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Eq. (32) follows directly. One way of deriving Eq. (32)
based upon a set of assumptions which are not more
economical than the ones we make in Sec. III is the fol-
lowing. Define

= u +(mw)a6 p
2

~ Jf tLtW, a 2H+L, a +H o

where (mw )~8 is the W-meson (mass) matrix.
Assume

lim (mi, 2) &/g- 0,
0

& xa li H+L+w J {)&= fq' -&x„Ii H+Lsl {)&, to(g),

( w H
I q „"„,w, I 0) = [—(wIw'), gH" -HH a "].

The desired result follows from
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6
$2

+~ t(mW) g -a n ],1
mw ap

+ 0(g)
N.b. the first two terms for the right-hand side of this
are of order unity if mw ~ g . Taking the divergence of
both sides and assuming 8&j &+I+w is of order "g"we
obtain

{)iH {g)= ( q" p &oIi H+ L+w, a I& L& && sl IH t L+w, sl O&

S

(1/g ) (mw )a8 +e2 (g) '

Canceling terms of order unity gives the desired relation.
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We calculate the neutron-proton mass difference in second order in a simple semirealistic
gauge model of the weak and electromagnetic interactions. The mass splitting is finite,
It is found that in the limit of infinitely heavy gauge mesons, the mass difference becomes the
divergent one of conventional quantum electrodynamics. In the course of the calculation,
certain general features of such models, which might be relevant for analogous calculations
with more complicated groups, wQ1 be exhibited.

I. INTRODUCTION

Since the renaissance of interest in the possibil-
ity of renormalizable unified theories of the weak
and electromagnetic interactions, there has been
much activity in applying examples of these theo-
ries to various observable physical processes. '
One intriguing possibility has been that of com-
puting mass differences as finite higher-order
corrections in the Feynman-Dyson expansion. "
Weinberg' has pointed out that mass relations val-
id in zeroth order for arbitrary values of the pa-
rameters appearing in the Lagrangian must ac-
quire only finite corrections in higher order.
More specifically, he has shown' just how one
must set up the Lagrangian so that, once one has
specified the representation content of the scalar
fields, any counterterms corresponding to mass
differences will destroy the exact invariance of
the renormalized Lagrangian and hence cannot ap-
pear.

Weinberg also suggests' a "sernirealistic" model
of the neutron-proton mass difference along these

lines. In this paper we work out Weinberg's model
in considerable detail' in order to determine what
explicit mechanisms occur in this model to pro-
duce the general results shown in Ref. 2. This
should be useful in constructing new, more realis-
tic models of the weak and electromagnetic inter-
actions of the hadrons.

The structure of the paper is as follows. In Sec.
G, we show how to extract finite mass differences
from the divergent self-energy integrals for any
model of the class described by Weinberg, ' pro-
vided only that m«X~, where m is the zeroth-order
fermion mass and Xi is the zeroth-order mass of
the ith massive gauge meson. Our main result in
this section will be an expression for the fermion
mass difference as a function of the generators of
the gauge group and the resulting vector-meson
mass matrix. In Sec. IG, we present the model
itself in detail and verify that it is indeed a model
of the type suggested by Weinberg. ' It then follows
that the mass difference will be finite and given by
the formula derived in Sec. G. Section IV examines
the constraints placed on the parameters appearing
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in the model by experiment. It is found that these
constraints seem to force the proton-neutron mass
difference to have the wrong sign. Indeed, in the
limit of infinite gauge meson masses, the nucleon
mass difference becomes that of quantum electro-
dynamics. Section V is devoted to a discussion of
our results and observations on the type of modi-
fications necessary to improve the model.

