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The eigenvalues of the Wick equation in the weak-binding limit are found in perturbation
theory employing two different approaches: (1) a covariant approach using an integral repre-
sentation for the Bethe-Salpeter wave function and (2) quantization in the infinite-momentum
frame using the technique of Kogut and Soper. The eigenvalues agree to order +3lno,'.

I. INTRODUCTION

Recently there has been considerable interest in
the application of the infinite-momentum frame to
quantum field theory. Weinberg ' first considered
the infinite-momentum limit of "old-fashioned"
perturbation diagrams for y' and y4 theories. He
showed that the vacuum diagrams present in these
theories become simpler in the high-momentum
limit. Chang and Ma' then examined Feynman
diagrams in a cp' theory in terms of the new vari-
ables 7 = (t z+)/v 2 and a = (t —z )/W2 and their con-
jugate momenta. Using these variables they were
able to reproduce Weinberg's results without the
necessity of going to the limit of infinite momen-
tum. Kogut and Soper ' extended their results by
considering ihe formal foundations of quantum
electrodynamics in the infinite-momentum frame.
Their hope was that an exact theory in this frame
would make the calculation of amplitudes simpler
for various high-energy electromagnetic processes.

In this paper we wish to show that the infinite-
momentum frame can be used to deal with a low-
energy process, namely the calculation of the in-
variant mass squared of a bound system. Al-
though such an approach necessarily sacrifices
manifest Lorentz covariance from the start, the
hope is that the infinite-momentum frame might
lead to simylifications in the calculation of binding
energies in systems that are more complicated
than the one considered here.

The Bethe-Salpeter equation' is, of course, the
conventional tool for dealing with the relativistic
bound-state problem. The presence of a relative
time variable in the Bethe-Salpeter wave function
makes its physical significance unclear. More-
over, the perturbation theories one uses to calcu-
late the binding energies have a generally nonco-
variant character with this relative time or energy
variable singled out.

The one problem which is dealt with by explicitly
covariant methods is the solution of the Wick equa-
tion, ' that is the Bethe-Salpeter equation describing
two spinless particles bound by a massless scalar

field in the ladder approximation. For this case,
due to the symmetries that are present and the
possibility of performing a Wick rotation, Wick'
and Cutkosky ' were able to introduce a spectral
or integral representation for the wave function in
momentum space. The eigenvalue problem could
then be reduced to one of the Sturm-Liouville type
for this spectral function.

This paper is divided into two independent parts.
In Sec. II, starting from the results of Wick and
Cutkosky, we construct a covariant perturbation
theory for the Wick equation in the weak-binding
limit. We use this perturbation theory to calculate
the bound-state energies to order a' inn. In Sec.
III we consider the same problem in the framework
of the infinite-momentum frame. We quantize the
usual Lagrangian describing two equal-mass par-
ticles interacting through exchange ot a scalar
photon in this frame. From this Lagrangian we
derive the Hamiltonian and apply a Tamm-Dancoff
approximation to the equation H ~g) =E ~p), which
retains at most one scalar photon in the inter-
mediate state. We solve this equation in perturba-
tion theory and obtain eigenvalues in agreement
with the results of the covariant Wick equation.

In Appendix A we present a brief derivation of
Wick's results for the ground state. In Appendix
B we give an alternative derivation of the infinite-
momentum bound-state equation starting from the
covariant Bethe-Salpeter Green's function. Last,
in Appendix C we present the details of the per-
turbation theory for the eigenvalues of the infinite-
momentum bound-state equation of Sec. III.

II. COVARIANT PERTURBATION THEORY

The Bethe-Salpeter equation for two scalar par-
ticles of equal mass interacting through a massless
scalar field is written in momentum space as"
[(P+ik)'+ &][(p ~h)'+ &]e (p) =

(2.1)

where n is the fine-structure constant, the mass
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of each particle has been set equal to unity, and

$„ is one-half of the total four-momentum of the
bound system and equals (0, p/2} in the center-of-
mass frame. In Eq. (2.1) the Wick rotation has
been performed so that the metric is Euclidean
with

P =Pl +P2 +P3 +P4 ~ (2.2}

Wick was able to find a set of solutions to Eq.
(2.1) in terms of an integral over an unknown func-
tion g (z ). By writing

1

y(p) = dzg(z)(p'+2iz). p+I -$ ) ', (2.3)
-1

+ (a/&() (I -z') "(1- $'+ $'z') 'g„(z ) = 0 .
(2.9)

