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3Because of the failure of (a), the two-particle am-
plitude given in Eq. (17) of Ref. 2 is incorrect. No

simple ansatz such as dividing out the vacuum-to-
vacuum graphs suffices to give the correct amplitude.
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%he absence of radiative corrections to the Schwinger-Bell-Jackiw-Adler anomaly of the
axial-vector-current Ward- Yakahashi identity is demonstrated using normal-product methods.

Adler and Bardeen' have givenconvincing, butnot completely rigorous, arguments that the coefficient r in
the Ward-Takahashi identity of the axial-vector current in (say) quantum electrodynamics (QED),
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has no radiative corrections to i'he second-order (triangle-graph) contribution. Here X represents any
product of the basic fields,
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The principal line of reasoning in Ref. 1 is that the higher-order contributions to r vanish for a theory in
which the photon lines are regulated in a gauge-invariant manner, and that this property should persist
when the regulator is removed. The Adler-Bardeen claim has been further supported by a number of ex-
plicit computations' showing that
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A more systematic approach to the problem is provided by normal-product methods in Zimmermann's for-
mulation of renormalized perturbation theory. ' As we shall see below, the normal-product algorithm al-
lows one to derive in a straightforward manner certain Callan-Symanzik equations' and Ward- Takahashi
identities from which the vanishing of r —r follows easily. The advantage of this approach is that regula-
tors are completely avoided, the finiteness (and often the gauge invariance) of vertex functions being guar-
anteed by the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) subtraction scheme. '

In the massive vector-meson model (massive QED) with effective Lagrangian'
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we have shown' that the Schwinger-Bell- Jackiw-Adler anomaly' may be expressed as
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with
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where N~ [ ] represents a normal product of basic fields and their derivatives with dimension d, ~ i)„and
the superscript PROP indicates that only one-particle irreducible diagrams are included. As a first step
in the derivation of a Callan-Symanzik equation for r, let us employ the method of differential vertex op-
erations' (DVO's) to obtain Callan-Symanzik equations for a vertex function I'"" ' (sum over contributions
from one-particle irreducible diagrams with 2N external fermion lines and L external meson lines). As in
the case of the A' model' and the massive Thirring model, ' we simply observe that the eight functions
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where 60 and b, o' are the two scalar DVO's of degree three, which we write symbolically as
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are all linear combinations of the six linearly independent b, ,Z
'" ', where, symbolically,
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and, in each case, the coefficients of the various 6,. may be determined by application of the normal-prod-
uct normalization conditions at the origin in momentum space. In particular,
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where
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Consequently there are two independent linear re-
lations among the quantities (5), which we may
take to be

8 8 8D'= m —+ a'mo + p' —,
Bm 'Bm, Be '

P&0+ V~o

b, ' = P'ho+ O'40 .

The coefficients a, (6, y, etc. ((2', p', y', etc.) may
be determined as perturbation series in e by equat-
ing to zero the coefficient of each ~,.1 '" ' in Eq.
(8) [Eq. (8)]. In particular,
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(D —28)(a+ I') = p,
(D —28)(b —1) = ps, + gt, ,

(D-2y)(c-M} =c,
(D- 2y)(1+ d) = ps, + at, ,

(D —2y- t})(e+f) = ps, +at, ,
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s, = es4,

t5= et4 .

As discussed in Ref. 5, the vector-current Ward-
Takahashi identity and the imposition of mass-
shell, intermediate, or other appropriate normal-
ization conditions lead to the identity f =de, and
similar arguments show that

Thus, the fourth and fifth equations in (10) lead to
the following simple relation between the coeffici-
ents in (8):

P=eb,

with a similar relation between P' and 8' in (9).
Equation (8) is the Callan-Symanzik equation'

for the model and may be used to study the asymp-
totic behavior of vertex functions in the region
where all momenta become large simultaneously,
whereas Eq. (9) controls the m-0 limit of the the-
ory, allowing one to prove the smooth passage to
QED of the gluon model with intermediate normal-
ization. In the present note we shall need only the
first of these equations.

From Eq. (8}one may proceed without difficulty
to Callan-Symanzik equations for vertex functions
involving normal products as well as basic fields.
In particular, for
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The additional terms on the right-hand side of the last two relations of (12) arise from the fact that a sub-
graph containing two external fermion lines, the N, []])y'p] vertex, and one of the DVO vertices h, or a,' has
no over-all subtraction in the BPHZ prescription, whereas a subgraph with the identical structure but with
DVO vertex a, or 6, has one subtraction at the origin in momentum space. From (10) and (12) one obtains
the Callan-Symanzik equation for r52N

[D (N 2)y Lb]r(2 ] =(n, u)r&~" ~& (13)

with

u= pup+Oup

Referring to the definition (4) of r, we see that (13) and the Callan-Symanzik equation for (c-M) given
in (10) leads directly to the following relation:
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0
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where
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In order to simplify the right-hand side of (14), we employ the Ward- Takahashi identity
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which may be derived by the same normal-product algorithm which led to (3) in Ref. 5. The origin of the
term proportional to ur", ,2] on the ri@t-hand side is similar to that of the "extra" term in (13). Evaluat-
ing the second-order Taylor-series coefficient of each term in (15), one obtains