(2.4)

Actually, since the second term in II projects onto
the subspace of massless Goldstone bosons, the
scalar propagator has the explicit form

1 (88&(t)),); u '8 (8 &(t)),),
k'-M' k2

(2.3b}

II. SECOND-ORDER CORRECTIONS
TO THE MASS MATRIX

In this section we calculate the finite second-or-
der corrections to the fermion mass matrix in the
general class of theories described by a Lagran-
gian"

& =(t)(»y" ~o —y" t W )(t

+ ,'(s„y-+ie.yw. „)(s"y+te. two)

,' F ——z"'—z(y) —y r,.y,. y. (2.1)

Here g, W„, and Q refer to fermion, vector-bomm

son, and scalar fields, respectively. Z is con-
structed to be invariant under a gauge group G

whose generators acting on (t) ((t)) are represented
by t (8„). The coupling constants are contained
implicitly in the t„e, rt 2 F((t)) is a G-invariant
quartic polynomial in the scalar fields. With ref-
erence to choices of kinematics and gauge, the
following should be noted:

(1) G invariance of the Yukawa coupling requires'

(t, y, r, ]=(e )„y,r, .
(2) The zeroth-order vector-boson mass matrix

is given by

u'. s=u'8 =(u' 8)'=-(8 &0).);(88&4&.)»

(2.2)

provided we choose a totally antisymmetric set of
structure constants.

(3) The zeroth-order fermion mass matrix is

yom= iyor' &(t)»)o 2

where y, F, is skew-Hermitian.
We have assumed in writing (2.1) that DP SD~

(where D», denotes the reducible representation
formed by the fermions) does not contain the triv-
ial representation, so that no bare-mass term is
possible.

(4) Calculations are performed in the unitarity
gauge in which all Goldstone bosons are absent,
so the scalar-boson propagator is

1 1 1s(p)=
p +~ z(p)

~

~(p) -=&,(p)+&.(p),
~,(p) -=~;(p)+~,"(p)

dk 1
(2&)4 y(( 8 it tt yv a

g ~"-k~k'~-2

(2 6)

(2.6a)

(2.6b)

~.(p)= ~,'(p)+~8'(p)

dk 1 II. (2 )' '»-2-m ' 2* —M*),,
'

(2.6c}

dk 1 „1
(2 )' " ' » —»' — 2' —2' )2. '

(2.7a)

2l'(2)=' J (2 ). 24 2 2 24(2. .)
(2.7b)

Here M is the scalar mass matrix in zeroth order.
In general the zeroth-order fermion mass ma-

trix is a linear combination of matrices belonging
to some given subset of representations occurring
in D~ SDF. A higher-order correction to the fer-
mion mass matrix is said to be representation-
conserving if it is a linear combination of the same
matrices. It will then satisfy the same mass rela-
tions as the zeroth-order mass matrix and will not
contribute to corrections to these relations. As
Weinberg has shown, ' all divergent contributions
to the mass matrix in second order (and, presum-
ably, in all higher orders) are representation con-
serving. Here we aM interested in the finite, non-
representation-conserving contribution to the
mass matrix in second order. To second order,
the fermion propagator is

(2.3a) (2.7c)

with (2.7d}
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(2.8) t()— ()t g ~()t()=~S 8r a=~a (2.11)

One can verify that

Zrr +Zlr Q +P1 (2.9)

For any matrix X in the internal space of the me-
sons we then have

where Q is divergent but representation-conserv-
ing. ' F is finite (and complicated). One also finds

the logarithmic divergences in Z,' and Z,' to be rep-
resentation-conserving.

The contributions from Z,' and I' are expected to
be small compared to the finite part of Z,' in the
limit where the vector-boson masses far exceed
the fermion masses. We make this specialization
at the outset, and henceforth consider only the fi-
nite, non-representation-conserving part of Z,'( p).

Finally, since we are particularly interested in
models in which there is (at least) a completely
unbroken U(1) subgroup of G, such as electromag-
netic gauge invariance, we specialize to the case
in which one of the vector bosons is massless (see,
however, Appendix A}. It is convenient to intro-
duce the eigenvectors fr "'}and eigenvalues (X„}
of the vector mass matrix

(n) (n)
6X

Sa n

t 'x t" —+ t'"'x
k2 k2

(2.12)

yoZ1 = yo(C 1 + C2) 1 (2.13a)

dk (n) 1
q (n) 1

C, = -i
(2 }»y&t" ~ k

y"t" k2, (2.13b)

f (rr ) p (ri) I2=
ql (2w)4 2 P —k' —m k2(k2 A 2)

where we have explicitly separated the photon con-
tribution and introduced tildes to denote a sum
over the subspace of massive particles. We can
now write

