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The three-body formalism for singular cores previously introduced by the author is con-
sidered in some detail. A new derivation is presented which clearly demonstrates the unique-
ness of this formalism and clarifies its relationship to appropriate boundary conditions on
the three-body wave function. It is shown that an auxiliary boundary condition must be im-
posed to uniquely specify a solution; this leads to an integral equation with a square-integra-
ble kernel. A detailed proof of three-particle unitarity is given for the amplitudes defined
by this equation, and explicit formulas are presented for a representative model.

I. INTRODUCTION

In a recent letter, ' the present author introduced
a generalization of the Faddeev formalism to in-
clude two-body interactions whose extremely short-
range behavior is characterized by a hard core, or
by a boundary condition on the wave function (BCM).
Using the special properties of the BCN t matrix
developed earlier, ' it was shown that the usual
Faddeev equations do not yield a unique solution
for such interactions, but that a particular solution
can be defined which yields the desired physical
properties. In particular, the resultant three-body
wave function vanishes whenever any pair of parti-
cles are within their respective core radius, while
its asymptotic behavior corresponds to a unitary
three-particle t matrix. In this paper we give de-
tailed proofs of these assertions, present a new
derivation of our equation which clearly demon-
strates its uniqueness, and consider in some de-
tail the special case of BCM alone (no external
potential). This provides the theoreticai ground-
work for subsequent articles in this series deal-

ing with the actual solution of our equations for
specific models.

The principal motivation for this development is
the versatility afforded by being able to utilize this
additional class of interactions in the three-body
problem. For example, calculations to date in the
three-nucleon system with realistic interactions
have been almost exclusively restricted to soft-
core models, the single exception being the long
and difficult variational calculation on the Hamada-
Johnston hard core by Delves et al. ' The results
of these computations have generated some doubt
as to the ability of such models to fit the experi-
mental data. For example, it appears that any
soft-core model which fits the two-nucleon phase
shifts reasonably well will underbind the triton by
about 2 Me&. It has also been suggested that a
significant discrepancy exists in the case of the
triton charge form factor. ~ Of course, it is quite
possible that the source of such disagreement does
not lie with the nature of the potential model, but
with the neglect of corrections due to three-body
forces and relativistic effects, which could well be
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significant. However, the inclusion of such cor-
rections would be largely ad hoc, and would greatly
diminish the predictive power of the present
theory. It thus seems highly desirable to explore
such possibilities as might be afforded by an en-
larged class of two-body interactions before re-
signing oneself to this situation.

From this point of view there are two excellent
reasons for utilizing the singular-core models.
The first is simply that both the hard core and the
BCM have been employed as the basis for excellent
fits to the two-nucleon data. ' Secondly, it is not
unreasonable to expect such models to produce
qualitatively different results in the three-body
problem; functionally, the corresponding oQ'-shell
t matrices are quite different from those of soft
cores, exhibiting the typical oscillatory properties
of entire functions. Moreover, as shall be demon-
strated in Sec. II of this paper, the inclusion of
singular cores requires significant changes in the
whole theoretical structure upon which current cal-
culations have been based, i.e., the Faddeev equa-
tions. ' Whether or not singular cores can reduce
the discrepancy with experiment is of course
speculation; the single piece of information one
has (the Delves calculation which also underbinds
by 2 MeV) is not too encouraging. On the other
hand, there is still plenty of room for modifica-
tions in the form of the potential external to the
hard core, i.e., a "revised Hamada-Johnston";
and the BCM model of Feshbach and Lomon' is
totally unexplored. In any case, calculations with
singular core models are bound to produce either
one of two very interesting results: (1) Such a de-
scription of the very-short-range nucleon-nucleon
interaction is indeed more "realistic, " as evi-
denced by better predictions of three-nucleon ob-
servables; or (2} the inclusion of corrections due
to three-body forces or relativistic effects is ab-
solutely essential in order to understand the data.

Nuclear physics aside, the formalism also leads
to a number of applications of interest to statistical
and chemical physics. An example is the third
virial coefficient for a (quantum-mechanical} sys-
tem of hard spheres. This can be obtained know-
ing the wave function for three particles interac-
ting via hard cores, ' a special case of our formal-
ism. In fact, with no increase in difficulty, one
could also perform such a calculation with hard
cores plus weak attractive forces characterized
by the BCM. Such computations would be facili-
tated by a fact pointed out in B1; namely, that for
the BCM (or hard core) alone, our equation can be
reduced to integral equations in only one variable.

We begin in Sec. D with a brief review of the
development given in 81. By observing a special
property of the BCM t matrix unnoticed in our

earlier work, we are able to present a new deri-
vation for our equation which emphasizes the fact
that it is unique. We also clarify the relationship
between our formalism and direct imposition of
the boundary condition on the three-body wave
function. In Sec. III we introduce a "supervector"
notation in order to simplify evaluation of the oper-
ator product IQ appearing in our kernel.

The structure of our equation is analyzed in
Sec. IV, where we consider the simplest possible
case in some detail. We thereby demonstrate that
an auxiliary boundary condition must be added to
the previous development in order to uniquely
specify a solution; our equation then reduces to a
less complex form with a square-integrable ker-
nel. As an illustration, we present explicit formu-
las for the driving term and kernel relevant to
this model. The structure of corresponding equa-
tions for the general problem is outlined at the
end of the section.

Section V is devoted to explicit proofs of the
three-particle unitarity relations for our ampli-
tudes. At the same time, the operator notation
introduced in B1 (and recapitulated in Sec. II) is
employed to construct particularly transparent
derivations of unitarity for the usual Faddeev am-
plitudes.

Finally, in Sec. VI we discuss various aspects
of the formalism and its relation to the work of
other authors. In the Appendix we give a deriva-
tion of the operator Q which plays a crucial role
in our development.

II. THREE-BODY FORMALISM
FOR SINGULAR CORES

In this section we briefly review the theoretical
development given in Bi, recapitulating some use-
ful notational conventions. We also present a new
derivation of the integral equation introduced in B1.
This derivation supplements the previous (more
physical) argument by clearly demonstrating the
fact that our new equation is unique. As in 81, we
make the nonessential but simplifying assumption
that our three particles are spinless.