This has the effect of making the differential op-
erator

2 =—(1-z')' "—-n(n —1)(1-z') "
dz dz

(2.10)

Hermitian for the space of functions to be consid-
ered. Following Wick, we write for $-1 (&0-0)

(a/(()(I -z') "(I —$'+5'z') ' =)((yo+ y, ), (2 11)

where

)( = a/(0, y, = 5 (z),
he was able to obtain a solution to Eq. (2.1}pro-
vided g(z) satisfied the differential equation

g" (z)+ (a/v)(1 -z') '(1 —5'+t'z') 'g(z) =o,
&( (1 -z')" (&d'+z')

Using these definitions and writing

(2.12)

(2.4)

with the boundary condition that g(+1}=g(-1)=0.
In Appendix A we present a simple alternative
derivation of Wick's results.

Cutkosky extended Wick's results by trying to
find solutions which were linear combinations of
functions of the form

g„(z)og„"'+g„"'+
g(0) + g(l) ~ ~ . .

n n n

Eq. (2.9) becomes

g (g (0) +g (1 & +. . . )

(2.13)

~ (g(0& +)((I) + )(y + y )(g(0) +g(1) + ) 0

(~( )
'S)m p( )

[p'+ 2izp $ + 1 —$']"" ' (2.5)

where g) (p) is a solid harmonic of the three space
components of P. He showed that the eigenvalues
could be obtained by solving the differential equa-
tion

g„"(z)+2(n —1)z(1-z'} 'g„'(z)

-n(n -1)(1-z') 'g„(z)

The boundary conditions are now g„"'(+I}=0,
i=0, 1, 2, . . . .

The lowest-order equation,

gg(0) + y(0)y g(0) p

has solutions

g„"' = c„(1—~z ~)", )((„"=2n,

(2.14)

(2.15)

(2.16)

g = &1/2 = 1 —B/2, (2.7)

where B is the binding energy of the system. In
this limit Eq. (2.6) can be solved in perturbation
theory. We consider the binding energy as fixed
and expand g(z) and e in terms of ~, where

(d2 $~2 ] (2.8)

If Eq. (2.6} is multiplied by (1-z')' ", the result
is

(1 —z ) "—g„(z)
d 21„d

dz dz

-n(n -1)(1-z') "g„(z)

+ (a/&(}(I -z'} '(1 —$'+t'z') 'g„(z) =0, (2.6)

with the boundary conditions g„(+1)= 0. Equation
(2.4) is a special case of Eq. (2.6) with n =1. The
eigenvalue equation is independent of l so that the
degeneracy is the same as that of the nonrelativis-
tic hydrogen atom.

In the weak-binding limit, t'- I, since

=0. (2.19)

Retaining terms of order &d In(d in Eq. (2.18), we
find that

with c„an arbitrary constant. The other solutions
to Eq. (2.15), the so-called "abnormal" solutions,
are discarded because they do not have the correct
nonrelativistic limit. The first-order equation
contained in Eq. (2.14}is

(g + g(0)y )g(1) +)((1)y g(0) + )((0) y g(0) 0 (2 17)

If this equation is multiplied by g„"' and integrated
from -1 to 1, the result is

) (0)$ g(o& y g(0)dz
y(1) n 1 n 1 n

f 1
g (0 & y g (0)dz

In obtaining this result use has been made of the
fact that

t 1 pl
g&0&(g + /&0) y )g&1)d g(1&(g /&0& y ) &o&d

4-1 -1
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X() ) = B-n'o) (1 n(o)/ ((+O((o') .
Thus

u = (o)(„=o)(Z(„"+)(„")

=2no) —8nou&'(in(d)/z+O((o ).

(2.20)

(2.21)

with

o 0
0 0

0 I 0
0 0 -21/2

(3.3)
Witi) the aid of Eqs. (2.7) and (2.8), Eq. {2.21) can
be solved for the binding energy B in terms of n.
To order n'inn we find that

0 -I 0 000-10
Q QB„=,+,inc. +0(().') .4n' mn'

(2.22) The Lagrangian becomes

We note, incidentaOy, that because of the nature
of 2 for the ground state (n = 1) and the fact that

V, =5(z), the perturbation theory discussed above
is particularly simple for this case. From Eq.
(2.17), the first-order correction to g, (z) satis-
fies the equation

g())II [g(0) y g()) +~(Q) y g(o)+ go) V g(0)]

(2.23)

Since the right-hand side of this equation is apart
from the constant g,"'(0), a known function of z,
Eq. (2.23) can be integrated directly and g,"'(z)
obtained. This result holds for all higher-order
corrections as well, and thus a knowledge of only
the zeroth-order ground-state wave function g,"'(z)
is required to calculate the ground-state wave
function g, (z) to all orders.

