
1806 H. B. GEDDES AND R. H. GRAHAM

which follows from the time-reversal invariance of the

strong interactions [see Martin and Spearman (Ref. 13)l.
G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467

(1960).
"The amplitude A&(t, s) may be obtained from the

s-channel amplitudes given in Graham and Johnson
(Ref. 11) by means of the s-t crossing matrix [see
Gasiorowicz (Ref. 12, p. 263)l.

In writing down Eq. (3.12) we have anticipated appli-
cations in a later section where the value of t at which
the appropriate amplitudes are evaluated is of 0 (p, 2).

This would make the terms in C and D of O(p4), and so
they have been dropped.

Our amplitudes and notation in this section are those

of R. G. Moorhouse, Ann. Rev. Nucl. Sci. 19, 301 (1969).
This is the combination studied by Cheng and Dashen

(Ref. 1). Their result is that I' (0, 2p ) =E„ONN
+O(p4) with E„ the pion decay constant (=93 MeV) and the
limit t-2p2 taken before v —0.

Actually, Altarelli et al . (Refs. 3 and 10) use an ex-
pansion which allows the p/ons to be off mass shell. Our
coefficients, while not the same as theirs, are related
to them.

In arriving at Eq. (4.7) it is important to note that the
coefficient of R ) ).pp(l t) depends only on t.

H. Pagels and W. J. Pardee, Phys. Rev. D 4, 3335
(1971).
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The scattering formalism of Alt, Grassberger, and Sandhas is extended to include a pos-
sible three-particle interaction. This is then employed to find a set of scattering integral
equations in which no unphysical auxiliary amplitudes related to the three-body force appear,
as well as to develop a practical method for treating perturbatively the effect of a weak
three-body force. The general K-matrix formalism and connected-kernel Heitler equations
are also developed. This yields some indication of the structure that might be expected in
a relativistic connected-kernel K-matrix formalism.

I. INTRODUCTION

Virtually all of the existing calculations of both
the bound and the continuum states of the three-
nucleon system (or any other three-particle sys-
tem, such as that consisting of three pions) in-
clude only two-particle interactions. The role of
a three-nucleon force is unclear at present, ' and
its possible nature is obscured by the uncertain-
ties in the off-shell behavior of the two-nucleon
transition amplitude. Given the validity of a non-
relativistic dynamics for the three-nucleon sys-
tem, it is obvious that the questions of off-shell
behavior and of the magnitude and character of the
three-nucleon force are intimately correlated,
assuming that the bound-state and on-shell scatter-
ing parameters of both the two- and the three-nu-
clean systems have been accounted for. These
questions are also rather ill-defined if one adopts
the stance of phenomenological potential scatter-
ing, and should they prove to be quantitatively
significant a somewhat more fundamental approach
to the entire problem may be in order.

Nonetheless, there are several reasons for ex-
amining how a three-particle force alters the

scattering integral equations and the computational
procedures derived from them. One of these is
the opportunity to examine in a dynamically well-
defined framework a situation somewhat related
to the relativistic three-particle problem. Another
is to use these equations to formulate modifica-
tions of some of the standard methods for calcu-
lating three-particle amplitudes so that three-par-
ticle forces can be introduced and their effects
studied.

The rather straightforward modification of the
three-particle scattering integral equations which
is entailed when three-body forces are included in
addition to the usual pair interactions was first
pointed out by Newton. ' Calculations using a sep-
arable three-nucleon force to simulate some of
the noncentral and short-range features of the
two-nucleon interaction were carried out by
Phillips. ' Both of the preceding authors employed,
essentially, the Lovelace4 version of the scatter-
ing integral equations.