We denote the mass of particle e by m and the
total three-body c.m. energy by 8'. Three-particle
states are described by the usual Jacobi variables
p, q, with the corresponding reduced masses p, ,
M:

-1 -1 -1=ms +PÃy

M '=m '+(m~+m„} ',
and (aPy) are cyclic permutations of (123). In the
usual channel decomposition, the three-body state
vector is )4) =g jg, ), where the )g, ) satisfy
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IN. & =(1—G'.)I0& —G.f. g Its&.

Here t represents the two-body t matrix as an

operator in the three-body Hilbert space, ~4&& is a

plane-wave state, and G, = G, (W} is the free
Green's function. Equation (2} is one expression
of the Faddeev equations. '

It is convenient to introduce the states
~

o.pq&,
where

(2)

&op'q'IPpq& = 5.s6(p' -p)5(q' - q),

r fdidt&~l it»( HI=&
(3)

We can then define the operators t, I such that

&op'q'lflPpq& =5 so(q'-q)f (p' p' 1V e'/2M )

if aPy are cyclic,

08-, W8-, . - -, p~-,=-0 p+ p+ q U q-p+ q
my Ma my

( i'4'~l&I»N&=-&(5 ~ 'i'- '~' & i »' ~ i')

&op'q'IVI&pq& =5.85(q'-q}V.(p'-p}

That is, V (p) is the Fourier transform of the unit

step function 8(a —r). Moreover, one can con-
struct an operator Q of the form Q= 1+ VB(I —1}
with the following properties:

QQ= Q,

V(1 —I )Q = (1 -I )Q V = 0,

(1 —VI)Q= 1 —V,

QV= VQV.

(10)

(An explicit derivation of Q is given in the Appen-
dix. ) Using Eqs. (8) and (10), one observes that

(1 —G, tI)GOQV = 0,

and hence that (1 —G,ti) ' does not exist. There-
fore, one cannot use the ordinary Faddeev equa-
tions [Eq. (6)] to uniquely determine M in the pres-
ence of singular cores.

To overcome this difficulty, a generalization of
the Faddeev formalism was presented in B1. We
consider a new operator t chosen such that

if Pay are cyclic. 1 —Got = (1 —V)(1 —Got) . (12)

(4)

Here t„(p', p; s) is the off-shell two-body f matrix
for particles P and y, energy s; the diagonal ele-
ments of I vanish. With the identification

0.(p„, q„)=&p.q.lt.& =-&~P.q. lk&,

and letting )g& =M(4», we can rewrite Eq. (2) in
the form

M 1 G()& + Goal M

(5)

(6)

It is important to keep in mind that the operators
in Eq. (6) act on the states of Eq. (3}; in particular

M, = 1 - Got + G,UQM, . (13}

This new equation was motivated in B1 by imposing
reasonable physical requirements on the resultant
three-body wave function; namely, that it should
vanish whenever any two particles are within their
respective core radius, and must correspond to a
unitary three-body t matrix.

We now consider a somewhat different derivation
which employs another special relation concerning
the two-body t-matrix: the fact that t can be chosen
such that

A particular solution M to Eq. (6} can then be de-
fined as M = QM„where M, satisfies the new equa-
tion

(8)

where the projection operator V corresponds to a
square-well potential of unit strength and a range
a for the matrix element

One can easily verify that I and G, commute.
The development up to this point is completely

general, with the object of obtaining the operator
equation for M, Eq. (6). Since Eq. (6} is exactly
equivalent to the equations of Faddeev, one can
immediately infer that it serves to uniquely define
M for a large class of two-body potentials. How-
ever, it was shown in B1 that this is not the case
in the presence of singular cores. The proof is
based on the fact that for such interactions, the
two-body ~ matrix has the special property that

VG t=tG V=V,

SV =0. (14)

ie& =(1 -I)QMi&y&. (16)

We next observe that, as a consequence of Eq.

Postponing a proof of this assertion until the end
of this section, we proceed by assuming that M is
any solution of Eq. (6). Employing Eq. (8), it fol-
lows that

VM = V(1 —Got+ GotIM)

= VIM.

The form of Q then implies that QM = M. Noting
that with our choice of states [Eq. (3)j the relation-
ship between M and the three-body state vector is
given by )4'& = (1 - I)M ~Q&, we have that
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(14) and the properties of Q,

trQV =trav

= tvqv

(17)

G, (p, s) =1+(p' —K')
n=0, 2, . ..

O. n(&') jn &(aP),

l even

Hence, substituting Eq. (12) into Eq. (6}, we de-
duce that

tIQM = tIQ(1 —Got + GotlM ) .

l odd

(26}

Defining

we obtain an integral equation for X:

(19)

with Q0 py 0, and the remaining n„, p„chosen
such that G, (P, s) ~ P' as P-0. To prove the latter
statement we note that the n„(P„)can be determined
inductively, i.e., suppose that the statement is
true for a given / (say t is even for definiteness),
then

M=(1 —V)(1-Got+GOX)+ VIM. (21)

X = tip(1 —Got) + tIQGOX .

Comparing this equation to Eq. (13), we infer that
X = tIQM„ i.e., the two equations are totally equiv-
alent.

Moreover, we observe that X is all that is re-
quired to form )4'), since Eqs. (6) and (12) imply
that

G(') ()G(PS) ~ ' P), (26)(-o t!

with G(')(0, s) completely determined by the u„,
n & E. Noting that

G„,(P, S) —G, (P, s) = (P' —«')(K, +,(K')j, (aP),
(2'!)

we can clearly satisfy the condition for l+2 by
taking

Hence, due to Eq. (16), we have (2l+1)!!G( '(0, s)
(28}

]g) =(1 —I)Q(1 —G t G+XO))p)

=(1 -i)qM, I4». (22)

M,' = M, + VA(-1 + IQM,') . (23)

However, ('I) is invariant under such a change.
We thus conclude that our equation is to all intents
unique.