III ~ INFINITE-MOMENTUM FRAME

In this section we consider the same bound-state
problem as treated in Sec. II, but from the view-
point of the infinite-momentum frame. We begin
with the usual Lagrangian describing the interac-
tion of two scalar particles of equal mass m and a
massless scalar particle:

L = (5„v')(s"w) -m'q'v + .'(8„w.)Cs"w. ) -gv-'vv.

(3.1)

Here the x~ refer to the usual space-time coor-
dinates. Expressed in terms of the new coordi-
nates ' of the infinite-momentum frame,

xo = (~, x', x', a )

I.=(8,(p )(s~ (p)+ (s()(p )((),(p)

—V(p ' V(p -m(p (p+ (Si(po)(&))(po)

- z (V(Po) g(P (P9)o) (3 4)

where' x= (x', x'). The fields (p and (po are quan-
tized according to the equal-T commutation rela-
tions

[y(x), q'(x')]. .. = —.e (S —S ')8'(x -x'),
Z

[V.(x), V.(x')],=, =
4,. ~(S —3')8'(x -x').

(3.5)

&"= (&' &' z' z') =-{q e' z' a)
satisfy the commutation relations

po, a"]=0.

(3.8)

(3.7)

In this frame I 0 =I"=H is the variable conjugate
to ~ and plays the role of the Hamiltonian. Ex-
pressed in terms of the fields, H is given by

H =Ho+HI,

where

Ho= dxde[V(pt V(p+ '
pmt p ('((V+p ) ](oo

(3.8)
HI = g d Xd & P~PP0.

Using Noether's theorem and the Lagrangian of
Eq. (3.1) or (3.4), P„and Z„„can be constructed in
terms of the fields. These generators satisfy the
usual commutation relations of the Poincarb group.
[The g"" of Eq. (3.3) must be used, where needed. ]
In particular

(3.2)
In the Schrodinger picture, the Fourier expansions

of the fields at T =0 take the form

(p(X, a)=(2(() O dq I
—[a(q) )1)e-'(O&-q. x)+f)t(q q)ei(&))-q x)]

J~ 2g

I"(",I)=(2 ) Jdq —"(o.(iLII) "" '"' .I(i), II)I"" '"'].
0

(3.9)
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The operators a(q, q), at (q, q}, etc. satisfy the commutation relations

[a(q, )I), at(q', p')] = (2)[) 2&5(p-)I')5 (q —q'),

[b(q, n), b'(q', n')] = (2v)'2nb (n-n')6'(q -4'),

[ao(q, )}),ao~(q', p'}] = (2)[) 2&5(q-)i')5'(q —q'),

with all other commutators vanishing.
In terms of these creation and annihilation operators,

(3.10)

q = (2v)-' dq —q[at{q, q)a(q, q)+bt{q, q)b(q, p)+ao~(q, q}ao(q, p)],
0

400

P = (2z)-' dq
1

—q[a~(q, )I)a(q, p)+bt(q, q)b(q, q) +aot( qp)ao(q, q)],
4 o(0

d ~ m 2

H, =(2 } '
d'or — [at(q, l)) (t(, q) b~(q, ) 1()(qt()] ~ —,t(qq), (t( Il}I.

0

(3.11)

Thus the operators at(q, )I), bt(q, p), and at(q, q) when acting on the bare vacuum 10) create eigenstates
of the bare Hamiltonian Ir„g„, and P.

The calculation of the bound-state spectrum requires the determination of the eigenvalues of the operator

g2=~ ~j =2& Il p& (3.12)

that is,

P I(()&= & 1(l)& (3.13)

where for a bound state of two a or two b particles p, =2m -B with B the binding energy. In the transverse
center-of-mass frame Eq. (3.12) assumes the simple form

2n. H14p=o&= &'lkp=o&. (3.14)

Since [q„,H] =0, we can consider simultaneous eigenstates of both )I„and H. If q„has eigenvalue M,
then

HIMP=0, N& 2M lap=0, ~& . (3.15)

