
SINGLE -LOOP CALCULATIONS WITH THE. . .

~J. M. Charap, Phys. Rev. D 2, 1554 (1970).
'J. M. Charap, Phys. Rev. D 3, 1998 (1971).
3J. Honerkamp and K. Meetz, Phys. Rev. D 3, 1996

(1971).
4I. S. Gerstein, R. Jackiw, B. W. Lee, and S. Wein-

berg, Phys. Rev. D 3, 2486 (1971).
~S. Weinberg, Phys. Rev. 166, 1568 (1968).
6The result that only one arbitrary constant is required

through the one-loop approximation has been obtained
using functional techniques by G. Ecker and J. Honer-
kamp, Nucl. Phys. B35, 481 (1971). We also mention

the work of D. Bessis and J. Zinn-Justin, Phys. Rev.
D 5, 1313 (1972), in which the nonlinear 0 model is
effectively defined as the m~ ~ limit of the linear 0
model, again with the result of only one arbitrary
constant in the one-loop approximation.

YSee, e.g. , J. D. Bjorken and S. D. Drell, Relativistic
Quantum Mechanics (McGraw-Hill, New York, 1964),
p. 180.

I. Bi~nicki-Birula, Phys. Rev. 155, 1414 (1967);
Phys. Rev. D 2, 2877 (1970).

PHYSICAL REVIEW D VOLUME 7, NUMBER 6 15 MARCH 1973

Finite n-p Mass Difference in Spontaneously Broken Gauge Theories

Daniel Z. Freedman*
Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11790

and

Wolf gang Kummerf
University of Pennsylvania, PhiladelPhia, Pennsylvania 19104

(Received 9 November 1972)

In two examples of spontaneously broken gauge theories in which electromagnetic isodou-
blet mass differences are finite, the sign of nm~„~ for pointlike protons and neutrons is
negative, although the general formula for mass differences in gauge theories allows both
signs.

I. INTRODUCTION

Renormalizable gauge-invariant field theories
with spontaneously broken symmetry are now be-
ing studied intensively in the hope of obtaining a
correct unified description of electromagnetic and
weak interactions. ' The fact that intramultiplet
mass differences are finite in perturbation expan-
sions and therefore computable in terms of the
parameters of the Lagrangian in such theories
was noted by ' t Hooft' and recently emphasized
by Weinberg. '

In this paper we investigate fermion isodoublet
mass differences in broken-symmetry gauge field
theories in order to see whether the "neutron"
can be heavier than the "proton" in a second-order
calculation. Traditional approaches 4 to the neu-
tron-proton mass-difference problem usually yield
an answer with negative sign. Therefore a posi-
tive result in gauge field theories, although not
realistic because of neglect of strong interactions,
would surely spur further research efforts.

We find that the general expression for the mass
difference hm in a class of gauge-field-theory
models suggests that the sign is model-dependent,

but that in the two models for which explicit cal-
culations are made, the sign is unfortunately nega-
tive.

The calculation of Am in a simple model with
SU(2) x U(1) gauge symmetry and parity-conserving
couplings is treated in Sec. II, and a general ex-
pression for bm is presented and discussed in Sec.
III. In Sec. IV we calculate sm in an SU(2)~ x SU(2)„
x U(1)„-invariant model suggested by Weinberg. '

II. SU(2) X U(1) MODEL

It is instructive to begin our study in a model of
minimal algebraic complexity. We therefore
choose a model incorporating triplet and singlet
gauge fields A„and B„and fermion and scalar
doublets

(2.1)

each with T =-,', Y =1, and the parity-conserving
Lagrangian
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2 = -—'(B„A„—a„A„+gA„XA„) ——'(B„B„—a„B„)

+$(i8 —a gT' A —2g'8 —m)g+ )s„4'+ i-gr 'A„4 + i-, g'B„4~' —p'4~4 +x(4~4 )'. (2.2)

SU(2) &&U(1) invariance permits a mass term with

equal proton and neutron masses but does not al-
low Yukawa couplings. This Lagrangian cannot
describe weak interactions but may be thought of
as a simplified description of the p-meson-pho-
ton-nucleon system.

A perturbative solution to this field theory with

spontaneous symmetry breaking is obtained by
letting P, develop a real vacuum expectation value.
After a gauge transformation to eliminate redun-
dant scalar field components (U gauge), we can
write

~2 ( s( ))' (2 2)

with v= (-g'/X)'", and find the vector-meson
mass term

+ ~'[(g&'„-g B„)'+g (A'„)'+ g (A„) ] (2 4)

Diagonalization is trivial, and, as in Weinberg's
original model, ' gives us the eigenfields

W„=—(A' ~ ~A.') m~ =-, vg,
2

I
Z&

=
2 2pgg (g & g &)

Lg +8'

1
A& ~ p gmp12 (g A& + gB&)

(g +g

mz =-,' v(g'+ g")'",
(2.5)

m„=0.