We conclude this section by considering the na-
ture of t and the proof of Eq. (14). To do so it is
clearly adequate to drop subscripts and work in a
two-body space. Denoting the core radius by a,
we shall first deal with the case of the BCM alone
(t = t ); the subsequent generalization to BCM
plus external potential is trivial. We look for t,
the projection of I, on partial wave l in the form

Finally, we note that although ~ is not uniquely de-
fined by Eqs. (12) and (14}, any change in t must be
of the form 4t = G, ' VA. If we suppose that M,' is
the solution of Eq. (13) under the replacement
t-t'=t+ st, it follows from Eq. (17) that

Since the condition holds for l =0 we are done (the
proof for odd l follows similarly). Given G„we
can now apply Eq. (39) of B2 to eva, luate the opera-
tor product VG, t~~; together with the explicit form
for tac given in Eq. (48) of B2, this immediately
verifies Eq. (12) for the BCM alone.

In order to generalize this result to the case of
BCM plus external potential, we recall Eq. (71) of
B2, which states that

t =t +(1 —t Go) V,(1 —G,t), (29)

in which V, is the external potential. In view of
the pure BCM result, we simply observe that the
choice

t =t +(1 —t G,)V,(1 —G, t) (30)

satisfies Eq. (12). Given Eqs. (24) and (30) it is
straightforward to verify that t satisfies the uni-
tarity relation

t, (p ', p; s+ ie) —t)(p ',P; s —ie)

= -gv2M„«t)(p, K; S +if)t (K,p); S —ie}.
t, (p', p;s)=G)(p', s)t, (K, p; s). (24) (31}

Here K = (2M„S)' ' is the on-shell momentum value;
is thus proportional to the half-on-shell BCM

amplitude. We assert that G, may be constructed
in the form

In the subsequent sections we shall denote this
symbolically by

(32}
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tsc( p . )
gl (P)

l r t D(+)
(33)

b,G0 being the discontinuity of the free Green's
function.

Finally, having established the form of t, we turn
to the consideration of Eq. (14}. It is clear from
Eq. (30}that t is of the form t =At~+Bv, . How-

ever, since V, =(1 —V) V, = V, (1 —V), we infer that
t V ~ t~ V; hence it is only necessary to treat the
case of BCM alone. From the formulas developed
in B2 one can easily show that

(40)

Here we observe that (1 —V)~ it} is the projection
of ~f) onto the region exterior to the core. Since
))l)) =(1 —G,t)(lt)), we infer that

(1 —GGt) =0,

This clearly vanishes if one evaluates the right-
hand expression in terms of the suggested limit.
The boundary condition can thus be expressed as
an operator condition on the two-body state vector
~)t}, viz. ,

(1 —v)~lt) =o.

with t (1 —GGt) =0; (41)

g, (p) = (u, —t)j l(aP)+ aPjl+l(ap)

D, (ll)=i Mll„ [(llama, —t)h, (aK)+ a)ah„, (all)J.
(34}

(With our convention )j),'/it), =X, at the core radius. )
Note that the verification of the above is greatly
aided by the alternative formula

f (p, a, lt) = talc[ash�„,(all)j, (ap) —h, (a)&)apj „,(ap) J,

Il d=PP'gl(P) Vl(P, P ') = o
0

(38)

for the quantity f, defined in B2.
Consequently, the proof that tV = 0 rests on show-

ing that

one can prove these relations directly from the
formulas given in B2.

If we now consider the three-body state vector
~4), the boundary-condition can be expressed in
the form

i~p, ~e)=o, (42)

where P, projects ~4) onto the region exterior to
all three cores. In an obvious notation,

P, = (1 —V) (1 —8,)(1 —8G) (43)

(the operators 8„8,are defined explicitly in Sec.
III). In terms of our formalism, Eq. (42) requires
that

This, however, is somewhat delicate since I, is ill
defined. To see this it is convenient to employ the
representation

t P, (1 I)M, = 0 -.

On the other hand, we prove in Sec. III that

(1 —V)(1 Iq) =P, (1 -I)-
Thus Eq. (42) is equivalent to the condition

(44)

(45)

(aX, + 1} t)'(r —a)
g r = ', t)(r —a)+

(3"t)

I, = der'g, r 8 a-r j, rP'
0

= 8(o)g (P') —«(0)i (aP ') (38)

dr r 2g, (r))t)(r) = X), )t), (a) —ii),
' (a) .

-0
(39)

and hence is dependent on the ambiguous quantities
8(0), tL(0).

In this circumstance we argue that I, must be
evaluated as a limit in which the radial parameter
related to g& is taken to be b & a, the integral is
performed, and the limit b —a is taken at the end;
this prescription clearly gives zero as a result.
This interpretation can be justified by elucidating
the relationship between our formalism and the
basic statement of the boundary condition. Let
)t), (r) be the partial-wave amplitude for the two-
body system, and consider the integral

(1 —V)(1 —IQ)M, = 0 . (48}

In view of Eqs. (13}and (41), this is clearly sat-
isfied by our formalism, provided that one accepts
Eq. (14}. The latter is equivalent to the replace-
ment t~- t (1 —V) wherever it occurs; this in-
terpretation is quite natural in view of the connec-
tion we have established between t and the bound-
ary condition [e.g., Eq. (40)].

In concluding this section, it is worth noting that
in the particularly simple case of V, =0, where
P, ~4l) is just a superposition of eigenstates of
the kinetic energy operator, one can derive an
integral equation for the superposition function by
directly imposing the boundary condition; this
equation is identical to our formalism.

III. EVALUATION OF IQ

In order to apply our formalism, Eq. (13), one
must first evaluate the operator product IQ which
appears in the kernel. In view of Eq. (14), it is
sufficient to consider only (1-V)IQ; our result
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has already been stated as Eq. (45). While direct
verification of this formula is quite tedious, this

may be avoided through the introduction of a
"supervector" notation to describe our operators.
We shall thus find it convenient to work in the co-
ordinate representation, and to represent the pair
of three-vectors x, y by the "supervector" p,

( v(e I((i')=~.s~ (( i -'(8'(. — —" -v},

the operator B derived in the Appendix can be ex-
pressed as

(47) B= 1 -y ( 8, + 82) +y 8, 8, . (55}

represented as a two-component spinor, each
component being a three-vector.

