,(S w, )'S H 4, (9)

where we have used the relations

w, w~= w'5, ~
—eq(S H)&, -[(S w)'], &, F,~=i(S H), &, F»=H, (S~)„=ie;».

Further simplification can be accomplished by introducing the definitions

S& =Sy+zS» ~& =m, ~zn» X= » N, =S ~+ +~+
eq(1 —n)H

4m2

(10)

and the identities

S S ~, ~S+~S,SS5 ~S,~5»+S„,=NSN, , (S w ) S-H=-, (w, —eqS H)S H+-,'HN (i2)

The simplified form of Eq. (9}is
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eq(1 —«}(p')'4 = m'+% '-eq(1+«)S H+, («~' —eqS H)S.H+AS, N, 4=XP .j 2m2

This is the eigenvalue equation we want to study. Before we go on, we note that g =7,' —2eqS-8 commutes
with all other scalar quantities, and it is more convenient to rewrite X, as

X = m'+g+, S,'+(1 —«) 1+, eqS H +AS,N,
(1 —«)e'H '

j. 2m 2m

The application of the canonical transformation U, = e ~"' ' implies

(S4)

~l —e ~&+e~ 2 ~ e —~&+e~ 2
1

m' +/+, S,' +(1 —«)eqS H 1+, + ', e +(1 —«)e'H', - - g N,

m'+ g+, S,'+ eq(1 —«)S H 1+, cosh)8 —;sinh)8(1 —«)e'H' zN, '
4m'$

eq(1 —«) -- eq(1 —«)H+, S.HN, cosh(9 — 1+4m' ' 2m' sich~8 (, (15)

where we have used the relations
2 N 2 4S2($2 e2H2) [$2 N ] 0

(16)

A.N,e ""' =cosh$e — ' sinh)e.

To obtain a diagonal form for X„we choose

tach(8=) eq(1 —«)H 1+
2m (17)

which then yields

(1 ) 2H2 $
2m 2m 4m

The corresponding eigenvalues are"

( p )' = m'+ (2n+ 1)eH, for S, = 0

(1 —«)e'H'
(p )'=m'+(2n+1 —2qS, )eH+ 2 +eq(1 —«}S H 1+(2n+1 —2qS, ) —,+

2m ' m' 4m4

(18)

for S,'= 1. (20)

These results are the same as those of Refs. 4 and 5.
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Errata

Short-Distance Behavior of Quantum Electrodynam-

ics and an Eigenvalue Condition for o., Stephen L.
Adler [Phys. Rev. D 5, 3021 (1972)]. 1. Page 3025,
Eq. (20): a[y] should read tt[w]. 2. Page 3025,
second column, line 10: n„d,[x, y, o ) should read
rx d, [x, w, a J. 3. Page 3026, first column, line
foliowing Eq. (31a): Eq. (21) should read Eq. (28).
4. Page 3030, first column, fourth line following
Eq. (61): "the case" should read "this case. "
5. Page 3031, first column, line 2: Eq. (30) should
read Eq. (31a). 6. Page 3031, first column, third
line following Eq. (67a): Eq. (17) should read
Eq. (66). 7. Page 3036, first column, second line
from bottom: Ref. 17 should read Ref. 18. 8. Page
3043, first column, Eq. (B3): Sr[p, p, m, o, ri]
should read gr '[p, p, m, a, rt]. 9. Page 3043,
second column, second line following Eq. (B5):
Eq. (B4) should read Eq. (B3). 10. Page 3044,
second column, paragraph headed TyPe I: Ref. 17
should read Ref. 18 throughout. 11. Page 3045,
second column, fourth line following Eq. (B19):
Ref. 17 should read Ref. 18.

Mellin-Transform Analysis of Light-Cone Structure
and Scaling in Inelastic Electron Scattering, D. Bhau-
mik, O. W. Greenberg, and R. N. Mohapatra [Phys.
Rev. D 6, 2989 (1972)]. The bound given in (A14)
is incorrect because 8'F,'~/as' is not in g' under
the assumptions made. The statements on p. 2996,
first column, concerning R. Jaffe's results are in-
correct. We now agree with Jaffe's bound under
corresponding assumptions.

Massive Particles and the Spontaneous Breakdown of
Dilation Invariance, S. K. Bose and W. D. McGlinn
[Phys. Rev. D 6, 2304 (1972)]. Replace Eq. (7)
with oI,(g'=0, 0) =0. Replace Eq. (11) with

d p'[P„(p') + (2a), 'a,',.(g', 0)]cos(x,g) = 0
0

and Eq. (12) with

p,.(i ') +(»)'o,', (i ', 0) =0.

Add the terms

and

i d'x d p,
' P„p,') z' x, x„p,')

0 xp

d p'[p„(g') + (2s)'tr', , (g', 0)]e'*o'",

which, however, is zero due to Eq. (12).

i dy'k„p„(p')e. '*0'e(k, )6(k,' —]kg —tt')
0

to the right-hand sides of Eqs. (15) and (1,6), re-

spectivelyy.

The statement immediately following Eq. (16)
should read: It is straightforward to see that the
term multiplying x, as well as the last term in
square brackets in Eq. (16) vanish. The remain-
ing terms also vanish due to Eqs. (7) and (12)
whenever p, takes up values 1, 2, or 3.

The right-hand side of Eq. (17) should contain an
additional term,