Thus, solution of the bound-state problem is equivalent to finding the eigenvalues of the Hamiltonian.
In order to solve Eq. (3.15}we consider its overlap with the eigenstates of H, . These states must, of

course, have their total transverse momentum equal to zero and have eigenvalue M of the operator g,~ .
This leads to a coupled set of equations involving the projection of leap o „)onto the eigenstates of H, We.
now make a Tamm-Dancoff ' approximation of retaining only the two-particle state

at(q, q)a (-q, M -q)10&,

and the two-particle, one-scalar-photon state

a'(q, n)a'(q', n')a.'(q. , no) 10&,

where q+q'+ q, =0 and p+ p'+p0 = M, in this coupled set. Reducing these two coupled equations to a single
equation for the wave function,

&0la (q) q)a(-q, M - q)lg& =—
& q, pig&,

leads to the result

q+ m' q + m' yo g' ), , 8(q')8(M —)I')2„2( „)-2„&q, ql~&=(2„). „' dq'dq'292(M-n) &q', n'l~&v(e, q;e, q),
where I, q" + m' q'+ m' (q —q')'

(q 6'~' 9') =2ln n I

'(n 0')
2n -2(M 1) 2(„n) -2M

+ 8(g'- q) +, +
2g 2(M -q') 2())}'-g) 2M)

(3.16)

(3.1V)
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The 6 functions in Eq. (3.17) arise because q is j~
restricted to positive values for all intermediate
states. Furthermore, in obtaining Eq. (3.17) we

have neglected self-energy terms. We will return
to this point later. In terms of a series of T -or-
dered perturbation diagrams, the approximations FJG. 1. The one-scalar-photon intermediate states
made correspond to keeping the terms illustrated which are retained as the interaction kernel in Eq. (3.17).
by Fig. 1 in the interaction kernel. This equation
is effectively the same as Weinberg's' Eq. (32)
for the T matrix, which retains one-meson exchange in the interaction kernel. " Weinberg obtained his

equation by taking the limit as the momentum goes to infinity of the corresponding "old-fashioned" pertur-
bation diagrams.

Since the literature contains derivations of the Bethe-Salpeter equation in the high-momentum limit which

have the covariant Bethe-Salpeter equation as a starting point, " in Appendix B we also present a derivation

of this kind. We obtain a result identical to Eq. (3.19) below in the order of approximation considered.

We now define

, =—, (I.k), (q "„I') =q(;, k). (3.18)

With this substitution and the mass of the two mesons set equal to unity as in Sec. II, Eq. (3.17) becomes

2

(q'+k'+B —Bk')P(q, k)=, dq'dk'8(1 -k')8(1+k')V(q, k;q', k')P(q', k'),

where

I(q, k;q', k)=~k-k I-' 8(k-k') ' ' .q ', ~" q, ' -2(I-~q1-k 1+k' k -k'

q"+1 q'+ 1 q —q')'
1 —k' 1+k k''- k

(3.19)

In this equation

B=B—B /4,

where B, the binding energy, is defined below Eq. (3.13). If we define a three-vector p by"
p'=q'+k',

(3.20)

(3.21)

then Eq. (3.19) has a structure analogous to that of the Schr6dinger equation for the nonrelativistic hydro-
gen atom with the reduced mass set equa1 to —,':

" d'P'0(p')
(P +B)4(p) 4(2 )3 J ( l)2 (3.22)

This equation has bound-state solutions g„",
' (p),"with eigenvalues B„=n'/4n' if we set g'/4(2v)' = a/2v',

as for the covariant Wick equation.
In order to verify that the p„", ' (p) can serve as lowest-order solutions to Eq. (3.19), it is necessary to

show that the terms that have been neglected in obtaining Eq. (3.22) from Eq. (3.19) make a small addition-
al contribution to the binding energy. Here we will outline the steps leading to Eq. (3.30) below. A more
complete derivation is given in Appendix C.