We also note that Eq. (1) can be shown to imply
the following relations between the reduced
masses:

1 —IQ = (1 +IVB)(1 I) . - (56)

To proceed, we use Eqs. (9) and (53) to obtain

(oF II v(1 I)l pI-')

We recall for convenience that the relationship
between Q and 8 is such that

P&PB+ 2 j
MB m

1 1 po.
+

M m asm

Defining the rotation matrices (aAPay)

-v.

-98

Eq. (48) implies that detR8 ——1,

( PB-
pa -pa.

(48)

(49)

(50)

=-0 a, — —x-y aR, „p 1-I P p'

=(« '., pi 1 IIPp'-)

Recalling Eq. (54}, we thus obtain

IV(1 —I ) = -(6, + 82)(1 I) . -

(58)

It is easy to verify that the effect of I on the oper-
ators V, 0„9,is to permute them among them-
selves; hence one deduces that

-0 a, — —x+y eR ', p 1-I Pp' .
~o

(5'1)

However, by again employing Eq. (53), it is easy
to show that

(&pl 1 II pp') =-(»..I I
1 Il Pp')-

It is also easy to verify that

(51)

(52}

Three-particle states can now be specified as
i np) =—

i nxy), and the effect of the I operator can
be expressed in the relations

( o(P
I
I

I
I'

&
= -(«..p I

I'
&
- ( e B '.,p I

I' ),
«II I ~p) =-(Gl «,u) —«I ~B '.,7&,

(53)

where n(T~ are cyclic. Thus the operator I which
connects the Faddeev channels has the effect of a
rotation on p.

If one defines operators 8„6},such that

R)~RfyBR8y = 1.
In what follows we shall mean by RB p the "super-
vector" p', where

P, Vg, g, ) =O,

[I, Vg, + V 62+ 6,8,] =0,

(1 —V)I 8,6, =0.
(6o)

I-' = ~(1+I),
(1-I)'=3(1-I),
(1 —I)(2 +I) = 0 .

(62)

With this input Eq. (61) reduces to the desired re-
sult,

(1 —V)(1 —IQ) = (1 —V)(l —6,)(1 —82)(1 I) . —

(63)

If we now employ the above relations in evaluat-
ing the right-hand side of Eq. (56), we obtain

(1 - V)(1 -IQ) = (1 —V)[l —8, —8 —~8,8,I](l I) . -
(61)

At this point we observe that the definition of I,
Eq. (4), implies that
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IV. STRUCTURE OF EQUATIONS FOR A
SPECIAL CASE

M, =1+GDFY,

where (69)

In Sec. II it was shown that while the Faddeev
equations do not determine a unique solution in

the presence of singular cores, there exists a
one-to-one correspondence between the three-
body wave function and the solutions of a new in-
tegral equation [Eq. (13)]. In this section we

analyze the properties of this equation by consid-
ering the simplest possible case in some detail.
We thereby demonstrate that this equation by it-
self is not sufficient to uniquely specify a solution,
although it embodies the full content of the BCM.
We further show that this ambiguity may be elim-
inated by imposing an auxiliary boundary condi-
tion pertaining to the behavior of the channel
wave functions in the interior region. When this
has been done we arrive at a well-defined formal-
ism with a square-integrable kernel, the solutions
of which correspond to a unitary three-particle T
matrix (as is shown in the next section). This
development may be extended to the most general
form of Eq. (13); we quote the structure of the
resulting equations at the end of this section.

We shall thus consider the case of identical
particles of mass M, interacting only in relative
s waves, with no external potential (BCM alone).
We then have t=t, and

&~pqIf" IJIp'q'&= 4,'6(q'-q) D, ' (64)

&o7}qlflPp q'&= "6(q'-A. (&')

with g„D, defined in Eq. (34}, and ~ =(MW —xq')'".
It is obvious that Eq. (13) reduces to an equation
in a single vector variable (q}; however, for con-
venience in manipulation we choose to embed this
equation in the fu111ap q} space. We therefore de-
fine operators F, t such that

Y= t (-1 +IQ M, ) .
Thus Y must satisfy the equation

(1 —FIQGOF) Y = -t (1 IQ-),

or

t (1 IQ)G—o FY = -t (1 IQ) -}

(70)

using Eq. (68). We observe that this is in actuality
an integral equation in q alone, since Eq. (69) im-
plies that

& oq}ql YIPp'q'& = Y.s(ql p'q') (71)

Since we have assumed identical particles, in this
case it is sufficient to consider the symmetrized
sum

Y(alp'q'}= g Y.,(qlp'q'). (72)

The significance of Y is obvious if we consider
its relationship to the three-body wave function
or T matrix. For example, the channel wave
function in the exterior region (each pair outside
the range of its interaction) is in this case

}C}ex}(»y}- e -}x ' }} e d }}' d}

+2pM -e
& &Y q Yqpq

x D,(g)

(73)

with P "+&q
~ =8'. That is, a superposition of

plane waves in y and outgoing waves in x weighted

by Y(q1p'q'). Clearly (H, —W)1 P '„"' )=0, and hence
(since I and H, commute) (H, —W)1%""'&=0, as it
must. In fact, Eq. (73) is the most general form
for the exterior solution of any finite-range s-wave
potential model. Equivalently, the three- particle
T matrix for this problem has the form

I

& ~pqlFI&p'q'} =6.86(q'-q) DDo x

where f (p) is an arbitrary function such that

Jd p d (y}= 1 .

