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By assuming that it is possible to go from the Regge limit (v ~, q fixed) to the Bjorken-
Johnson-Low limit (qo ~, ~q) fixed) by making qt

qadi in the frame p= 0 in the Regge
limit, a connection between fixed-pole residues and operator Schwinger terms is established.
Comments are made on the electromagnetic mass-shift divergence problem and the Cheng-

Tung conjecture regarding the polynomial structure of fixed-pole residues.

I. INTRODUCTION

Recently' there has been some interest in trying
to establish the presence of a fixed J= 0 pole in the
virtual forward spin-averaged Compton scattering
amplitude' T„*,(v, q') off a proton. It has been ar-
gued that if one makes assumptions regarding the
behavior of the Regge residues as a function of q'

then the recent electroproduction experimental
data' suggest that a fixed J= 0 pole is present in

T„*„(v,q'). An interesting theoretical point that has
been noted by several authors is the connection
which seems to exist between the residue of the
fixed J= 0 pole, R,(q'), and the presence of opera-
tor (or q-number) Schwinger terms. ' Some time
back Cheng and Tung' conjectured that the residue
function of any fixed J pole should have a polyno-
mial structure in the variable q'. In view of this
a puzzling feature of the electroproduction data is
the fact that R, (q')/q' at q'=0 and q'= ~ (spacelike)
are both finite and have opposite signs. ' Although

the difference in sign has not been completely es-
tablished it does cast doubt on the Cheng-Tung con-
jecture. In this paper we would like to establish

the connection between operator Schwinger terms
and fixed J= 0 pole residues in a very direct way

by assuming it is possible to go from the Regge (q,
q' fixed) to the Bjorken-Johnson-Low (BJL)'

(q, —~, q'- q,
'

) limit. This assumption fixes the
behavior of R;(q'} (i=1, 2) as q'-~. Using this in-
formation the contribution from the fixed-pole
terms to the mass-shift divergence problem' may
be determined. We also comment on the Cheng-
Tung conjecture and then summarize our results
in the Conclusion.

II. PRELIMINARIES

We start by collecting results needed for our
discussion. If we define h„,(x, P) to be equal to
(P ~[J„(x),J„(0)]~P), J„(x)being the Heisenberg elec-
tromagnetic current operator and ~P) being a sin-
gle-hadron state of momentum P, then, assuming
h„„(x,P) 5(xo) is well defined' and contains at most
one derivative of a 5 function, the most general
form for h„,(x, P) 5(x,) consistent with general sym-
metry requirements like translation invariance,
TCP, etc. isio

5(x,)h„(», p) =0,

5(x,)h„(»,P) =f[C(P,)a; +D(P.)P;(a.P —a,P,)]5'(x),

5( )hx, , ( px) =i[D(p)(ap, +ap)+C'(p)g, , (a p a,p) D'(p)p p, (a p —a,p)]5'(x},

where C(P,) and D(P,) are arbitrary real functions of Po and the prime denotes differentiation with respect
to P,.

Next we show that if one assumes the set of Eqs. (1) then

Tl.(~ q') =T,.(~, q')+C(p. )(g ~ —g og.o}+D(p.)(p„-p,g„,)(P. P,g.,)- (2)

is covariant and gauge-invariant, where

T .(, q*(= J s'x„e" e(x,((('lie (*(z,(oil 'I('( . ,

Although this result has been obtained earlier by Creutz and Sen, "we will briefly sketch the proof, as this
result is important in our subsequent discussions. Since T„*,(v, q') is covariant and gauge-invariant we can
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write

Tjfv(V7 q ) Tj*(V7 q ) graf v 2 + T2 (V~ q ) P&
—qjf 2 Pv qv

qq. . . P q Pq (4)

while for T„,(v, q') we have to write

Tjfv(v, q, n) = Tj gjfv+ T2PjfPv+ T3qjfqv+ T~njfn + T (Pjfqv+P qjf)+ T6(pjfnv+P„njf) +T (q„nv+qv n„),

where n„=g». Here T, (i =1., . . . , 7)are in general functions of q', v, q ~ n, p. n Following Bjorken" we
now assume that T~~, and T„v considered as analytic functions of q, have the same absorptive parts so that
they differ at most by polynomials in q, . This implies that T„T,differ from Ty T2 by polynomials in q„
while T„T„and T, are polynomials in q, . From the set of equations (1) and the definition of T„„, and
using current conservation, it is easy to show that

Tg= ——2T)+ T. ~
——.C(po) —

~ D(po),
(P q)' 1 (p q)'

T.= C(P,) +P,'D(P, ),

T
P'q P'qD(p )

(6)

T.= -D(Po)Po,

T, =O.