E =A. E e E =5JL' Ba& a —
n & S r & a & a =

nm (2.10) (2.13c }

and the projections of the generators in the direc-
tions of well-defined mass

(sums over n and n implied}. Defining a =-P' —m'
and f -=k' —2P k, we find

r

w c/+f /2 + Q+

2
~ k (ri ) (ri) (ri ) (ri ) (n ) (ri ) rryC, = 2i

(-} -y2mt t +t y k' t +2t y2m t (2.14b)

It should be noted that all terms in y,C, and y,C, beginning in y, (P —m) or ending in (|t—m) are neglected
since they only lead to an external wave-function renormalization, and do not affect the mass matrix. The
non-representation-conserving part of ypCy involves the integrals

dk n 1 n n'
J (2w)' fk2(a+f) 162' P' "

c/
" P' (2.15a}

2g 4 k2 o[+ 32' P2 -~ P4 (2.15b)

These formulas are valid for any Hermitian matrix c/ (we need only regard them as applying separately in
the various eigensubspaces of a) and both integrals vanish in any subspace in which p' is on the mass
shell. It simplifies matters considerably to assume a to be a multiple of the identity, in which case ypCy
may be neglected altogether in second order.

y,C, is finite and involves the integrals

I, . dk 1

I2 (2w)» k2(a +f )(k2 —A2) y, k'.

These are found to be

(2.16a)

+ /12 y2 ~ P2 (/2 + g2)2 y2 1/2 g2 [(g2 )2 4~2P2]1/2
1 16w2 2p2 p2 /2 p2 ~ 4p» p2 g2 ~ +[(y2 +~ )2 4y2p2]1/2 1 ( ' )
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'= ." —;"(.' —;)(.—.)

p' a p' 4p' p' x' —a + [(X'+ cr )' —4x'p']'" (2.16c)

Equations (2.16b} and (2.16c) are valid provided p'&largest eigenvalue of z. We wiQ need the on-mass-

shell limit of these formulas in the case where x—= X'/p'» 1. Namely,

1 1
E,(a = 0)=, 1+lnx+0 —lnx

16m' x

I ( =0)= ' --, +1 *+0 —lnx)yfl 1 1
2 322 x

(2.17a}

(2.17b)

Substituting (2.17a}and (2.17b) into (2.14a} and (2.14b), we obtain finally the correction to the zeroth-order
mass matrix

n.m = C2 =,[ yot
~" ~

(2 + Inx„-)t ~" ~ y om - 4y Ot

"t~ (1 +Inx„-)yo m t t" ~ ],16m'
(2.18)

where x„--=A. „-'/m'.
One should note at this point that since the generators may contain y, 's, it is in principle possible for

C, to have the form o.(p}+p(p)y„where a and p are proportional to the identity in Dirac space. The

term linear in y, does not, however, result in a mass shift in second order, only a wave-function renor-
malization. This is because

S~=(t( m}-'+(ti m)-'[a(p)+p(p)y, ](p m)-

=(tt- m) '+(p' —m') '(P+m)a(p)(t(+m)+p(p)(m'- p') '.

III. GENERAL COMMENTS

The program we are following aims at establish-
ing zeroth-order mass relations by restricting the
representation content of the scalar fields which
could couple G invariantly to the fermions. We
must also ensure that after all the neutral scalar
fields are given nonzero vacuum expectation values

(P)0, the zeroth-order fermion mass matrix still
preserves isospin (or more generally, whatever
"slightly broken" symmetry we are interested in}.
This imposes stringent restrictions on the remain-
ing Yukawa-coupled scalar fields: In general, it
will imply that isospin must be contained in the
little group of an arbitrary (Q),. There are, how-
ever, cases in which the extremization of an at
most quartic scalar self-interaction seems to re-
strict automatically the possible ( Q), and in such
cases the resulting enlargement of the little group
may be sufficient to ensure preservation of isospin
in zeroth order. " It should be noted that the mod-
el described below is not of this latter sort.

From the above discussion, it is clear that, if
D~ denotes the representation of the fermions, D~

D~ must be nontrivially reducible. Furthermore,
we are especially interested in chiral groups of the
form G~ XG„. In such models, if D„ is the repre-
sentation (n, 0)$ (0, a), then

DPD~ =(u*, a) (n, o*).