2[ (2(- )(2- )] = — ' „,(2 q}"[(1 d- )dr„"„".(p, q) ~ qrdr„'. (2, )])2
g o 8 8
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mr [o, 2] (p, q) and ar [o 2]
(p q) are necessarily

AEtIPa
transverse in the external momenta p and q, i.e.,
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and hence have expansions
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The m, independence of r, which played a cru-
cial role in our derivation of (20), was obtained
in Ref. 5 with the aid of the formula

2

, (0) rxjo& =-,'I", (0) r:( A0q'. (&)x)0& .
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Unfortunately the Green's function of the Wick
product appearing on the right-hand side was not
defined sufficiently precisely, and a brief clarifi-
cation is in order here. The confusion on this
point arises from the fact that the usual Green's
functions of the Wick product"

where G and H are regular at the origin. Thus
the right-hand side of (16) vanishes, so that
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Here we have used the fact' that y is independent
of ~, as well as the relation (11). Since P is
nonvanishing in third order, we obtain, finally,

FIG. 1. Diagrams responsible for the divergence of
(0[TB&A"(x+ f)0 A~(t —$)X(0) when ( 0. The loop
consisting of two mass-mo propagators (dashed lines)
arises after two applications of the Ward-Takahashi
identity for Bg».
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are logarithmically divergent for $-0, thanks to the presence of the graphs (after applying the Ward-
Takahashi identity for both s„A" factors) shown in Fig. 1. Finite time-ordered functions for: (s„A ):may
be defined by subtracting off the divergent part of the offending diagrams:
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J k
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to obtain

To see that the DVO ,'i fd'x'.—(SA")': (x} may be expressed as a linear combination of the scalar DVO's
of degree four (this is important for our discussion of gauge invariance in Ref. 5), we may apply the Zim-
mermann identity'0 expressing: s„A"(x+ $)a„A"(x- t'): in terms ot S, normal products, as well as the
counting identity'

XG"""=-t(e ~)~, +(1+d)r. +(e+ f)~,]G(2"",
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Formulas for the limiting coefficients r, , obtained by application of the normalization conditions for
DVO's, are listed in Eq. (2.22) of Ref. 5.

Our proof of Eq. (20) using Callan-Symanzik equations and Ward-Takahashi identities was inspired by
the success of similar methods in the proof of asymptotic scale invariance in the massive Thirring model. '
Recently we have learned that Zee" has arrived at the Adler-Bardeen result using arguments which also
exploit the Callan-Symanzik equations and Ward- Takahashi identities. The advantage of our derivation,
in contrast to Zee's, is that cutoffs (and consequently the rather delicate questions concerning their re-
moval) are completely avoided.

*Supported in part by the National Science Foundation
under Grant No. G-3186.

~S. L. Adler and W. A. Bardeen, Phys. Rev. 182, 1517
(1969).

2E. S. Abers, D. A. Dicus, and V. L. Teplitz, Phys.
Rev. D 3, 485 (1971); B.-L. Young, J. F. Wong,
G. Gounaris, and R. W. Brown, Phys. Rev. D 4, 348
(1971); K. Johnson (unpublished); S. L. Adler, R. W.
Brown, J. F. Wong, and B.-L. Young, Phys. Rev.
D 4, 1787 (1971); B. W. Lee and J. Zinn-Justin, private
communication; J. H. Lowenstein and B.Schroer, Phys.
Rev. D 6, 1553 (1972).

3W. Zimmermann, Commun. Math. Phys. 15, 208
(1969); 11, 1 (1968); W. Zimmermann, in Lectures on
Elementary Particles and Quantum Field Theory, edited
by S. Deser etal. (MIT Press, Cambridge, Mass. , 1971),

Vol. I, p. 397; NYU Technical Report No. 9/72, 1972
(unpublished) .

4C. G. Callan, Jr., Phys. Rev. D 2, 1541 (1970)
K. Symanzik, Commun. Math. Phys. ~18 227 (1970).

5J. H. Lowenstein and B. Schroer, Ref. 2.
6J. Schwinger, Phys. Rev. 82, 664 (1951); J. S. Bell

and R. Jackiw, Nuovo Cimento 60A, 47 (1969); S. L.
Adler, Phys. Rev. 177, 2426 (1969).

7J. H. Lowenstein, Commun. Math. Phys. 24, 1 (1971).
M. Gomes and J. H. Lowenstein, Nucl. Phys. B45,

252 (1972).
SK. Symanzik, Ref. 4.
W. Zimmermann, inLectures on Elementary Particles

and Quantum Field Theory, Ref. 3.
A. Zee, Phys. Rev. Letters 29, 1198 (1972).