The interaction term between nucleon and gauge
fields can then be rewritten as

1 +

2v2
gW~ p y n +H.c. —

2 2 1/2 +p p y P
&g +g

2 &2

g„PYP+ (g +g ) g„&r"& ~

(g +g

(2 5)

At this point we can identify A.„as the electromag-
netic field, and the electric charge of the proton as

gg /(g2+ g 2)1/2

We now turn to the computation of Am in second-
order perturbation theory where the vector-meson
loop graphs of Fig. I contribute. Following Wein-
berg, ' we work directly in U gauge, where we
will encounter the curious property that quad-
ratically divergent terms in the self-energy Z (P')
disappear at p = m, so that mass shifts of the pro-
ton and neutron are logarithmically divergent,
and the mass difference em finite.

For the loop graph of any massive vector, such
as g, we have, ignoring coupling constants for

the moment,

d'k 1 g~' —(k~k "/m ')
(2v)' "P-jf-m+is ' k'-m~'+ic

(2.V)

where we can give meaning to the highly divergent
integrals by propagator regulation. The elemen-
tary Ward identity can be used to rewrite a factor
in the integrand of the k~k" term as

Ii = [(P —k' —m) —(P —m)]
1

x [(P' f-m-) —(P -m)]

I= -)'i —(P -m) + (P -m) (P' -m) .

Z

Neutrce:
& (g +g )n „n + —g
I 2 &2

W

n p n

g&+g~ P P P 4(g2+g2) P P P

+ ~g2I

8 n n p

FIG. 1. Feynman diagrams and coupling factors for
the neutron and proton self-energy parts in the SU(2)
x U(1) model of Sec. II.

(2.8)

The entire contribution of the k~k' term therefore
vanishes at P = m, and need not be considered
further in the calculation of Am. A more general
discussion of the cancellation of such spurious
divergences in observable amplitudes has been
given by Kummer and Lane. '

The g~' term is responsible for logarithmic-
divergent mass shifts of proton and neutron, but
a,ccording to the general arguments of Weinberg,
even this divergence must cancel in the mass dif-
ference bm. To see how this cancellation occurs
in our model, one need only refer to the coupling
coefficients in the individual loop contributions of
Fig. 1. The 8" loops do not contribute to am,
and photon and Z contributions are equal in magni-
tude and opposite in sign, so we can write
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+i g g" " d~k Tr(P'+ m)y„(p -k'+ m)y('

4m g'+g"g (2w)' (p —k)'-m'+i&

2 2

a&+i. ~~-mz~+i.

(2.9)

In all such models Am takes the form

ie~ d4k Tr($+ m)y„(P I—f + m)y('

4m (2m)' (p —k)' -m'

(
n

y2
&-1

(3.1)

Because of the simple relation between the cou-
plings, the Z particle acts as a regulator in the
mass-difference calculation, and the result is
finite. The momentum integration is readily per-
formed by standard methods and gives the result

am, "' 2 -x mz~
b,m = — dx (1 +x) ln 1 +2' 30 x' m'

(2.10)

which is simple but, unfortunately, manifestly
negative.

where we have separated the photon, which by
definition couples with strength e' to nm, from
the massive vector mesons, which couple with
strength e'd, . The d, and M, are functions of the
coupling constants and vacuum expectation values
which appear in the Lagrangian of the model and
must be calculated by diagonalization of the vec-
tor-meson mass matrix. As discussed quite gen-
erally by steinberg, e Am is finite and we must
therefore have the condition

III. A GENERAL EXPRESSION FOR 6 m

2 (3 2)

In the two models discussed in this paper, sm
has the following properties:

(i) n,m vanishes in zero and first order;
(ii) only vector-meson loops, with the g„„part

of the propagators, contribute to hm in second
order.

Qm
b,m = — g d; J(M, '/m'),

21T i 1

where

(3.3)

as a functional identity in any specific model.
The integral may be evaluated using the condi-

tion (3.2) to give

1
J(((}= d*(1+@}}n( ~, (})

0
x'

[il + (il' 4(i)"'-21'~-
2P 4P P P[+P 2P 1(p2 @)1/2 [p ~ (p2 4p)]2

3 2 3 2—+ — InP + -+0—
2 P 4 (3.4)

The exact expression is correct for all P, but
should be rewritten in terms of tan ' functions for
P &4, while the asymptotic form is accurate to 2'P&

or better for P & 4. Further J(P) is a monotonic
increasing function for P&0 and J(0) =0.