Our objectives in this paper are twofold. First,
we wish to embed the ideas of Newton and Phillips
within the somewhat more practical form of the
scattering integral equations due to Alt, Grass-
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berger, and Sandhas. ' Although this turns out to
be a rather simple extension of the latter formal-
ism, it will permit us to deduce some results
which should be useful in carrying out practical
calculations when a three-body force is included
in addition to the pair interactions. We will de-
rive a set of quasi-two-body Lippmann-Schwinger
equations for the amplitudes related to scattering
from an initial state of a free particle plus a
bound pair (e.g. , an N dst-ate). We also present
a practical and perhaps quantitatively adequate
method for studying the effects of a weak three-
body interaction perturbatively. This may com-
pletely suffice for the case of the three-nucleon
system.

Our second objective is to construct a K-matrix
formalism in the case of a general interaction
along the lines previously followed for only pair
interactions. This yields the sort of structure we
might expect in a relativistic connected-kernel K-
matrix formalism.

where the channel index n takes on the values 0,
1, 2, 3, 4. For ~+0, 4, V„ is the pair interaction
between particles P and y (with P, y+ a, 0, 4), V,
=0, and V4 is the three-particle potential which
depends upon the coordinates of particles 1, 2, 3.

V4 is assumed to be Hermitian and short-ranged
in addition to any necessary limitations on its sin-
gular character. Roughly speaking, V, is short-
ranged if its effects are suitably small when the
distance between any pair of particles is larger
than some characteristic length. In addition we
will suppose that V4 by itself is incapable of gen-
erating a three-particle bound state.

The operator

U (z}=V+ VG(z)V

can be rewritten as

(2.2)

Uoo(z) =+ t„(z)+its(z)GO(z)Us (z)G (z)t (z),a 8&

(2.3)
where

Us„(z) = 58~Go(z) '+ V —V„—Vz + 5 z~Vz

+ VzG(z)V

Here

(2.4)

II. SCATTERING INTEGRAL EQUATIONS

We mill nowextend the formalism of Alt et al. '
to the case where the interaction consists of a
three-particle force in addition to the pair interac-
tions. The total interaction potential in this case
is

(2.1)

V —= V —V~=+ 5~yVy,

8
—1 —5&

Go(z) —= (z H)-

G(.}-=(. -H, —V)-',

where H, is the total kinetic-energy operator and
z is a (complex) parametric energy. The opera-
tors t„(z) are defined as solutions of the integral
equations

t„(z)= V„+V Go(z}t (z)

= V +t„(z)GO(z)V (2.5)

U(z) =5GO(z) '+5t(z)GO(z)U(z)

=5G,(z) '+ U(z }G,(z)t(z)5, (2.6)

where we have employed the usual matrix nota-
tion" with respect to the channel indices. That is,
U(z) represents the 5&5 matrix whose elements
are the operators Us (z), t(z) is a diagonal ma-
trix whose elements are the operators f (z), and
5 is the matrix with elements 1 —5@„.

With the use of Eqs. (2.6) other forms of the
scattering integral equations which include the
three-body interaction can be found. For example,
the generalization of the so-called optimal equa-
tions' "is very easily derived. These equations
still retain their original character in this case.
Namely, they are coupled equations for the half-
off-shell (or on-shell, depending upon the form
chosen) elastic and rearrangement amplitudes
and a set of half-off-shell amplitudes whose sum
is the breakup amplitude.

For ~ ~0, 4, t is just the two-particle transition
operator defined on the three-particle Hilbert
space. Evidently to=0. Finally, t4 is the three-
particle transition operator generated by the three-
particle force V,. We note that V4, and conse-
quently t„has no disconnected structure, so that
Eqs. (2.5) are all well-defined integral equations. '

It is easily verified from Eqs. (2.3) and the two-
particle bound-state pole residue prescription, ' "
or directly from Eqs. (2.4), that the on-shell ma-
trix elements (@z(E)~Uz, (E+i0)~ P (Z)) for n., P &4
coincide with the physical amplitudes for scatter-
ing from the state

~ P (E)) to the state
~ $8(E)).

The channel states
~ P„(E))for n 40, 4 refer to non-

interacting two-particle states comprised of a
particle n moving freely and a bound state of the
other pair; ~ P,) corresponds to a three-particle
plane-wave state. U4 and U84 for all n, P are
auxiliary operators whose matrix elements have
no immediate physical significance.