Although this appears to be explicitly reducible,
it must be noted that the presence in the Lagran-
gian of Pa(o. ~, a) implies the presence of P~
~ (o. , a*). Our method therefore requires that
(a*,a} [or (a, a~)] be itself reducible. In Appen-
dix B, we show that if a (p respectively) are pseu-
doreal' irreducible representations of Gz, (Gs re-
spectively}, where pseudoreal refers to a repre-
sentation equivalent to its conjugate but not trans-
formable into a real form, then the representation
(a, p) of G~ &&G„ is reducible into exactly two real
irreducible component representations. Reducibil-
ity is of course essential if we are to obtain
zeroth-order mass relations by a nontrivial re-
striction on the representation content of the sca-
lar fields coupled to the nucleons. Furthermore,
in the simplest case which comes to mind, namely,
chiral SU(2) xSU(2), we show below that isospin is
contained in the little group of an arbitrary ( P),
belonging to one of the two possible irreducible
components.

The Model in Detail

We consider the most general renormalizable,
gauge-invariant Lagrangian on the fields
{Pgy Pf y $V~ p W~Qp Fgp Qy ~ y )(s}, the gauge group
being SU(2)~ XSU(2}„&U(1). The fields are, re-
spectively, the nucleons, leptons, "left-handed, "
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"right-handed, " and "hypercharge" vector mesons,
Yukawa-coupled scalar fields, and two types of
non-Yukawa-coupled scalars whose vacuum expec-
tation values will eventually break isospin. These
fields belong to the following representations of
SU(2)l XSU(2}sxU(1):

yea( i20), Y=1,1 —y„

SQ*S (3 8)

which eliminates the V representation and im-
plies that (t) is of the form

now restrict the representation content of DPD~
by imposing the SU(2)1, &&SU(2)„-invariant constraint

y', ~ (-,', 0), e (-,', 0)„, Y = -1,
y,
"e (0, 0), + (0, 0)„, Y = -2,

W„"~H(1,0), Y=0,

w.",e(o, 1), Y=o,
Y"~ (0, 0), Y=1,

Y=O,

x~&(2 o)

xs+(0 2),

(3.1) q 0
734'0 —4073 ~ 40 —

0 (3.8)

so the vacuum expectation value is necessarily of
the form

(3.9)

which is seen to have (in addition to hypercharge)
the little group SU(2) of transformations

(q, g arbitrary complex fields). (3.7)

The neutral scalar fields with hypercharge zero
are those satisfying

The hypercharges have been chosen so that Q—= T,L
+T»+-,'Y is the conventional charge operator.

Restricting our attention for the moment to the
nucleons, the most general Yukawa coupling in-
volves the complex field Qa(-,', —,'), which we rep-
resent as a complex 2@2 matrix. Under an arbi-
trary transformation of SU(2)~ x SU(2)R, the fields
g„and Q transform as follows:

4- ~z4'~yL L R 8 (3 2)

The scalar-nucleon coupling has the form

%ukaw; =-G~(4x 44+H c ) . (3 3)

The theorem mentioned above (cf. Appendix B) as-
serts the invariance under all SU(2)~ xSU(2)s
transformations of the subspaces

V, -=fy'I@'=-,'(y*s@ S-'), y~(-,', —.'}}, (3.4)

where S is the similarity transformation defined by

U4 fy/Q 0 sp/2 (3.10)

where U is an arbitrary unitary unimodular 2 X2
matrix. On redefining the right-handed nucleon
doublet by a rotation of y about the right-handed
three axis, the zeroth-order nucleon mass matrix
becomes simply

0 1

exhibiting the desired zeroth-order mass relation.
In order to apply the results of Sec. II, we work

in a representation in which all fields are Hermi-
tian, the structure constants totally antisymmet-
ric, and the (Hermitian) generators purely imag-
inary. We define the generators acting on the var-
ious scalar fields in the usual way (where, for
convenience, we suppose the X „field to be absent
for the time being):

S 'US = U*, v U& SU(2),

and may be taken to be

(3.5}
Ui, s =(1+fan~ "eg s)'

XL '
XL

(3.11a)

U„= 1+is g„ (3.11b)

In order to obtain a zeroth-order mass relation we where

(4, y ) —= ( Re(j), Im(&), Re(q), Im(q), Re(y ~), Im(y ~), Re(y '), Im(y ')) .
Here U~, for example, is represented in the fundamental representation of SU(2)~ by (I +ig~e 7 ), where