(66)

(66)

7'(pqlp'q'} = 7'(qlp'q'}+ 7"(-p —sqlp'q'}

+7 '(p —rqlp q )

where

Y(q I
p'q')

p q =
D („)

(74)

We may then express t as the operator product

(67)

in the full Hilbert space. As a consequence of
Eq. (41) it follows that

tG Ft =t.
For this model Eq. (13) implies that we can

write M, in the form

Here the physical values of q, q' are the domain
[0, (v4 MW)'"] for W & 0, and the point Qs = [v4 M(W
+E~}]'"for W+E~& 0, where E~ is the binding
energy of the two-body bound state (if any). In
the usual fashion, appropriate combinations of
these values correspond to the amplitudes for
elastic scattering from the bound-state, breakup,
and (3)—(3) scattering processes.
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Returning to Eq. (70), we observe that Eqs. (14)
and (45} imply that

t (1 —IQ) = t p, (1 —I ) = f (1 —8,)(1 —8 2) (1 —I) .

(75)

we may write Eq. (83) in the form

(1 —K/, )[(1-K)Y —t (H —1)]= 0.
The general solution of this equation is

Y= z[(1 —e)t(H-1)+ eY],

(85)

(86)
In evaluating this product it is convenient to work
in a mixed momentum and coordinate representa-
tion, where for example

(nxylPpq)=5 oe '"'Pe '~'". (76)

Recalling Eqs. (37) and (54}, we have

( npy I
t (1 —8,}(l—8, ) I p «' y ')

~ 6(V y') go(-x')
16m

x 8(lr x'+y'I —a)8(lr' x' —y'
I
—a)

(77)

& nxyl elPx'y') =5o25(x'-x)5(y' y)e(-r1&~a-y)

Since the properties of go(x ') require that x' is
effectively equal to a, we observe that this matrix
element vanishes identically for y& ~ v 3 a." Thus,
if we define the projection operator 6I such that

N, (q, q'; W) =N, (q, q'; W)
(88)

where Z= (1-K) ', and BY is arbitrary (note that
by definition 8K=0, and hence BZ= e).

In writing Eq. (86) we have casually assumed that
Z exists. With the possible exception of a few dis-
crete values of 8', this follows from the fact that
K(W) is square-integrable. " In the special case
under consideration, we need only

K(q, q'; W}=—P K 2 (q, q'),
8

K, (q, q'; W)P, (q q'). (87)
2l+1

A straightforward but tedious calculation yields

N(q, q', W)
K, (q, q'; W) =

DQ(K )

we deduce that

Bt (1 —8,}(1—8,) = 0,

(78)

(79)

dyy 71(yq) N,+fN(y, q';W,
~32/2 0(y}

with 5 & 2 a. Here

a fact which has important consequences for our
formalism. Employing Eq. (77), it is straight-
forward to show that

N, (q, q'; W)

f,(q, &, Q) qg, (K)
( ) q2 q2 [tif W (1 L 2)qt2]1/2

t (1 —8,)(1 —82)GoF =(1 Ki)t Gop,-
where K~ is the local operator

&n x y IK& I P x' y'& = 5,5(x' —«}6(y' —y)K~( y);

y —2'vs a

(80)
with

q = --,'zq'+ [~W —(1--,'z')q "]"',
K= [MW ——Q']" '

while

(89)

K (y)= 1- (y
Cg

IO,

32v~ a &g &2a

3
Y&~ pa ~

(81) JC
Q e fXQK

N/(y, q ', W ) = -Ma dz I (y, z, q ', W ),
~g

Q
XQ

It is thus convenient to define an operator 8 such
that

2 a2
zo(y) = min 1,

ay
etH=O,

(1 -Kz) t(1 -H) =t (1 -Iq) .

Equation (70) then takes the form

(1-K/)t (1 —H)GoEY =(1-Kz)t(H —1) .

Defining a kernel E such that tHGQFt=Kt, or

&npqIKI pk'q') =5(p —p')K. o(q, q'),

~.~rq, r) f~r &ai&iI too, F I33i=), '''
(82)

(83)

(84)

( 1a2 ayz + y2)1/2

I,(y, z, q '; W) = C, (y, «)j (y.q')

+ Xo+ 2 (1 —ixox') j,(yoq ')(a —2yz)
XQ

(9a + 6yz)
16 q'Il. ,(yoq'} p1(n}

SQ

(90}
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3 1-&az ——,y
A =

Jo

y, = ( —,', a3+,'-a ye+ —,'y')"',

+
2 (&&„(a)—~p, (a)](l+ l)y
20/0

We note that the integrand of the expression for
N, is complex for fixed z; for W'& 0 its value at
-z gives the conjugate, and K, is thus real for neg-
ative W. On the other hand, for W& 0 the denomi-
nator (q' —Q') can vanish and the contribution to
Kg is complex. The N, term is analogous to the
ordinary Faddeev kernel in the case of separable
potentials. Despite the profusion of equations,
the resultant kernel is quite simple in structure
and easy to handle numerically; power-counting
estimates are adequate to demonstrate that TrK'
& ~, establishing the above assertion.

However, although Z is well defined, the pres-
ence of BY in Eq. (86} illustrates the following im-
portant consequence of Eq. (79): The BCM does not
uniquely specify the three body wave -function. '
Therefore, in order to eliminate the resulting am-
biguity, one must specify an auxiliary boundary
condition to determine OY. Since, for x-g, OF
corresponds to the channel wave function in a re-
gion where at least one pair of particles is within
their core radius, it might seem reasonable to re-
quire that OF=0. However, it is easy to demon-
strate that this choice is not compatible with three-
particle unitarity. Instead, it turns out that one
may require

(eY), , =0

for some particular energy Wo by imposing the
condition

Om Y=O.

Here

(91)

(92)

(ap'q'l&lttpq& =6. 6(P'-p)6(q'-q)D' ',
Do v

(98)

(M Wo — q }''3, and Eq. (92) is to be satisfied
at all energies W, reducing to Eq. (91) at W= W.

Applying this condition to the general solution
given in Eq. (86), we find that

While this form is compact and convenient for the
unitarity proof given in the next section, a more
useful form for computation (and proof that 3i

exists) may be obtained by defining R(q, W) such
that X) =1-R,

D,(a,)1-R(q, W)=
( ),Do j(;

(95)

one may infer from this that R =O(q ') as q- ~.
Our constraint then takes the form

BY = BRZ(1 —8)t (H —1)+ BRZBY.