Using the definitions (2.4}and (2.5}one finds
that the operators Us (z) satisfy
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U(z) = U(z) + U(z)GD(z)t~'~(z)GO(z) U(z)

=U(z)+ U(z)G, (z)f'"(z)G,(z)U(z),

where

U (z) = 6G,(z) '+ 6t~'i(z)G0(z) V (z)

=6GO(z} '+ U(z)GO(z)t 2 (z)6.

Let us choose

t"l(z) = t„(z)6~
so that

(2.8)

(2.9)

(2.10a)

(2.10b)f~„&(z) = f,(z)6.,
With this choice for t'" Eqs. (2.9) can be solved
exactly:

Ugg[(z) 68nGO(z) + 684t4(z) 4u ' (2.1 1)

Equations (2.8) then become, in component form,
3

Us„(z) = UB~(z) +Q U&z(z)GO(z)t&(z)GO(z)U&, (z)
)-1

3
= U,.(z)+ p U, „(z)G.(z)f„(z)G.(z)U„.(z) .

(2.12)

These define a closed set of equations for UB„(z)
with P, a 4. That is, there is now no coupling
to the unphysical auxiliary operators U84 and U, .

If we define

p(z) = G,(z) U(z)G, (z),
it is clear from Eqs. (2.11) and (2.12) that, for.
example,

Es„(z) = G,(z)[68 + t~(z)GO(z)]

+ Q G,(z)[6s,+ t,(z)G,(z)]t„(z}F„„(z),
T= j.

(2.i3}
where we can restrict ourselves to P, os 4. Fur-
thermore, only the subset of (2.13) for P, o.oO
which is uncoupled from the P =0 or e =0 equations
need be considered for the calculation of physical
scattering amplitudes. If on the appropriate two-
particle subspaces the operators t&(z), y =1, 2, 3,
are of finite rank, then we can derive from (2.13)
a set of multichannel quasi-two-particle equations
for the so-called vertex-state matrix elements"
of the Ez (z) just as if there were no three-par-
ticle force. ' " Equations (2.13) are a generaliza-
tion of the equations derived by Phillips. '

To solve Eqs. (2.13}even in the case of finite-

Now if we decompose t(z) into two parts, namely,

t(z) = t "( z}+f (z) (2.7}

then'

where

U (z) =6G,(z) '+6t ' (z)G, (z)U ' (z) . (2.15)

The perturbation theory is now defined by the iter-
ation solution of Eq. (2.14)." Thus, to first order
in t, we have

U(z)=U 0 (z)+U 0 (z)G,(z)t ' (z}G,(z)U~ (z).
(2.18)

In component form (2.16) becomes

Ua„(z) = U g~(z)+ [6go+ U zo (z)GO(z)]

xt, (z)[6, +G,(z)U~'i(z)],

(2.i7)
where we have used the fact that

and

U z4 = U so + 6 so 0(

Clearly, we need consider only the submatrix of
(2.17) for which P, o. o4.

The use of (2.17) still entails solving the three-
body integral equation for t, (z). However, since
the integral equation for t4 has a connected kernel,
we expect that if V4 is sufficiently weak we can
take

t4(z) = V4 (2.18)

so that from (2.17) we find the two-potential type
of expression

Ug (z) = U '8'~(z) + [6/0+ U'8'0'(z)GO(z)]

x V,[6,.+G,(z)U', J(z)].
(2.19)

rank pair interactions requires the knowledge of
the off-shell matrix elements of t4(z} .Therefore,
except in some especially simple situations, ' the
use of (2.13) for the exact inclusion of the three-
body interaction may be computationally prohiba-
tive, However, given the usual physical circum-
stance in which the three-body interaction is ex-
pected to be weak compared with the pair interac-
tions, such an exact accounting of its effects is
unnecessary and a perturbative approach will
probably suffice. In the three-body bound-state
problem the simplest recourse is to use first-
order perturbation theory to compute the energy
shift arising from V4.