=- —,'o, and the o 's are the usual Pauli matrices.
The matrices representing the generators on the eight-dimensional reducible representation of the sca-

lars are found to be
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0 0
0 0

0 0 . -y p 0 0
p i+ 7 L RL p p p

of ( o o ,'I of—-

(';,',

0 0 0 iv2

(o ., oo)
0 0 0

R gR p p p p

0 0 0 0

~R gR 0

-2I 0 0
0 0 0
0 0 01' (3.12)

-ZT2 0 0 0
0 i7 0 0
0 0 0 0 0 -iz, 0

0 0 -ir,

(AO O

0 A 0
00 B)

(3.14a)

where A(B) are the mass matrices for the charged
(neutral) mesons and are given explicitly by

inclusion of another scalar field Xs~ (0, 2) is
straightforward in principle, although we can no
longer rotate away phases by a transformatione', so that this generalization introduces two
additional real parameters.

The vacuum expectation values of the fields will
be taken to be

((4, X, )), = (O, O, c, O, O, O, X, O) . (3.13)

The zeroth-order vector-meson mass matrix is
now obtained directly from (2.2), the result being

IV. EXPERIMENTAL CONSTRAINTS AND
THE NUCLEON MASS SPLITTING

In view of the many qualitative features of had-
ronic interactions omitted, the model described
above is really only useful for illustrative pur-
poses. It is nevertheless amusing to see what con-
straints experiment places on the parameters of
the model, and hence, on the mass relations ob-
tained. For example, we will require that the
electric charge and the P and muon decay constants
should have their experimental values.

%e first look at the mass matrix of the neutral
vector bosons to determine the electric charge.
The massless vector boson (namely, the photon) is

Au —
I g &+g 2+(2g&) &]

lz. (& +X ) -gggzc
2 2 2

(3.14b)

1x —gl' + —gr~ + y~3& g 3R 2gI

t(gz. (& +X )
B —4 l grgsc

2g'gz, X

-gr, gJo& -2g gz, x )
g,'o' 0

0 4gX
(3.14c)

To find the electric charge e, ' one must substitute
A" back into the original Lagrangian and determine
its coupling constant. At first this appears to re-
quire knowledge of C ', where C is the matrix de-
fined by

('A") (W,"~)
Finally, we note that as far as the fermion

masses are concerned, if G„, G„ and G„ are the
Yukawa coupling strengths of the Q, X» and X~
fields to the nucleon, electron, and muon doublets,
respectively, we have in zeroth order

(3.15)

Of course, the leptons are treated here in a
manner identical to original broken symmetry
model of leptons advanced by steinberg. ' The X~
field is necessary to give the leptons a mass; we
find below that implementation of weak universal-
ity leads in addition to the presence of a field yR.

with 0,", the heavy neutral fields of definite mass.
However, to find the photon coupling we only need
the first column of C ' and, since C is orthogonal,
this equals the first row of C which is just

e =g '+g„'+ (2g') (4.1)

Similarly, let M, be the masses of the two posi-

I gI, +gs +(2g )
gL

' gR'2g'

Hence, one can easily substitute back into the La-
grangian and find
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aW~~;2 L +PW, ~;2 ~-S'+,P

-PR'„;, ~ +nW„;2 „=W
(4.2)

with o.'+p*= 1. Then, inverting this equation and

substituting into the parts of the Lagrangian rele-
vant to P and muon decay, one obtains

Zs=Gs[Py"(I+ry, )n] ey„' v, , (4.3)
I

g„=G„ey" -' v, v„y„

(4 4)

tively charged vector mesons of definite mass,
with M, & M . Let o. , P determine the eigenvectors

by

= M ', and (8) (
c. /p ~

(or ) p/a
~
) « I.

Case 1. For ~gs/gi)

M, '= -'g&'(c'+X')

and

2 1, 2 X20 2

M = —,g~ x+o
from (4.9). So from (4.2},

O2+X2

gz

Substituting into (4.8), (Gs —G„)/G„ is found to be
of order unity. In other words, although gs/g~ is
small, o. /P is large so that the universality con-
straint is not satisfied.