Furthermore, there is no loss in generality in
letting BY=(l —K)X, where X must satisfy

X = BRZ(1 —8)t (H —1) + KX,

K=K+ OR.

(96)

(9V)

In this particular case,

K, (q, q', W) =K, (q, q', W)+ 8,(q, q', 3'/3 a)R(q', W—),
(98)

2R' qj, „,(Rq)j, (Rq') —q'j „,(Rq')j, (Rq)

It is clear that K is as well behaved as K; we can
thus define Z = (1 —K) ', and write

X= ZBR Z(1 —8)t (H —1) . (99)

Moreover, we have OY = OX, and hence we arrive
at the result

Y=Z(1+ BZBRZ)(1 —8)t (H —1) . (100)

We have thus established that the extension of the
two-body boundary condition to the three-body sys-
tem, plus the auxiliary boundary condition of Eq.
(92}, serve to uniquely determine Y and hence the
exterior wave function (the interior wave function
vanishes identically}. By choosing W, & 0, we
maintain the reality of our kernel K for W&0, and
guarantee the unitarity of the resulting three-par-
ticle T matrix. Of course, nothing in the BCM
tells us how to choose Wo; we shall return to this
point in Sec. VI.

In order to determine the various amplitudes of
physical interest, one needs to compute matrix
elements of the form (apq( Y) Q). In general, we
take

~ Q) =
~
adMlhp'q'), coupling A(p') to l(q') to

form a state of total angular momentum J; the on-
she11 condition is that p' = z'. In the present case,
Eq. (100) implies that we need the quantity

Q~(q~lzp'q ')
eY = qemz(1 —-e)t(H —I),
@=[Baze]-', (94) 3+(apqJM~ (1 —e)t(H —1)(J3JMlkp'q')

8

with [ ] ' denoting the inverse on the finite e sub-
space (q is an operator on that space to itself).

(101}

Of particular interest is the value of 0 for A. =0,
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J=t; we denote this by Q, (q) p'q') and present the evaluated expression below. In terms of the notation
stated in Eqs. (89), (90), and (98),

tl «lp'q') =tl «Ip'q ') + I

"I' yq n, (ylp'q'),
zo(y}

(),(sl/'e )=— '/- g( /), —e(aq", l/)a) d J*(())g,(p), —(t(q, (),;s) I.6(q' —q), , ' 5(q —Qo)

1pz —ggP= Q (pi2+p&q iz + + q (2)1/2 E (~ p(2 3 p)q iz + 9
q t2}1/2 (102)

go

ti)(ylp'q') =-3 ./. «~)(y, z;P', q'),
0

Z, (y, z; p', q') =C, (y, z)I', (&,p')I, (y,q')

~ &./. («.n )4 'u') (*.1') /() e )+, .(~'/. (*./ )) j„,(v 'e ')I p, (n.).'(a —2yz}, , , (9a+6yz),
Xo &6&0

In Eqs. (88)-(90), (98), and (102), we have all the
information necessary to investigate the conse-
quences of Eq. (100) numerically for the simple
model under consideration. The results of such
calculations will be presented in a subsequent
article.

We conclude this section by exhibiting the struc-
ture of our formalism in the most general situa-
tion. It is helpful to define

U=(1-t G())V,(1 —Got), (103)

so that t = t + U. With a simple generalization of
the operators t and F to nonidentical particles and
an arbitrary number of partial waves, we can re-
tain Eqs. (6V) and (68); as a result t G,U=0. From
Eq. (13}we deduce that

M~= j. +GOA,

A = p[U(IQ —1)+EY],

p =(1 —UIQGO) '.
(104)

Y=Z[(I - B)t (H —l)[1+G pU(IQ —1)]+BY).

(106)

In order to determine 6)F we need the generaliza-
tion of Eq. (92); we therefore require that

The existence of p can be demonstrated for typical
short-range potentials V,. Applying Eq. (44), Y
must satisfy

t (1 —IQ)GopEY = -t (1 —IQ)[1+GopU(IQ —1)].
(105)

Extending our definition of K to t HGo pFt =Kt, we
find

etG, (w, )A =0. (10V)

V. THREE-BODY UNITARITY

In this section we give an explicit proof of the
three-particle unitarity relations for our new for-
malism. In doing so, it will be convenient to
adopt a notation of the type illustrated in Eq. (32)
in order to express the discontinuities of an am-
plitude across its cut. As is well known, the dis-
continuities of the off-shell three-body t matrix
T as a function of the total energy S' arise from
two sources: (1) scattering to states consisting of
three free particles, with a threshold W =0, (2)
elastic scattering of a single particle from a bound
state of two others. In the latter case thresholds
are found at W=v, , where -v,. is the binding
energy for the jth bound state of particles P and y.
The cuts from both sources are taken to lie to the
right of the corresponding threshold along the real
W axis.

This condition reduces to Eq. (92) in the simple
case considered previously, and again implies Eq.
(91}. In similar fashion to the above, we finally
obtain

eY = —ezelG, (w, )pz,
(108)

Z =EZ(1 —8)t (H —1)[1+ GopU(IQ —1}]
+u(IQ 1)-

Here

Kt = (K+ BIt —et Ga(wo}pE)t,
(109)

p=-p -1.