Vfe can construct a scattering perturbation theory
by interchanging the roles of t~')(z} and t~'l(z) in
Eqs. (2.8) and (2.9)." We then have, for example,

U(z} = U (z)+ U (z)G (z)f ' (z)G, (z)U(z),

(2.14)
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Equa. tion (2.19) represents the simplest expression
for studying the correction to the scattering gener-
ated by arbitrary pair interactions by a compara-
tively weak three-body interaction. We note, how-

ever, that we have two criteria for weakness,
namely that V, should be weak (in some sense)
compared to the two-body forces and that it should

be weak enough that (2.18) is approximately valid.
I et us comment upon the computational practi-

cality of (2.19). We see from (2.19) that

in more immediately applicable forms than those
in Ref. 16. Despite the apparent relative simplic-
ity of these equations it appears that they offer
fewer possible computational advantages than our
previous equations, in addition to being consider-
ably more cumbersome because of their asymmet-
rical structure for analyses such as that carried
out in Sec. III.

If we note that

t, (z)G, (z) U, (z) = V,(I+G,(z)[1+t „{z)G,(z)]U„(z)},

F8 (z) = F(zGl(z)+ F(()2)(z),

where

F'8" (z) =G, (z)U'8"(z)G, (z)

(2.20)

(2.21)

(2.23)

then Eqs. (2.6) can again be reduced to a closed
set of equations with the index-four operators
eliminated:

3
('"V(*)= (1,~ ZV's y'( )2„( ')*G.( *)

/=1
3

xVG, (2)(1~ Qt ( )2xx1(**)). (2.22)

We confine ourselves only to the submatrix of
Eqs. (2.20)-(2.22) for which P, a=1, 2, 3, and con-
sider specifically the case of elastic N-d scatter-
ing. Suppose for simplicity that each of the pair
interactions is a finite sum of separable terms.
We can then regard the (on-shell and half-off-
shell) vertex-state matrix elements" of F(()G„'(z) as
known as a consequence of solving the quasi-two-
particle integral equations for these quantities.
To obtain the elastic scattering amplitudes with
the three-particle force present one requires the
appropriate vertex-state matrix elements of F& (z)
with respect to the same vertex states as in the
case with only two-body forces. Therefore the
evaluation of these matrix elements using Eqs.
(2.20)-(2.22) evidently requires no additional in-
formation other than that obtained in the solution
of the problem represented by F(sG)(z). Also, this
evaluation will present no more difficulty than
similar calculations which have already been
carried out using various components of the nu-
cleon-nucleon interaction as perturbations. ""

We also remark that a somewhat more compli-
cated perturbation theory is defined by using the
approximation (2.18}directly in the kernels and
inhomogeneous terms of Eqs. (2.13}. If one wants
to examine the effect of V4 this procedure entails
solving Eqs. (2.13) twice, namely with and without
V4.

Recently Qregorio and Avalos" have considered
some aspects of multibody forces in the scattering
problem. In Ref. 16 V4 is employed explicitly in
the scattering equations rather than introducing
t4(z) as we have done. We conclude this section
by using our formalism to derive such equations

Uz (z)=5()~GG(z) '+V4+ + 58tz( )z G(G)zU&~(z)

+ V,G,(z)[1+t„(z)G()(z)]U (z), (2.24)

where tt, c(o4. In place of Eqs. (2.13) we then ob-
tain

FB (z) = 5((„GG(z) +G,(z) V~GG(z)

+G.(z) P 5()„t,(z)F,.(z)
'}v= 1

+G,(z)V~[1+GG(z)t„(z)]F„(z}. (2.25)

Equations (2.24) and (2.25) have the apparent ad-
vantage that one does not have to solve the subsid-
iary three-body problem for t~(z). However, in
contrast to Eqs. (2.12) and (2.13), one cannot ob-
tain from them a set of equations involving only
the vertex-state matrix elements of F() (z) if the
t (z) for a 224 happen to be of finite rank. Qn the
other hand, because of the connected and localized
structure of V, the calculation of t, (z) may not be
all that difficult, and if this is the case Eqs. (2.13)
offer some computational advantage, particularly
in the interesting circumstance of finite-rank pair
interactions.