Case 2. For M, = M inspection of (4.9} indicates
that one needs

+ ~t M2 —~2 (4.5)

c.Pgs(M ~ —M+2) + g~(M 2o. '+ M, 'P )
'

4 M+
(4.7)

—gr. X +~gl. &

where A. is a parameter of order unity. Equation
(4.2) gives

Weak universality indicates that Gz = G„. This
would also give ~= -1, a constraint which is con-
sistent with the fact that we have ignored the
strong interactions throughout. In order to imple-
ment this constraint, one needs

g„(n/P)(M, ' —M ')
g, [(a/P)'M '+ M, '] (4.8)

It would be convenient, if this inequality could
be used to constrain the parameters of the model.
To this end, we examine the eigenvalues of the
charged meson mass matrix (for (y~) = y w0, (ys)
=0}

(4.9}

Substituting these values of M' and the corre-
sponding values of a, P into (4.8), one obtains a
very involved inequality relating the independent
parameters. One possible approach would be to
substitute numerical values for the parameters to
determine whether any set satisfying the inequality
could be found. We have not done this. Instead,
we have looked at the three regions in the parame-
ter manifold where it would appear that the num-
erator of {4.8) could be made much smaller than
the denominator: namely, {1) ~gs/g~~«1, (2)M, '

M~ =s((gi. + gs }a + gLX,
*Q(a'+ gs')c'+ gi'X']' —4gs' gi'X'c') '") .

n g~ (1+a)
p g~

Substitution in (4.8} again gives (Gs —G„)/G„of
order unity.

Case 3. In the case where ~n/p~ I or
~
p/o

~

the off diagonal elements of the mass matrix are
small. Again, simple arguments analogous to the
first two cases result in (Gs —G„)/G„being of or-
der unity.

In short, it appears that one cannot incorporate
weak-interaction universality into the present
scheme without some modifications. Probably the
easiest solution is to give a nonzero vacuum ex-
pectation value to the field ys, (gn), = yt0. Fur--
thermore, in calculating the vector-meson masses
(g~), can be neglected since it is needed only to
produce the lepton masses m, =G, (}(~),. (y~), can
therefore be chosen arbitrarily small compared to
X and cr. The effect of all this on the mass matrix
is to systematically interchange left and right and
to replace X by X. With this new mass matrix it
becomes easy to incorporate universality. In par-
ticular, if ~gs/g~«1, one finds

~ (Gs —G„)/G„~«1;
this is true in the limits

g 2g 2

, »1, q«1, and also for q=1.
gz X

A comment may be relevant here concerning the
constraint g~«gL, . We know from (4.1) that g„,gL,
+ e. Therefore g~ » e presumably implies g~ &1.
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This means that whereas the theory is renormal-
izable, for any process for which the coupling con-
stant is simply gl the usefulness of lowest-order
perturbation theory is probably limited. Of course,
the usual weak and electromagnetic processes of
the known particles involve expansions in combi-
nations of the coupling constants, e.g. ,

which are less than unity.
We now substitute the parameters of the model

(incorporating weak universality) into the general
expression for the second-order mass shift derived
in Sec. II. Equation (2.16) can be written

A
y 2 and t, , are the masses and generators of the

two heavy neutral mesons. Note that if A.„A.,—~
with A, /A, finite (which is quite possible in our
framework, if for instance gl, -~, g&-~, g'--, e,
g~/gR fixed}, then

3melim (m2 —m„) = 1, ln —', , (4.14)

which is just the conventional divergent result of
quantum electrodynamics" (@ED). One sees how
the neutral meson masses have entered naturally
to become the cutoffs needed in @ED.

We next observe that the contribution to m~ —m„

6m= 16, I y, (t™))'(2+lnx„-)y2—4(y2t" }'(1+lnx„-)].

(4.10)

We recall that in this model m commutes with all
the generators. We next observe that the only way
a mass splitting can arise is through a cross term
involving a r matrix and the generator l, since
both Y' and r are proportional to the identity,
and since r; does not couple to r, in the mass ma-
trix unless i =j. As a result, only those diagonal-
ized generators which contain the hypercharge can
contribute. These are precisely the neutral me-
sons. In this case t; = n; t ~+ P; t»+y; t~, and one
finds that

ti'=' 2y;g'»2((&;gt, +S;gR)+y2(SigR iri gl. )j

(4.11)

(y2t; p =' 2y;g'»2(a, gt +8 gR) (4.12}

where the =' reminds us that terms proportional
to the identity are dropped. We recall (cf. Sec. II)
that terms linear in y, can be dropped in the cal-
culation of the lowest-order mass splitting. Hence
the formula for the mass shift simplifies to

. 3mey i A& 3m ~A.