Equation (3.19) can be rewritten as

[ho+ B—k'B —(J -I)]g = 0, (3.23)

where k, is the nonrelativistic Coulomb Hamiltonian of Eq. (3.22), JP is the right-hand side of Eq. (3.19),
and Ig is the right-hand side of Eq. (3.22). Let p and B be expanded in powers of the coupling constant:

q
(0) + y

(1) ~ . . ~

a =a"'+a"'+- ~ ~

The lowest-order solutions are taken to be solutions of Eq. (3.22), that is,"
(3.24)
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(0) Q Cll
g

(0) (P)
lm

Then from Eq. (C9} of the appendix,

B"'=B„"'(k'& +((d -I)& . (3.25)

In this equation J is obtained from J by allowing the k' integration contained in J to run from -~ to ~ and

by replacing B by B"'. These changes alter the result only in higher orders. The first term of Eq. (3.25)
makes an n contribution to the binding energy. Since we are only interested in (Z-I&„ to the lowest order,
it is possible to make use of the sharply peaked nature of the" P„",

' (p) to approximate this expression by

Eq. (C12):

(J I), = f—dpdpg *(p)y.. tp K[(p p) ~k —k I( I" )]
' —(p-p ) (3.26)

Since the term in curly brackets, i.e., the effec-
tive-interaction term, is just a function of p -p',
in coordinate space Eq. (3.26) takes the simple
form

r).= f dr~le„-"'( )~l*~t'7), (3.27)

where%„"'(r) is the Fourier transform of g„"'(p)
and

1 " dpe '~' 1
27r'„p'+ ~k){a'/n'} r ' (3.28)

Equation (3.27) can then be evaluated. The result
is

Q(J-I&„=, I nn+O(e ).n'm

Thus from Eq. (C21),

(3.29)

QB —
4

+ inc +O{n4n' mn'
(3.30)

In order to show the equivalence of the bound-
state problem formulated in the infinite-momen-
tum frame to the covariant Wick equation, it is
necessary to consider the contribution that multi-

FIG. 2. Multi-scalar-photon states which contribute to
the Wick equation in the ladder approximation but have
been neglected in obtaining Eq. (3.17).

scalar-photon states of the form of Fig. 2 make to
the binding energy. This is so because diagrams
of this type are included in the ladder approxima-
tion from which the binding energies of Sec. II
were calculated. A consistent Tamm-Dancoff ap-
proximation carried to the two-scalar-photon level,
in addition to the first two diagrams of Fig. 2, would
also include diagrams with crossed photons. We
do not consider them here since they would not be
included in Wick's ladder approximation either.
The largest contribution to the binding energy
from multi-scalar-photon states comes from the
two-photon states, and this can be shown to be at
least of order n'. Thus the approaches of Sec. II
and III are consistent to order n'Inc. [cf. Eqs.
(2.22) and (3.30)].

IV. CONCLUSION

In this paper we have shown that the technique
of quantizing a field theory in the infinite-momen-
tum frame can be extended from its use in the cal-
culation of S-matrix elements to the bound-state
problem. We have applied this theory to the sys-
tem of two scalar mesons bound by a massless
scalar meson and have seen that it yields results
consistent with the conventional Bethe-Salpeter
formalism. In so doing, we have neglected self-
energy terms and other renormalization effects.
If this quantization procedure, however, is to be
employed to calculate bound-state energies to
higher orders in this case or in another of greater
physical interest, such effects must necessarily
be taken into account. This extension will be dis-
cussed in a future publication.

In order to make a detailed comparison possible
between the conventional covariant Bethe-Salpeter
equation and the infinite-momentum frame equation,
we have developed a covariant perturbation theory
for the Wick equation. This method is of some in-
terest on its own account. Previously, explicit
solutions of Wick's equation have been exhibited
only in the strong-binding limit ($ =0) or to order
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n' in the weak-binding limit. One curious feature
of this calculation is the appearance of an a'inn
correction to the bound-state Balmer energies.
Such a term is peculiar to the type of cp'happ theory
considered here with exchange of a scalar photon
and does not arise in electrodynamics where the
photon has spin. "
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APPENDIX A

We attempt here to find a solution of the Wick
equation

Wp =Ip, (A1 }

where 8'y and Iy are the left- and right-hand
sides, respectively, of Eq. (2.1), by employing an
integral representation of the form

provided a and k are chosen to be +I and g(+1}=0.
Since this equation must hold for arbitrary p, Eq.
(2.4) follows immaliately.

APPENDIX B

In this appendix we will obtain Eq. (3.19) by ex-
plicitly taking the infinite-momentum limit with
the covariant Wick equation as a starting point.
Our purpose in part is to derive Eq. (3.19) in the
Weinberg' approach, but without reference to the
T matrix, and in part to carry out a development
parallel to that of Kim and Zaoui. " The results
we obtain agree with those derived from quantiza-
tion in the infinite-momentum frame as a starting
point and with the Weinberg T-matrix approach.
We have, however, not been able to find a point of
contact with the approach of Kim and Zaoui.