A V4-explicit form of perturbation theory can
also be derived from Eqs. (2.14), which in com-
ponent form become

U()„(z) = U(8G)(z)+ U'()',l(z)GG(z)t, (z)GG(z)U, (z) .
(2.26)

Then using (2.23) we obtain (tt, a224)

Ug (z) = U g~ (z }+[f)zG+ U g„(z)GG(z)]V4

x(1+G,(z)[1+t (z)G (z)]U (z)}.
(2.27a)

Gregorio and Avalosm derived Eq. (2.27a) in the
case P = @=0. Equation (2.27a) can be rewritten
in the somewhat more symmetrical form
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Uz (z) = Utz'~(z)

+{1+U zz (z)[G (z)tz(z)+1]G (z)]V

x {I+ G,(z)[1+t, (z)G,(z)]U~„(z)}. (2.27b)

We note by way of comparison that (2.26) becomes,
using Eqs. (2.6) to define the index-four operators,

Uz (z)

of F& or of F'z", we see that Eq. (2.22), for ex-
ample, is definitely preferable to the form of
F'z" (z) generated directly by Eq. (2.27b).

Our entire development of including the three-
body force in the three-particle equations is com-
mitted at the outset to a generalization of the Alt
et al. ' off-shell extension of the scattering opera-
tors. This extension achieves its preferred status
by virtue of Eq. (2.3) as well as the fact that

= U s '(z}+ Go(z) '+ Q U'8'~(z)G0(z)t~(z) G(z}=Gz(z}5z~+Gz(z)Us„(z)G (z), (2.29)

XGo(z}t (z)G,(z) G,(z) '

3

+ Zt, (z}G.(z}U,.(z),
/=1

(2.26)

where we suppose that I3, cyc4.
Clearly, the V, -explicit equations (2.27) can be

used to define a perturbation theory. In fact, the
lowest-order correction term generated by (2.27)
can be shown to be identical to that contained in
Eqs. (2.19)-(2.22), as one might expect. However,
referring back to the convenience of equations
which involve only vertex-state matrix elements

for n, P =0, 1, 2, 3, 4, where

G„= (z -0, —V.)-'.
The identities (2.29) in particular would seem to
suggest that the Uz (z) form the most natural off
shell extension when one is considering a three-
particle subsystem of a multiparticle problem.
Other off-shell extensions of the multichannel op-
erators (cf. Ref. 4), either with or without a three-
body force, have relatively few attributes to dis-
tinguish them in any way, nor do the integral equa-
tions which they satisfy possess any special fea-
tures which would lead one to prefer them over
Eqs. (2.6).

III. UNITARITY AND THE K MATRIX

In this section we generalize the work of Refs. 6 and 11. There is little in the way of a surprise here
except for the structure of the connected-kernel Heitler equations. ' The latter, we find, differ slightly
in form from the special case without a three-body force.

We expect that the discontinuity relations (off-shell unitarity) for U(z) will be the same as in the case
without the three-particle interactions, at least for those components which are related to physical scatter-
ing processes. This turns out to be the case, and in point of fact we find from Eqs. (2.6) using standard
methods" that

(nU) z
—— 2i Q U-s~(+)D„Uy„(+)

/=0

+ 2i{Uzo(+)DOGO(~) '50~+5 80GO(*} 'DOUO~(+) +(6 z~ —5zoho„)GO(+) 'DOGO(v) '] . (3.1)

We note that the submatrix of (3.1) with P, o g 4 is
entirely decoupled from the unphysical components
U, &, and U~~. In (3.1) we have introduced~'"

(3.1),

AUz = 2i Q U-z„(s)D„U& (v),
/=0

(3.2)

b, U —= U(+ ) —U(-) = U(+ ) —U(+ )