16w' ' m ' 16ii'

(4.13)

of the first term of (4.13) (which might be called
the "photon" term) is always positive. The sec-
ond term is

3m A.

] 67/ q2 g 3ln ~ t'= ln ~ ( 4 "r)

x n, '+ I,'+n, P2 +—"
gR gL

(4.15)

where we have used (4.11), (4.12), and the orthog-
onality relation

P;—+ —+, =0.
2g

If, say, X, & L, one can see that the only way to
to achieve m„+ m~ is to have the interference term

2S2
1 ~ ( 4 /2

) ~g gR

larger in absolute value than the sum of the "pho-
ton" contribution and the noninterference term.
This is difficult to do since the requirement that
the photon term be small compared to the inter-
ference term (namely, A, » X,} implies that the
latter is actually smaller than the noninterference
term, so that we again find m~& m„. In particular,
we have examined the behavior of this function in
the region g2/gR»1 (because of universality),
y-=2g'/gR —-1, and p-=gR' g'/gt, 'cr' arbitrary and in
the region gr /gR» 1, p= 1, y arbitrary. We have
not found any solutions which give the neutron a
larger mass than the proton. However, we have
not done a systematic computer test of all the per-
missible values of the parameters, ' and the possi-
bility of generating a positive proton-neutron mass
difference cannot be definitely ruled out.

V. DISCUSSION AND SUMMARY

We have presented a fairly detailed calculation
of the proton-neutron mass difference within a
renormalizable model of the weak and electromag-
netic interactions of the type described in Ref. 2.

As one would expect with a model of this class,
the mass difference is finite. The actual value
depends on several free parameters of the model.
However, it appears to be quite difficult to ar-
range these parameters so that the neutron is
more massive than the proton. The dominant
"wrong-sign" contribution of the mass difference
can be interpreted as the photon exchange contri-
bution and can indeed be seen to reduce to the con-
ventional divergent value when the weak interac-
tions are neglected, i.e., vector-meson masses
go to infinity.

The arbitrariness and limitations of some parts
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of this model have been emphasized throughout
this paper. What sorts of improvements would be
necessary to make the model more realistic?

First of all, the strong interactions have been
completely neglected within this framework. We
have treated the nucleons as pointlike Dirac par-
ticles which is certainly incorrect. A first step
might be to calculate the Feynman integrsls dis-
persively, replacing the point particles with their
experimentally obtained form factors. This would
have to be supplemented by some hypothesis, such
as the parton model, to relate the electromagnetic
form factors to the neutral heavy boson ones
which are, of course, unknown. Such dispersive
techniques have been used within the context of
neutron-proton mass differences in unified renor-
malizable theories of the weak and electromagnetic
interactions; however, these calculations did not
yield finite results since the models used were not
of the class we have discussed. "'" Another pos-
sible approach to incorporating the strong interac-
tions is that of building a gauge theory of the
strong interactions and attempting a grand synthe-
sis of strong, weak, and electromagnetic process-
es." One consequence of such an approach is that
it would presumably lead to inclusion of the famil-
iar vector mesons, e.g., the p meson, among the
gauge fields. This in turn would violate the as-
sumption that m' «A&' and require the preservation
of terms proportional m'/A, ,', in particular, the
scalar-meson contribution and the k "k" term in
the vector-meson exchange. Perhaps these addi-
tional contributions would cancel the "wrong-sign"
contribution discussed above.

Another limitation of the present model is its
total omission of the strange particles. Simple
generalizations, such as to SU(3) X SU(3), where
the fermions are quark fields, suffer from the
drawback that the fermion representation need not
be pseudoreal [for example, the (3, 0) representa-
tion of SU(3) XSU(3)j. In such cases, the product
representation is irreducible and the general ap-
proach we have been using is no longer applicable.
If on the other hand the fermions form an octet,
e.g. , the baryon octet, the Yukawa-coupled scalar
representation contains vectors with nonconjugate
little groups. In this case, either the desired
zeroth-order symmetry (here isospin) is preserved
to all orders, or the renormalized Lagrangian
fails to preserve the symmetry even in zeroth or-
der.