Therefore we have

Sjf v Tjiv Tjf v

=(T—T, ) g„,,—, (T, —T, ) P„q, P„——q„, +C(P) ——,q„q„,gjgqjf qv Pq Pq
q

jf v

(p q)' P'q~ P(p.)(—
~ q„q. ~ p.*g,.g.. p.(P, g, P.g, P -. (p, q. p.q, )) . -

This difference S„„is sometimes called the seagull term. For this difference to be polynomial in qo we
must have

T, —T,*=D(P,)+ q I,(q,),
T, —T,*=-C(p, ) +q'P, (q ) + (p ~ q)'P, (q,),

where P, and P, are arbitrary polynomials in qo which can depend on (p n) and q. 'thus

T„*„=T„,+ C(p,)(g„,-g~, g„)+ D( p, ) (p„-p, g„,)(p, -p, g„,) + P, (q,)(q'g„, —q„q„)

+P,(q.)t(P. q)'g, .+q'P„P. —(P q)(P, q. +P.q, )l .

In order that T„*,be covariant we must have T„*v be independent of n„, with n'=1. From this requirement
it is possible to show that P, and P, do not depend on n„. They are therefore covariant functions of q' and
P q. Thus it is possible to define a "minimal" covariant and gauge-invariant T~~, by dropping P, and I', .
This T„*v is given by

T„*.= T,.+C(P.)(g„.-g„.g..)+D(p.)(p„P.g„.)(p. p.g.,)-, —

which is the result we had set out to establish. We note that for this "minimal" T„*v

T.*=T.+D(PO&

T,*=T, +C(P,).
From now on we will assume that this "minimal" T„„is the physical T&„which describes Compton scatter-
ing.
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lim T,*(v, q') = p p, (q', a
f ) v ' '+R,(q')

R &i
(8)

limTf(v, q') = P P, (q', a;}v ~+R, (q2},
R

CXt

where limR stands for the Regge limit v-~, q'
fixed, and we have absorbed the signature factors
in the J3;(q', a)' s. Next we prove that

lim Tf {v, q') - C (P,),
BJL

limT,*(v, q') —D( p, ) .
BJL

The proof is trivial. We have only to note that

limT,*& =q,q; lim ',' +q, P&(p -q) lim
T,*(v, q') . T,(q', v)

BJL BJL BJL

where we have called the limit q, —~, ( q) fixed,
the BJL limit and then used the connection between
lim BJLT*„and the equal-time commutator
{P~[J,(x), J;(0)]~P) 5(x,) displayed in Eq. (1).

If we now assume" that it is possible to go from
the R limit (q, —~, q' fixed) to the BJL limit
(q, -~, ~q~ fixed) in the frame p=0 by making
q'- ~ in the R limit, then we can relate the func-
tions C{m) and D(m), which are due to the pres-
ence of operator Schwinger terms, to the asymp-
totic (q'- ~) form of the fixed-pole residue func-
tions R;{q') {2=1,2).

To see this we note that from (7) and (9)

III. CONNECTION BETWEEN FIXED-POLE RESIDUES

AND OPERATOR SCHWINGER TERMS

We start by recalling that a fixed 4= 0 pole in the
amplitude T,*(v, q') (i =1, 2} with residue R;(q')
means that"

(i = 1, 2) fall off as q'- ~." The second equation in
(12) has been obtained before, using different meth-
ods, by a number of authors. '"

Since we now know the asymptotic behavior of
the fixed-pole residues, we can use this informa-
tion to determine the contribution these fixed-pole
terms make to the electromagnetic-mass-shift
divergence problem. Within the framework of the
Cottingham formula" for the electromagnetic
mass shift, the fixed-pole contribution is given
b 17

g M fixed-pole

qRi(q }+ uN ~ u& 2.R2{q')
8

where

y~c'(q') . &g'(q', v)

y", (q') „' 8,"(q', v)
'

&r~(q', v) and or(q', v} being the total photoabsorp-
tion cross sections for longitudinal and transverse
photons, respectively. " Now it is consistent with
experimental data to set oz, (&o) = or, (q', ~) = 0 for
v, q'- ~, v/qN fixed. Also we have related R,(q')
to C(m), and C(m) can be shown" to be proportion-
al to f,'oz(&u}f(~)d, &u and hence is experimentally
equal to zero. Thus Mf~' P "with our assumptions
is an at most logarithmically divergent object. It
is thus possible for the logarithmic divergences
coming from the fixed poles and from the scaling
region to the mass-shift problem to cancel, leav-
ing a finite expression for the mass shift. All this
is, of course, very speculative, since we do not,
at present, have a way of calculating R;(q') in a
realistic manner.

limT, (v, q') = 0, i = 1, 2
BJL

(10) IV. THE CHENG-TUNG CONJECTURE

while from (7} and {8}

lim T,( v, q') =g p, (q', a, ) v & +R,(q') —C(p )

limT, (v, q)= g p, (q2, a;)v"~ '+ ' —D(p,).