It is worthwhile to examine the possible sign of
gm on the basis of the expression (3.3) and the
constraint (3.2). If, as in the SU(2) && U(1) model
of Sec. II, only one massive vector meson cou-
ples to ~m, we must have 1,= 1 and 4m & 0.
there are two or more massive vectors, it is con-
venient to make the ordering convention M, &M,.&M„, so that J'(M, ~/m ~) & J(M„~/m ~) if i & k.
If we conceive of the d, and M, as functionally in-
dependent quantities, subject only to the constraint
(3.2), then both signs are allowed for nm. For
two massive vectors, sm will be positive if the
following two conditions hold simultaneously:

(a) d, «0,
(b) M, »M, .

I

For n & 2 similar conditions can be stated qual-
itatively. Of course, in any model d, and M, are
functionally related and explicit calculations must
be undertaken to see if conditions (a), (b) or their
analogs can be satisfied.

IV. SU(2)~ X SU(2)~X U(1)~ MODEL

In this model, suggested by Weinberg' as a rea-
sonable framework for computation of b,m, we
have seven gauge fields and chiral nucleon and
scalar doublets as follows:

Aiq Aqa B
~a(1 +y.)p

~LB 1(1~ )s

(4.1)
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with conventional gauge transformation properties.
In addition there is an additional scalar field H (x)
with T~ =T„=&, V=0 for which we use a matrix
notation 6

H {x)= [22Ht{.x)7,]T', (4.4)

A Hermiticity condition is necessary to ensure
equal neutron and proton masses in zero order.
We choose

h„(x) h, 2(x)

The gauge property is

H{x) H'(x) =e ' BL~ H(x)e+' 'AB 2

(4.2)

(4.3)

which is compatible with the gauge property and
reduces the number of degrees of freedom in the
field from eight to four.

The Lagrangian can be written in terms of gauge
field covariant tensors F„,and covariant deriva-
tives

8~ + sgL g Q T A + zPgP'B]f

D H =—~~H + sg~p 7 ' A~H —lggg H 7' 'A~
(4.5)

2=-—,'f(F„„)'+(F„"„)+(E„",)')+7() 2y dLg +PB2y dBPB

+ (dL4) t(dL" 4) +-,'[Tr(D„H)tD2H]+ f (yLHqB+qBHtqL) +V (Fl, 4) . (4.6)

The Higgs meson potential contains five independent field monomials up to quartic order. With no loss in
generality, the broken-symmetry solution can be chosen in the form, in U gauge,

1 v+s(x) 0...(.))
(4 I)

The terms of 2 which are relevant to the computation of hm in second-order perturbation theory are the
vector-boson-nucleon interaction

&22m= '(t lL& 4-'(I '-r', )+@BE '&"(1+ r,)+2grkjy (4.8)

and the vector mass term

(4.9)

The neutral- and charged-boson mass matrices decouple, although there is mixing within each segment
The neutral-vector-boson eigenfields are the massless photon A" and two massive fields Z, , with

Ml 2 =2[v (g'L +g'B )+v (EL +8'r )+([v (ZL +ZB )+v (gL+gr )] —4v v [gr'(ZL +8'B )+ZL~ZB ]) ) ~i

(4.10)

which are orthogonally related to A~~ ",B"by

a» a» a/3 A

(4.11)

ajar

age =
k

(4.12)

The elements of the matrix aj~ are rather compli-
cated functions of g» g» g„and the symmetry-
breaking parameters v and v' [E(I. (4. I)]

(t) 2 +f) 2+t) 2)l/2

b„—g„g, b~, = gL, g, b~3 = gI.g~,
f)22 = (V2gB2 -M, ') (v"g" -M, '),
522 —(V g ™l)V gLgB,

22 { gB 1 ) gLgF)

I)22 = {V2gB2-M22)(v"g" -M, '),
622 (V g ™2)PgLgB ~

~22= {V&B M2 )" &L&r ~

(4.13)
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We can now calculate the second-order vector-
meson loop contribution to ~m. The expression
for hm is simplified by anticipating the cancella-
tions coming from isotopic considerations.
Charged vector bosons do not contribute and the
nonvanishing contribution involves the off-diagon-
al neutral vector propagators

(0(TA" x {k)B"(-k) (0) = (0(TB' (k) A" ~ (-k))0)

and

(O~TAs s {k)B"( k)10}=-(OITB"(k) As s(-k}10) ~

where, in terms of the eigenfield propagators,

(O~TA" ~ (k}B"(-k)~0}

a„a„
k +if k -M +i& k -M +iE'

(4.14)

(0 ~

TA" s (k)B"(-k)
~ 0)

a»a» a22a» a~a»
k'+is k -M'+ie k -M'+i6

Only the g"' term need be written, as we have
argued in Sec. II. Further, a y, term in the mass
matrix can be ignored since it affects dm only in
higher order where fermion field redefinition is
necessary.