Of course, there are many other compact simple
Lie groups with pseudoreal representations to
choose from (see Appendix 8). Also, using prod-
uct groups is not the only way to make D~~S D~ re-
ducible, and hence make zeroth-order mass rela-
tions possible. On the other hand, finding realistic

models of this form which incorporate the strange
particles appears to be quite difficult. As a result,
it may be wise to also explore the mechanisms of
"accidental" mass relations, "mentioned above,
in attempts to find realistic models of weak and
electromagnetic hadronic mass differences.
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0

and the gauge meson propagator D~"e, becomes

-g"" k'

-g"" k

with

Secondly, the projection operator is modified to

at, 8=1

where p,
'~

8 is the rxr matrix formed by the
massive vector bosons; one can easily verify that
II,', annihilates all fields of the form e„(p &, —i.e.,
the Goldstone bosons. Either 1 ~ y &r in which
case the calculation is identical to the original,
total-symmetry-breaking case, or else y &~ indi-

APPENDIX A

In Ref. 2, it is tacitly assumed that the symme-
try is completely broken. This implies that all the
vector mesons are massive and, hence, that p. 6'
is invertible. When there is a residual unbroken
symmetry, e.g., charge conservation, the analy-
sis goes through with the following minor modifi-
cations. First, after diagonalizing the gauge me-
son mass matrix, we can write it as
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cating that 8„ is an unbroken generator and hence

8&(g), =0 anyway.

that
-1 n ag

L, R ~L, R L, R ~L, R '

APPENDIX B

Theorem. Let n, P denote pseudoreal irreduc-
ible unitary representations of G~, G~ respectively
(by pseudoreal, ' one means a representation
equivalent to its conjugate but not transformable
into a real form). Then the representation (jk, p)
of GL, xG„ is reducible into exactly two real irre-
ducible components.

Proof. Let P;,a (cj, P) be a complex matrix
transforming in the usual manner under elements
of GL &&GR

The most general linear recombination of the Her-
mitian fields comprising Q has the form

(LP);j ——Qij =C;j ki it'ki +di, k, Qkj .
If TL (T„) represent the skew-Hermitian genera-

tors of GL (GR) on the representations a (p), then
L commutes with all the generators of G~ xG„ if
and only if

(TL )mi Ci j,ki 6 (TL )mi di j,ki = Cmj, il (TL )ik +dm j, il (TL )ik r

(TR)jm Ci j ki 6 (TR)jm jf jj ki = Cim k„(TR)jr k ifim k„(TR)i r ~

But the representations n, P are irreducible, so
by Schur's lemma

Cjj k1
= ~~&k ~j1

Also, by assumption 3 SL, SR (antisymmetric) such

Again applying Schur's lemma, one finds

d, , ki = jj(SR ')ij(SL);k.

So the most general operator commuting with all
the generators is

(~) jkj , ~5 k 5lj4(SR')l j(SL )'k+

where K is the complex conjugation operator. Al-
ternatively,

L = ~'P+ + p. 'P

(P i 5 k 5jj ~(SR )i, (SL);k&
a jij,kl 2

P, are readily seen to be projection operators:
They project onto the disjoint irreducible repre-
sentations

The classification given in Ref. 7 shows that the
only pseudoreal representations of the compact
simple Lie groups are the following:

(a) SU(2(2m+ I)): The only pseudoreal represen-
tations are characterized by a highest weight of
the form (ji.„.. . , ji, X, „odd, ji, . . . , X,).

(b) O(8n+ 3): (X, odd, A„. . . , &,„„).
O(8n + 5): (X, odd, A„. . . , ji,„„).

(c) All irreducible unitary representations
(IUR's) (A.„.. . , A.„)of Sp(n) with A., +X, +. . . odd.

(d) All IUR's (A». . . r Xk „rk) of O(4(2n+ 1)) with

~, +~, odd.
(e) All IUR's (ji„.. . , X, ) of E, with ji + A., + X, odd.
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