SINGULAR CORES IN THE THREE-BODY PROBLEM. I. . . i845

As an illustration, we first consider the relation
for cut (1) in the ordinary Faddeev formalism. We

note that the relationship between M and T is
given by

1 —G, T =(1 —l)M . (110)

nZ =Z (1 —G, t )4G t'IZ'. (112)

By assumption, we have that in this case the opera-
tor

Z = (1 —G, tI)-'

exists. The unitarity condition for t is that At
= -t AG, t'; thus

M = i+GDF Y)

Y= Z(1 —q8BZ)(l —8)t (H —1) . (121)

Let A be any operator such that & npql AI pp'q')
=5(p' —p)A, (q, q }. From the definitions given
in Sec. IV, it is easy to show that

&At =t Ga(WD) FAt,

KAt =(KG~FAt . (122)

Thus, due to the final t in the above formula for
Y, we may effectively take 5) =tGQ(W0)F, K=tHGp'
in calculating the discontinuity of that expression.
With this understanding, we employ the formula

From Eq. (6}we have M = Z(l —G, t}; it follows that
bF = -F I; hG++ (123)

hM = n Z(l —G0 t ') —Z (1 —GD t )d. Gat
'

= M d.GQt'[IZ'(1 —G't') —1J

= M n, G~t'(IM ' —1) . (113)
AZ =Z t Hn(G+}Z'

=[t +Z t (H -1)]EGp'Z'. (124)

which follows trivially from Eqs. (67) and (32), to
deduce that

However, Eq. (6) implies that

t(IM —1)= GQ '(M —1), (114)

while AG, G, 'A=O unless a corresponding factor
of G, occurs in A (~G, puts the operator to the
right on shell). Thus

Similarly, we arrive at

d, Y = (f + Y )b.G+' Y',

bM, =M, aG~' Y'. (125)

Substituting the latter expression into Eq. (117),
we have determined that

aM =M aG G 'M'. (115) hT=-G0 '(1 I)QM, AG+-'Y'. (126)
On the other hand, Eq. (110) says that

T =-G, '[(1 —I)M —1J,

and hence

n. T =-GQ '(1 —I)nM .
Since

M = Z(l —G, tI + I —1)I '

=I +Z(I-1)I ',
using Eq. (62) we find that

(1 —I )M = g(l —I)M(1 —I ) .

Thus

d T = - 3GQ '(1 —I )M n GDG0 '(1 —I)M '

(116)

(117)

(118)

(119)

We now observe that the definitions of Q, M„Y
imply that

(1 —I)QM, = v(1 I )QM, (1 I—) . —

Thusq

n. T = -~GD '(1 I)Q.V, EGD(l -—I )F' Y'

= p T n G (1-I )F' Y'

=-~r-~G, r',

(127)

(128)

as desired.
We next consider cuts of type (2), recalling that

= -3T AGoT', (120}

where we have used the fact that I and G, commute.
Note that the factor of —,

' appearing in Eq. (120)
arises from triple counting due to our choice of
intermediate states; Eq. (120) is exactly equivalent
to the usual statement of three-particle unitarity.

We now turn to an analogous derivation based
on our formalism. For simplicity, we will as-
sume" that V, =O; the general case requires more
lengthy manipulations but is not qualitatively dif-
ferent. We thus have M=QM„with

l being the partial wave in which the bound state
occurs. It is helpful to define the operators r, ,
S, such that

& PP'q'I r., I rp q) = 58.5,.5(q' - q)

xI'i(P' P)g.,(P'}Z.,(P),
(130)

&Ppq Is„,lrpq) =5,.6„.w'', ]2P
''



The cut of t arising from the bound-state pole v,
then has the discontinuity

plicity), we observe that I' contains the bound-
state poles; thus J -R„~S „or

Clearly, nS, ~ 5(q —q, }, where

q„,.2 =2M (W —v .).
For the usual Faddeev theory it follows that

(131)

(132)

b,S~~ S~,. 'F =R~~ .
Recalling Eq. (12}, we deduce that

Gor, nS
&

——. (1 —V)GOR»tn. S„& .
It is helpful to define r, such that

(142)

(143)

nM = nz(1 —Got') —z G,nt

= Z Godet(IM
' —1);

thus

(133)

r~) t = r~~, (144)

this corresponds to the definition of I in Eq. (67),
and we use the same dummy function. Thus

nT = Go '(1-—I)Z Goat(IM' —1). (134)
Gor ~nS q

—-(1 —V)GP~qnS q. (145)

4S,S,. 't=AS &r, ,

for example. Therefore

(135)

nS,S, T =-nS S, 'Go '(1 —Got+ GotIM)

Similar ly,

= -nS; r„,(IM - 1)

= -n.t(IM- 1) . (136)

TS, 'M„, = Go '(1-I-)Z(1 —Got}S~ 'dS„,

= Go '(1 —I}ZGont.

%e also note that r,.'=p, r,-, where'

(137)

(138)

On the other hand, we note that the effect of the
operator b,S,S, ' is to pick out the residue at the
v, pole of the operator it acts on; hence

If we again invoke Eq. (122) and the subsequent
discussion, we can effectively take

LUG = t HGoEP

= t HG pl ~) nS„,.

t HGoraf bs af (146)

Here we have employed tHV =0, which may be de-
duced from Eq. (82). In this fashion it is straight-
forward to obtain

n. T= Go (1 I-)Q(Gp—' z GAY

+ [1+ G+ Z t H] GonS~t r~) Y'),
(147)

where we have used r, r
~

= p & r„~.
In order to put this expression for 4T into the

form of Eq. (141), we apply similar reasoning to
deduce the relations

Thus

(Z-l}nS~~S J
'- ZtHGor, nS ), —

= Go '(1 —I )Z Go nS, S ' T'
AJ

T n,S„)S )
'= Go '(1-1)QA-,

A =G+ Z OY "AS .S

(148}

Defxnmg

(140)

-[I+G+ Z tHJG, r ~AS„

Appropriate substitutions then give us the required
result.

we finally obtain

hT = T h, T+. (141)

When Eq. (141) is inserted between the proper ini-
tial and final states one obtains the usual unitarity
relations connecting the breakup, elastic scatter-
ing, and rearrangement amplitudes.