Incorporating these simplifications we may
write

4m= —

~ 4
i {' d k Tr(P+ m)y" (p -k'+ m)y, a»(gxaxx+g„»)»(gx»+g„a»)»(g~asx+gsa»)

2 2 2gF 2 ' 2 24xxx J (2xx)' (p -k)s-ms ' " ks+xe k -M, +xe k -M +is

(4.15}

e = gr, gag'r/(g g '+g g„'+g„g„')". (4.16)

If we factor out e2, b,m may be written in a form
directly comparable with the general expression
(3.1) and (3.3) with n =2 and

a (gxa + gsa )
axs(gsaxx+ gxxaxs}

ass(gx, asx + gxxass)

axs(gxaxx + gxxax,s)

(4.17)

obeying (3.2) in view of the orthogonality condi-
tions (4.12).

Since the d, and M, are very complicated func-
tions of gL, g„, g„, v, and v', we used numeri-
cal methods to evaluate b,m. We introduce polar
coordinates '

gL g cos8 q

g„=gsin8cos(Ie}, 0&8&m

g„=g sin8 sin@, 0 & Q & 2m (4.18)

v'= ccosg

v"=csi~
0&/&2'.

which is a convergent expression because the ma-
trix a„. is orthogonal.

The electric charge may be identified either as
the coefficient of the photon term in (4.15) or in
the Lagrangian Zs«(4. 8} expressed in terms of
eigenfields. We find

The dimensionless d, and the mass ratio M, '/M, '
are independent of g and c. These parameters
can be used to fix es/4xx = 1/137.04 and the lowest
vector mass M, although it is unnecessary for us
to do this explicitly.

Recall that a necessary but decidedly insufficient
condition for positive hm is dg & 0. In our com-
puter runs, we preassign a value of M, . The pro-
gram then generates random values for 8, Q, |I}

and computes dg lf d, & 0, it stops and generates
another random set. If d, &0, the program goes
on to compute M, '/M, ' and nm, prints the results,
and then generates another set of random values.

The results are summarized in Table I where
the Lm is computed for a nucleon mass m of 1 GeV.
The condition d, &0 is satisfied in about 20% of the
random trials. It is clear that bm varies within
a small range of negative values for each preas-
signed value of M„and that this range of values
becomes more negative with increasing M, . Most
trials were done at M, =2 GeV because we felt that
this was the smallest physically reasonable value
for M, . The 900 nonrandom trials were an un-
successful attempt to look in what we guessed to
be "preferred" regions of the parameter space in
the hope of increasing the upper limit on Lm. For
20 trials we printed results for am irrespective
of the sign of d, , and it became clear that there
is no lower bound on ~m. A value m =1 GeV was
taken for the zero-order nucleon mass in all of
our work.

Our conclusion is that for M, =2 GeV, am is
bounded from above in the parameter space by -3
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TABLE I. Numerical results for the I+ mass difference.

M~
(GeV)

0.25
1
2

37
2
2

Number
of

trials

300
100
900
200
900 (nonrandom)

20

Number of trials
giving
d((0

61
24

180
40
56

d& both signs

Range of values of Dm (MeV)

-0.64 & bm & -0.81
-2.13&b,m & -2.55
-3.35 & Am & -4.08
—12.7 & b,m & -13.5
-3.41&Am & -4.09
-3.77 & 6m & -890.0

G =26„,

G„/G, = 0. (4.19)

The present form of the model therefore violates
the experimentally observed universality of p. and

P decay, and must be modified. One simple way
to modify the model' is to introduce a second
Higgs scalar doublet with T~ =0, T~ =-,', Y =+1.
One can show that universality is recovered for a
sufficiently large value of the symmetry-breaking
constant of this field. We have not considered the
effect of this modification on the calculation of
am.

It is clear that the calculations of Am presented

MeV. This upper bound moves toward zero as M,
decreases, and the 300 trials at the very low value
of M2 =0.25 GeV suggest that the maximum value
of Am is never positive. This last statement is
less firm than the others because insufficient nu-
rnerical work has been done for low values of ~m.