In order that (11) and (10) be compatible under our
assumption it follows that

lim R, (q') = C(P,) ~2,=„,
e2~ oQ

(12)
lim lim ' = D(P, ) ~2

R,(q')
q2~~(eke p2) p~2o

These equations would require R,(q') to behave
like a constant for large q', while R,(q*) should be-
have like q'D(m) for q' large. In getting the set of
equations (12) we have also assumed that p, (q2, a, )

We finally turn to the Cheng-Tung conjecture
and begin by briefly reviewing the central part of
their argument for suggesting a polynomial struc-
ture for the fixed-pole residue function R(q'). The
starting point of their argument is to assume that
R(q') satisfies a dispersion relation in q' of the
form

(q')" dq" ImR(q")
n s (qg2)N qi2

4=1

(13)

R(q') can be related to a matrix element of a prod-
uct of two currents, ' and hence the right-hand
side of Eq. (13) can be graphically represented as
in Fig. 1. A cross at the end of a photon line indi-
cates possible subtraction in q' (contact terms).
Figure 1(a) corresponds to the subtraction term
in the equation for R (q'), while Figs. 1(b)-1(d) all
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(c)

(b)

It is found that square-root branch points occur in
each helicity amplitude at sense-nonsense points
and there are fixed branch cuts running along the
real J axis from or —1 to -ar, where &rr = max(o,
+o„o,+0,), the o's representing the spine in the
s-channel process (1+2- 3+4). Since the d„„'s
have complementary branch points, these cuts do
not contribute to the asymptotic behavior of the
amplitude. They could however permit the exis-
tence of fixed poles at nonsense right-signature
points with J& o~ -1. In the special case of a spin-
1, spin-0 scattering process a fixed pole at J= 0 is
thus allowed. Thus R(q') could have a dispersive
part, and hence a difference of sign in R,(q')/q'
at q =0 and q = ~ could occur.

FIG. 1. Contributions to ImR(q2).
V. CONCLUSION

contribute to the dispersion integral. The contribu-
tions from Figs. 1(b) and 1(c) are proportional to
the residue function of a fixed J pole for a photo-
production amplitude; that from Fig. 1(d), for a
hadron-hadron scattering amplitude. Cheng and

Tung now state that (i) pure hadron-hadron ampli-
tudes cannot have fixed poles at right-signature
points and (ii) there is theoretical" and experi-
mental evidence" against the presence of fixed
poles for photoproduction off hadrons. From this
it thus follows that

R(q') =Q (q')" 'R„.

We now point out that even if one accepts state-
ment (ii) of Cheng and Tung their statement (i) can
be questioned. In fact the idea that right-signa-
ture fixed poles are possible in spite of unitarity
has been discussed in detail in the literature. "
We will therefore only quote the conclusion of
these investigations relevant to our discussion.

We have found that if operator Schwinger terms
are present and if one can go from the Regge to
the BJL limit, then fixed poles must be present.
Furthermore, the asymptotic behavior of the fixed-
pole residue function in q' is completely deter-
mined by the operator Schwinger terms. Using
this information we have shown that the divergence
which appears in the Cottingham formula for elec-
tromagnetic mass shifts from the fixed-pole term
is logarithmic. We have speculated that this fixed-
pole divergence might cancel the "scaling region"
divergence, leaving a finite expression for the
mass shift.

We have also pointed out that unitarity does not
always rule out fixed poles in hadron-hadron scat-
tering amplitudes. In particular there is no "uni-
tarity argument" to prevent R, (q') from having an
imaginary part. This weakens the basis of the
Cheng-Tung conjecture, and the presence of
ImR(q') can accommodate a change in sign of
R, (q')/q' at q'=0 and at q'=~.
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We find that the equation of motion for spin-2 and spin-1 particles with an anomalous
magnetic moment in a homogeneous magnetic field can be diagonalized by applying the
Foldy-Wouthuysen transformation. The energy eigenvalues are then easily obtained by
observation.

The traditional method for obtaining the energy
eigenvalues of a system is to solve the eigenvalue
equations. ' ' This method becomes increasingly
complicated when anomalous-magnetic-moment
couplings are introduced and higher-spin particles
are involved. " It was only recently that the en-
ergy eigenvalues for the motion of a Dirac particle
and a spin-1 particle with an anomalous magnetic
moment in a homogeneous magnetic field were
calculated. ' ' A simpler method for obtaining the
eigenvalues of a system without solving the equa-
tion of motion was proposed by Tsai and Yildiz. ''
They observed that, even though the second-order
form of the eigenvalue equation is not diagonal, it
can be diagonalized by going to the fourth-order
form.

The purpose of this paper is to present an even

simpler method, by applying the Foldy-Wouthuysen
transformation, ' ' to obtain the energy eigenvalues
of the spin--,' and spin-1 systems with anomalous-
magnetic-moment couplings in a homogeneous
magnetic field. The transformation method of
Foldy and Wouthuysen is well known in its applica-
tion to the reduction of a relativistic equation to
the nonrelativistic form. One of its virtues is that
the Dirac equation for a free particle and for a
particle moving in a homogeneous magnetic field
can be diagonalized by this transformation. 6"'
The extension of this feature to the cases when
anomalous-magnetic-moment couplings a.re intro-
duced and higher-spin particles are involved en-
ables us to obtain the energy eigenvalues easily.

For the spin--,' system, the eigenvalue equation
is