Our starting point is Eq. (2.1), but in a form it
has in Minkowski space prior to Wick rotation.
The corresponding Green's function equation in
relative momentum space can be written as

0 (p) = «r(z)R(p, z) '.
4a

(A2) go2)(6) P Pl) G(12)((P p pl l))(i(pll pill)

In this equation (2, k, and g(z) are to be deter-
mined so that y (p) satisfies Eq. (A1) and

R(p, z) = (p'+2izp t'+1- $ ) .
Under the action' of I,

pb

I(p=(a/2(()J( «g(z)R(p, z) ((2) '(z),

(A3)

)( GO2) ((P pl I l pl )

where 6', p, and P' are c-number four-vectors, in-
tegration is performed over variables with re-
peated indices, and

6'„= (P„O) 0, P), 6"= (22 .
We further have

~here

Q(z) = (I —t'+z'$') .
Since

II)'=R'-4i pz)R —(1 -z')(2ip ])',

(A5)

G'"'(6' P P') =5'(P -P'}G"'(P,) G'."(P,),
G(l)(p ) —G(l) 2(p 2 m2+i+) 1 I 1 2 (E2a)

P, = P+(I'/2, p, =-p+6'/2.

The interaction term is given by

in terms of Eq. (A2}, Eq. (A1) assumes the form
b

dzg(z)[R ' —2z(2iP $)R 2 —(1-z2)(2iP $)2R-2
4a

i
(Pl P ) 2

( l)2

We now define the quantities

(B2b}

-(u/22)Q 'R '] =0.

Using the fact that

(A6) ', = (p, '+ ')'" =([-,'P(1+k)]'+q'

(d, = (p2'+ m')"' =f[2P(1 —k)]'+q'+ m']'"

—R '= R'2i(p -$)
dz

(AV)

w"ere Ikl - 1 and q is transverse to p. ~e will
eventually have I'- ~. Using Eq. (p3) we set

1
p1+ —pPp —) +$6,

d
d 2 R '=2R 2(2ip. t')2,

Eq. (A6) becomes, after integrating by parts,

1
P2y —2Pp —2 +Z6,

1
Pg- 2Pp+ &y $E

y

1
P2 —pPp+ Qg —zE .

(E4)

1

l «R(p, z)-)[(l-z')g" (z)+(~/v)e '(z)r(z)]=0,
-1

(A8)

We can now take partial fractions and express Gp
in terms of what will later turn out to be positive-
and negative-energy contributions:
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G(') =G(i)+G(» = +
-i -1 1

G(2) G(2) + G(2) -i 1 I (B8)

As suggested by Kim and Zaoui, the behavior of
O',"G',"for I'- ~ is crucial to the analysis. Taking
this limit, we obtain

«») -G(»G(2) +G«&)G(2) +G«&)G(2) +G(&)G(2)
{) + + + - - +

G(1 )G(2 )
+ +

P ~ oo

This is the analog of Weinberg ' s statement that
pair terms disappear in T-matrix elements in the

E -~ limit. This can be shown explicitly by
carrying out the same sort of analysis as given
below for G'+'G'+ ' for the remaining terms of Eq.
(B6). Taking partial fractions again, we obtain

G(»G( ) ~ G(»G«»
0 0 + +

p~ oo

(a)

(b)

FIG. 3. Two-photon exchanges which are (a) retained
and (b) neglected in the Green's-function expansion of
Eq. (B10).

If we now substitute this expression into Eq. (BI)
in its iterated form and integrate over p, and pp
we obtain

G&'»(&p p p')—:Jtdp dp'G«&

G&&2&(&P p p~) +G&&2)(&P pi/i p))
)& I (6& p) I Pl PE} G&&2)(&P pi/i) p) ) +

with

-&&2) t) (p —p }&&t

2% & &(P20&) - R2)

Z 1 1
l(&P, p, p')= 2-, -+

2F {&t) P2++Pz+ 4{) Pg++P2+ —CV

&d = ([(k —k')-,'P]'+ (q —q')']&" .

(B8)

(B9}

The second term of Eq. (B8) can be represented diagrammatically by Fig. 1 of the text, but with somewhat
different vertex rules and the replacement &) =-,' M(1+k) --,'P(1+k) and T —t The next it.eration in the
Green's function expansion can be represented by the diagrams of Figs. 3(a) and 3(b).