In Sec. III we saw that two conditions, (a) d, «0
and (b}M~»M2, are necessary to achieve am )0.
Operationally in the SU(2}~x SU(2)s x U(1) r model
it seems possible to satisfy (a) and (b) individually
but never simultaneously. For example, with

M, =2 GeV, one tr ial found dy 17 3 but Mj 2 03
GeV, and another trial found M, =46.2 GeV but

d, =-0.00093. All of our results showed this same
pattern.

Before discussing the significance of our study
of b,m, we must mention a problem in the applica-
tion of the SU (2)~ && SU(2)s x U (I)„model to leptonic
and semileptonic weak interactions. Lepton fields'
are included by assigning all leptons T„=O with
other quantum numbers as in Weinberg's 1967
model. ' The new feature of the present model is
that the charged vector eigenstates are mixtures
of the fields (I/W2)(A, +iA, )~ s of the Lagrangian
(4.6) so that in general one must expect a right-
handed chirality component at the nucleon vertex
in neutron P decay. A calculation of P decay and
p, decay gives the surprising result that the left-
and right-handed chirality components have the
same strength for all values of the parameters
and that therefore

here are not realistic both because the underlying
fieM theories are unrealistic and because strong
interactions have been neglected. Our work gives
some feeling for the sign and magnitude of Am in
that class of gauge field theories where the entire
contribution up to second order in perturbation
theory is from vector-meson loop graphs. We
find that two relatively simple models give the
wrong sign although the general expression allows
both signs. A similar situation was found by
Hagiwara and Lee ' in another type of gauge field
theory in which there is a zero-order relation be-
tween Am and coupling constants of nNN system.
Although experimental information is rough at
present, it seems that the wrong sign of ~m ap-
pears when strong-interaction corrections beyond
the one-loop approximation are ignored.

In the traditional approach to the mass-differ-
ence problem' in which strong-interaction correc-
tions are treated using the Cottingham formula,
special scaling properties of the electroproduction
structure function seem to be necessary to produce
a finite bm, and the sign must also depend upon
these structure functions. If the idea of combining
the weak and elec tromagnetic interactions in a gauge
field theory with spontaneously broken symmetry
is correct, then Am will be finite without special
assumptions about the scaling properties. Our
work suggests that the strong-interaction correc-
tions must still be important in determining the
sign of Am.

added note. An analytic proof that Am(0 for all
values of the parameters of the SU(2)~x SU(2)s
x U(1) „model has recently been obtained by S.-Y.
Pi together with one of us (D.Z.F.).
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The three-body formalism for singular cores previously introduced by the author is con-
sidered in some detail. A new derivation is presented which clearly demonstrates the unique-
ness of this formalism and clarifies its relationship to appropriate boundary conditions on
the three-body wave function. It is shown that an auxiliary boundary condition must be im-
posed to uniquely specify a solution; this leads to an integral equation with a square-integra-
ble kernel. A detailed proof of three-particle unitarity is given for the amplitudes defined
by this equation, and explicit formulas are presented for a representative model.

I. INTRODUCTION

In a recent letter, ' the present author introduced
a generalization of the Faddeev formalism to in-
clude two-body interactions whose extremely short-
range behavior is characterized by a hard core, or
by a boundary condition on the wave function (BCM).
Using the special properties of the BCN t matrix
developed earlier, ' it was shown that the usual
Faddeev equations do not yield a unique solution
for such interactions, but that a particular solution
can be defined which yields the desired physical
properties. In particular, the resultant three-body
wave function vanishes whenever any pair of parti-
cles are within their respective core radius, while
its asymptotic behavior corresponds to a unitary
three-particle t matrix. In this paper we give de-
tailed proofs of these assertions, present a new
derivation of our equation which clearly demon-
strates its uniqueness, and consider in some de-
tail the special case of BCM alone (no external
potential). This provides the theoreticai ground-
work for subsequent articles in this series deal-

ing with the actual solution of our equations for
specific models.

The principal motivation for this development is
the versatility afforded by being able to utilize this
additional class of interactions in the three-body
problem. For example, calculations to date in the
three-nucleon system with realistic interactions
have been almost exclusively restricted to soft-
core models, the single exception being the long
and difficult variational calculation on the Hamada-
Johnston hard core by Delves et al. ' The results
of these computations have generated some doubt
as to the ability of such models to fit the experi-
mental data. For example, it appears that any
soft-core model which fits the two-nucleon phase
shifts reasonably well will underbind the triton by
about 2 Me&. It has also been suggested that a
significant discrepancy exists in the case of the
triton charge form factor. ~ Of course, it is quite
possible that the source of such disagreement does
not lie with the nature of the potential model, but
with the neglect of corrections due to three-body
forces and relativistic effects, which could well be