Finally, considering the same cut for our sin-
gular core formalism (again with V, =0 for sim-

VI. DISCUSSION

In the preceding sections we have considered in
some detail a specific prescription for introducing
singular cores into the three-body problem. It is
important to note that we have made the explicit
assumption that our three-body wave function must
vanish whenever any pair of particles are within
their core radius. This is equivalent to assuming
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that the BCM is present in each two-body partial
wave, i.e, , that there is some minimum radius rp

within which all two-body partial waves vanish.
However, it is quite possible to introduce models
in which the hard core or BCM appears in only a
finite number of partial waves. Our proof that the
usual Faddeev formalism does not yield a unique
solution does not apply to this case; on the other
hand, the Faddeev kernel is not square-integrable,
and hence one cannot prove the existence of solu-
tions. Of course, this does not mean that such
solutions do not exist, and numerical solutions
have in fact been obtained for the case of hard core
plus square well (two-body s waves only) by Kim
and Tubis. "

Due to the centrifugal barrier, it does not ap-
pear likely that one will be able to distinguish
between these two possibilities from the experi-
mental information contained in higher partial
waves; their relative usefulness will hinge on the
nature of the three-body predictions generated and
the ease of calculation they afford. From this
point of view, our approach has the advantage of
possessing a square-integrable kernel, which
both guarantees unique solutions and simplifies
numerical analysis. Moreover, in the special case
of BCM alone (no external potential) our formal-
ism reduces to a one-dimensional integral equa-
tion, a simplification analogous to that occurring
in the usual Faddeev formalism for separable
interactions. Although this is of no direct help in
performing computations with "realistic'* singular
core models, it does facilitate initial calculations
designed to explore the possible consequences of
this approach.

On the other hand, we have had to introduce a
boundary parameter W, which is not specified by
the BCM. Depending on one's point of view, there
are several procedures available for selecting W, .
One may, for example, take it to be the ground-
state energy of the three-body system; our formal-
ism then defines an analytic continuation of the
bound-state wave function to the scattering region,
while W, is the largest negative value of W for
which 2 has a pole (and hence is determined unique-
ly by the BCM parameters). Conversely, one
may take W, as a free parameter and adjust it to
produce a three-particle binding energy in agree-
ment with experiment; this is then the largest
negative value of W for which Z has a pole. In
the latter case one is clearly extending the phe-
nomenological treatment of singular cores (e.g. ,
the BCM} to the three-body system. In fact, this
approach may be generalized to provide a com-
plete phenomenology of three-particle final states,
a topic we shall discuss in a related article now
under preparation.
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APPENDIX: CONSTRUCTION OF Q

In this appendix we derive an explicit form for
the operator Q employed in the text. We want Q
to be of the form

Q = 1+ VB(I- 1), (Al)

where V and B commute, and Q satisfies the prop-
erties summarized in Eq. (10). We first observe
that it is sufficient that B satisfies

V(1 —I)VB(1—I) = V(1 —I), (A2)

and is diagonal in the coordinate representation.
Since V is also diagonal the commutativity follows
trivially, while

V(1-I}Q=V(1 —I)[1—VB(1 —I)]=0;
hence

(AS)

(1 —VI)Q = (1 —V}Q= 1 —V.

Also, it is easy to verify that K =I; thus, taking
the transpose of Eq. (A2),

(1 —I ) V = (1 —I ) VB(1—I }V.

This implies that

(1 —I )Q V = (1 —I ) V [1—B(1—I ) V] = 0,

(A4)

(A5)

Let

6.8I"(p, n) =&~xylPpq}

-&zo p -&yi qns 0 (A6)

One can then easily verify that

while the remaining properties of Eq. (10) follow
trivially.

Therefore, it is only necessary to find a diagonal
operator B such that Eq. (A2) is satisfied. To do
so it is convenient to make the double Fourier
transformation p-x, q- y and to consider Eq. (A2)
in coordinate space. It is also convenient to utilize
the 'supervector" notation introduced in Sec. III,
such that
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&~xylf I Pp q& =0, a =P

= -+(R8„p, )I), ap cyclic

=-E{R '
8 p, g), Pa cyclic.

For this case the first two terms in the bracket
contribute, but we must be careful in handling

B,(R, p) since its argument lies in a different
domain. Letting p'= R, p, we have that

Similarly, representing

&oxyl Bl Px'y') = f)„~6(x -x'}5(y —y')B (p),

(A I)

(A8)

x'-y' = x+y &a„
mn m

" x'+y = lxl(a. ,

(A14)

it follows that

&waxy l V(1-I)VBl Px'y')

for pCII . Hence, defining region III to be the
domain

x&a,
=8(a —x)&axyl(1 —I)l Px y')8(a() —x')BB(p').

(A9)
x-y &a, , (A15}

Using Eqs. (A I) and (A9), one can easily show that

&nx yl V(1-I)VB(1 -E)l ypq)

8( —*)8 (p 8),——' -y }B(R, p)

+8 a, — x+y B, R ', p

x&nx y I V(1 —I) I yp q) (A10)

with ave cyclic.
Comparing this result to Eq. (A2), it is clear

that our purpose can be achieved if we choose
B„(p) such that the bra, cket in Eq. (A10) is unity
for x&a . To do so, we consider in turn four sep-
arate domains. Suppose first that

x&a

x+y &a, ,

B„(p}=-,', pEII„, or pE-III„. (A16}

Finally, we consider region IV, defined by

x& a~~

— x-y &a, , (AI I)

x+y &a, .
m Q

it is straightforward to verify that for p EII„,
R pEIII . Similarly, one finds that for p EIII„,
R ',p &II,. Therefore, we can satisfy our re-
quirement in the regions II and III by taking

LL(o.

m
—x —y &aa~ (A11)

Here all three terms in tbe bracket contribute, but
one can show that for p EIV, R~ pGIV, and
R ',p 6 IV, . Thus all of the B functions are in the
same relative domain and we may simply take

x+y & a~j B (p)= —,', pE-IV . (AI, 8)

B,(p)=l, pCI„.
We next consider region II, defined by

(A12)

x&a

let us call this region I . In this region the last
two 8 functions in the bracket vanish and we may
obviously choose

The above requirements on B may be summar-
ized in the explicit formula

)) (p)=)-;e a — " --y -le — " x.v}m 0

+ 38 a — x-y 0 a, — x+y

(A19)

x —y &a„

x+y &a, .
m Q

(A13) [Since B only occurs multiplied by V one need not
put in the explicit factor 8(a —x}.]

We have thus demonstrated the existence of our
Q operator by actual construction.
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