If we now neglect the contributions in Fig. 3 (b) (i.e., in this order and all higher orders consider inter-
mediate states with at most one scalar photon present}, we can resum the Green's function expansion into
the form

G'"'(&p, p, p'}= G'."'(&p, p, p') + G'."'(&p, p, p")»(&p, p",p'" 5""(&p,p"', p') . (B10)

The neglect of interaction terms involving two-or-more-photon intermediate states corresponds precisely
to the Tamm-Dancoff approximation made in the infinite-momentum-frame quantization approach.

The homogeneous equation which corresponds to Eq. (B10) is

4(&p p} = JtG'0" (&p p P')dP'&&I(&p p' P")dP"4(&p, p"} (B11)

where we have at this point explicitly inserted the integrations implied by the repeated variables.
We are now ready to carry out the I -~ limit. Expanding as Weinberg does, we get the leading terms

[m'=I; t&, B, and B defined in Eqs. (3.13}and (3.20)]:

«&&= &P(1+k)+ P 1+k
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(d = —,'P(1 -k)+, -1 &k &1q'+1
P(1 -k)

and

2(I-B)-" q"", 'q,-q" '8(k k)
P 1++P2+ 1 +k 1 —k' k —k

=P 2(I-B)-q"I-'",'-"-", '8(k-k ),
P', ++P,+- ~ 1-k 1+k' k -k' (B13)

Q —cu —cu0 1 2

= -o P(1 —k )[B—Bk + qo + ko]

If we substitute these results into Eq. (B11), noting that dp=(fq(-,'P}dk we obtam E (3 19}
Had we carried out a derivation similar to that following Eq. (B6) but inserting ("(()G(o), where either a or

b or &% is a minus sign (pair terms), the p dependence would not drop out and the contribution would

vanish as I -~.

APPENDIX C

In this appendix we calculate the first-order correction to the Balmer eigenvalues from Eq. (3.19}. We
begin with this equation as it is rewritten in Eq. (3.23):

8 (1 —k }8(1 + k )[ho + B—k B (4 I—)]g = 0-. (C1}

The 8 functions are used here to indicate that Eq. (3.19) is originally defined for -1 &k &1 only. In Eq.
(Cl), "k, is the nonrelativistic Coulomb Hamiltonian of Eq. (3.22), i.e.,

" dl'0(P')
Om( P 4(p) 4(2 )3 (~ l)2

=P'{I -14
y

and Jp is given by the right-hand side of Eq. (3.19):

(C2)

where

), dq'dk'8(1 -k')8(1+k')V (q, k; q', k'}Ic)(q', k'), (C3)

~2 -1
V (, ),'; ', k')=)~k —k')~ 'Ie o,' —)!') „+, ,

—2(1 —o)
P

+8(k' k)
q"'1 q"1+(q q')'-2(I-B)
1 -k' 1+k k'-k

The bound-state energies can be determined in perturbation theory if g and B are expanded in powers of
the coupling constant:

y(0) + q(l) +. ~ .
a =a"'+a"'

The lowest-order equation is taken to be

( +B(o))~(o) 0

(C4)

which has solutions (()(o) = p(o(), where (()(o()„(p}are the bound-state solutions of the nonrelativistic hydrogen
atom. Since the states g'„", are degenerate for fixed n, we can choose as our zero-order solutions the
states

~(o) pCn ~(o&

Jm
(C6)

where the C", are constants to be determined by the perturbation theory. Since Eq. (C1) does not possess
the O(4) nor the O(3) symmetry of Eq. (C2), we should treat this problem as one in degenerate perturbation
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theory and expect that for the exact solutions of Eq. (Cl) I and m will not be good quantum numbers. As we

will see, however, to the order in which we are interested, l and m remain good quantum numbers and the

degeneracy is not removed. Hence we can apply nondegenerate perturbation theory to this order.
With the substitution of the zero-order solutions of Eq. (C6), the first-order equation becomes

(k + B'„')g"'+8{1—k)8{1+k)[B"'—k'B"' —(J -I)]q"' =0.

In this equation k'B, g'„" and (J -I)g'„" are assumed to be small perturbations on the zero-order solutions,
so that we can replace B„by B„"'in both these expressions. We will see that this is a consistent approxi-
mation.