U(~) -=[U(z)],= „.,
D, =z Z ly, (n, , &', }&~(& &')&4'„(q„,&'„-)I,

and the g are any other labels which are needed
to specify the asymptotic configurations. As
pointed out previously, "all terms within the curly
brackets on the right-hand side of (3.1) vanish
when the appropriate on-shell matrix elements
of this equation are taken. Henceforth, we will
be concerned with only this on-shell version of

t(z) = t (z) + t, (z), (3.3)

where [t,(z)], a =1, 2, 3, is that part of the two-
body bound-state pole contained in t (z) which
gives rise to a Dirac 5 function when z = E + i0.
For a=O or 4, [t,(z)] =0. We then see from Eqs.

and only when t}, aw4. Equations (3.2) imply the
usual statement of on-shell unitarity of the scatter-
ing operator.

Next we consider the so-called reduced K-ma-
trix formalism. ' As in Ref. 6, we decompose t(z)
into the sum
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(2.7)-(2.9) that

Uz (+) = U& (+}vi Q Uzz(+)D&U&„(+)
)'= 1

example,

Ug (+) =KB~ —iKzoDOUO~(+ },
where

(3.11)

3

=Uz (~)wi PUzy(~)D„Uy (s), (3.4)
)'= 1

where U(z) satisfies Eqs. (2.9) with t~'l=t. Again
we need consider Eqs. (3.4} for only P, tzc4, and
there is no coupling with the index-four operators.
Uz„(+ ) with P, ac 4 is an off-shell extension of the
reduced K matrix (K~) z„and satisfies the on-shell
discontinuity equation

(AU)z = -2iUz, (t)D, U, ~(v) . (3.5}

Only the on-shell forms of Eqs. (3.4) and the cor-
responding discontinuity relations (3.2) and (3.5)
are needed for the exploitation of this formalism,
which in this general case has precisely the same
structure as when no three-body interaction is
present. '

Now we will investigate the complete K-matrix
formalism. This is a vehicle for generating
classes of fully unitary approximate three-particle
scattering amplitudes in a manner described in
Ref. 6. We find, in contrast to the discussion in
this section up to this point, some differences be-
tween the cases with and without the three-body
force.

As in Ref. 6 let us define an operator F(z) by

U(z) = 6GO(z) '+ 6I'(z)6, (3.6)

which implies that

K~= 6z~GO(+) '+[6K6)~

are the components of the complete three-particle
K matrix. Again we note that the Heitler equations
(3.11) for t), ax 4 have no coupling with any index-
four operators.

Now neither one of the standard Heitler-type
equations (3.8} and (3.11) possesses connected
kernels, which renders them useless for practical
calculations. ' It will be as a consequence of our
efforts to obtain connected-kernel counterparts of
these equations that we will obtain some new fea-
tures due to the presence of a three-body interac-
tion.

Let us first concentrate on Eqs. (3.8). We sepa-
rate a into its disconnected and connected parts:

g=k+z',

where

k =k, a=1, 2, 3

=0, a=0

so that

Kz~ = k~6 z~6~ „+(k6GK) z~.

Also, let

) A 1) 2 ) 3

r(z ) = t (z) + t (z) 6G,(z) r(z )

= t (z)+ F(z)G, (z)6t (z) .

It is easy to show that

F(+) = K+ i KD,(1+5)F(+)

= K ~ iF(~)D,(1+ 6)K,

where

(3 7)

(3.8)

=0, a =0, 4.

Now if, for example, we multiply the first of
Eqs. (3.8) on the left by [I+if'(+)D, ] we obtain

r(s}= t (s)+ K'(s) +it(s)6D r(a) viK (k)D F(+),

(3.12a)

where

g = k+k5Gg

= k+ g5Gk,

G =G,(+)+tD„
(3.9)

and the operators k are deQned as solutions of the
Heitler equations

Kz(+) =- [1+it (+)D,]K',

D —=Do(1+ 6) .