We now take the inner product of Eq. (CV) with g'„". We obtain

B"'Jtdp8(I —k)8(1 k+)lg' 'l =B' ' dp8(1 —k)8(I k+)k'lP'l'+ dp8(1-k)8(l +k)g'o'* {J-I)g'o'
4

(CB)

Since the zero-order solutions P'„", (p) are sharply peaked for small values (of order a) of p, "Eq. (CS)
can be evaluated to lowest order by extending the range of Re k and k' integrations from -~ to ~, i.e.,
dropping the 8 functions. We will call J with these replacements J. Since the g'„' are normalized to unity,

B"'=B„''(k ) +(J I)„.-
The first term of the right-hand side of Eq. (C9) makes an a' contribution to B"' since

&k')„=O(n ), B„' ' = u /4n'

(C9)

(C10)

In order to evaluate the second term, (J I)„, w-e again make use of the nature of the zero-order solu-
tions. If we expand the factors of (1+k) ', (1-k') ', etc. in powers of k and k' to first order and neglect
q' and q" with respect to 1 in the expression for J [Eq. (C3)], we see that (J -I )„ is identically zero. This
is the reason for taking the P', ,

' as zero-order solutions. As a next order approximation we retain the
factors of q

' and q" and expand the denominators involving 1 -k, 1 —k', etc . to second order in powers of
k and k'. The resulting equation can then be written as

(C11)

As it stands Eq. (C11) is difficult to evaluate. As a lowest-order approximation, we replace p
' and p"

in the denominator of the effective-interaction term with &p')„= &p")„=n'/4n', respectively. To verify the
validity of this approximation we can rewrite the term in curly brackets as

lk —k'
l (p-'+p" + 2B„"')

{p p'}'[{p— P} + l-k-k'l(p'+p" +»."')]
If we make the above replacement in the denominator but retain the exact form in the numerator, then Eq.
(Cll }can also be evaluated using the techniques outlined below. To lowest order the result is the same as
for the equation

&J-I).=
Jl dpdp'0'. "'(p)&'."(p )C(p-P)'+ lk -k'l(o, '/n')] '- (p-p') (C12)

Since the effective-interaction term of Eq. (C12) is a function of p —p, the equation can be conveniently
written in coordinate space as

&J-».= o' drlq"."(r)l'Av(r), (C13)

where q'„"(r) is the Fourier transform of p'„"(p) and

1 " dp e-'P'
2 '. p'+lkl(cP/ ') (C14}

& we d«me x' =k'+
lkl (+/n'), then the dq integration can be carried out giving

2nV{r) = —
~

cos(kz)A. (XII)dk --, (C15)

wh~re & = (&'+ &'}"'and A, is the modified Bessel function of the second kind. Making use of the identity '~
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cos (kz )Ko (kR) dk,
1 2 ]'"

Tr p

we write

(C16)

(C17)

(d I)„=-—— dr~4'„" (r) ~', dk cos(kz) ln(0)- 2 (k + n'/n')
k

nV(r) = — cos(kz)[K, (XR) K-o(kR)]dk .2
7T p

The major contribution to this integral occurs for small k. As far as the evaluation of the integral in Eq.
(C13}is concerned, the replacement of K,(ltR) and K,(kR) by their leading terms, -ln(XR) and -ln(kR),
respectively, is a sufficient approximation. The terms that are neglected here can be shown to contribute
to a higher order only. Therefore"

= —
I dr)4'„"(r)~' t-dk sin(kz)[(k+ n'/n') ' -k ']

ZJo

~ drfq'„'(r)f' —Isin(fz fn') Ci(fz
f
n')+-,'z[cos(Jz

f
'n) -1]—cos(hz) n') Si(fz f

n'), (C18)

where the second line follows after an integration by parts. Making use of the series expansions for the
t.i and Si functions as well as the sine and cosine, we evaluate this last integral. To lowest order the re-
sult is

Q(J-I)„=,Inn+0(n'},
7m'

and thus from Eq. (C9)
3B"'= Inn+0(n')

7rn2

(C19)

(C20)

Combining this result with Eqs. (3.20) and (C4) and the fact that B„"'= n'/4n', we have the final result.
CP QB„=4 2+ 2 Inn+0(n3).4n m~ (C21)

As was pointed out previously, to this approximation (n Inn) O(4) and O(3) symmetry has been restored,i.e., the effective interaction &V(r) is independent of z. If we were to evaluate Eq. (C18}beyond lowest
order, then the factors of z would appear in the integration and the g'„", would be mixed by the perturba-
tion. The covariant Wick equation maintains O(4) and O(3) symmetry and presumably if we were to include
the two-scalar-photon states of Fig. 2, this symmetry would again be restored to order e'.
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