(K') (3.13)

Equation (3.12) is a connected-kernel equation.
Given any a' such that

k=t(~) +it (+)D,k

= t (+) s i ktD(s) . (3.1O)

we will obtain from (3.12) solutions r(g) which
satisfy

When cy = 1, 2, 3, k is just the two-particle K ma-
trix defined on the three-particle space. k, is the
(connected) three-particle K matrix corresponding
to t4. Evidently, k0=0.

From the first of Eqs. (3.8) we see that, for

hr = -2ir(+)DF(+), (3.14)

and therefore reduced K matrices U(s) which sat-
isfy (3.5) and consequently via (3.4) a fully unitary
set of physical scattering amplitudes. We also see
that
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r(+) = I (+) + xs (+) + ir(~)5D, t (~) +i r(~)Dxs(+),

(3.12b)

piete K matrix, which we define as
c g&cg (3.18)

I'p~= I'~=0 (3.16a}

where

xs(+) =—x'[I v iD, t (g) ] .

It is much more convenient for practical calcula-
tions to work with the operators

(3.15)

rather than the auxiliary operators I'. We see
from Eq. (3.6) that g is the reduced K matrix ex-
cept for a simple exchange term. From Eqs. (3.12)
and (3.15) and the observations that

Qne finds, in contrast to the situation in Ref. 6
and to the unconnected-kernel Heitler equation
(3.11), that all components of (3.17) contain the
hitherto unnecessary index-four operators K4&
and K),'4.

This state of affairs is a consequence of our
introduction of a separate unphysical channel
(a=4) corresponding to the three-body force. This
is out of place in a general K-matrix formalism.
However, we show next that it is possible to cir-
cumvent this index-four problem by effectively
exploiting the redundancy implied by Eqs. (3.16).

Let us define for P, n W 4

and

Kp~= K~=0 (3.16b)

I I 1I' =- I'8 + —I', + —, I'8, +—,I;, .
Then one finds that

(3.19)

for all e we find that

g 8~(g) = $5[t (s) + xz(+)]5]'8
3

T i Q {5gyty (6) + [OKER(k)5]&y5yo)Dofy (+)
y=p

4

~s = Z 58xrxy5ya
X,y=p

Z Bk Xy Xu
X,y=p

for P, a c 4. We also define for P, n c 4

(3.20}

= (5[j(~)+ K„'(~}]$58
—C — C 1 C 1 C 1 C
K Bf)f

= K 80(+ 3 K 4 ~+ 3 K 84 9 K44 (3.21)

vi Qt8y(x)D, [5 t (+)+5„,[5as(a)5]yJ,
y=p

Then we deduce from Eq. (3.18) that the connected
part of the K matrix is given by

(3.17)

which are also connected-kernel equations. We
note that the submatrix of (3.17) for P, ac4, which
is all we require for the execution of the unitary
program, is decoupled from the index-four g oper-
ators Again. , if x' satisfies (3.13) the solution of
(3.17) satisfies

(Ag) s„= -2i&8,(+}D,g„(y)

and therefore defines a reduced K matrix with the
correct discontinuity relations. Methods for solv-
ing on-shell equations of the form (3.17) were dis-
cussed in Ref. 6.

Equations (3.17}for P, ae4 have the same form
and the same number of components of &8 enter-
ing into them as in the case without the three-body
force. This similarity is, however, illusory be-
cause the input, in the form of a', is somewhat
more complicated than in the latter case. Namely,
various (on-shell) index-four components of K yy
enter in and must be included in order to repre-
sent the effects of the three-body force. This
complication can be appreciated by rewriting Eqs.
(3.17) in terms of the connected part of the com-

Ks — E 58~& ~y5ya
k, y=p

(3.22)

Integral equations for 1 8, with P, +W 4, can be
derived from Eq. (3.12a), using the definition
(3.19), as follows:

r =t 58 +[I+itgD, ]K8„+IfeD +5gy5 yI'y„
y=p

3 3

+i[1+ii,D, ) g x', ,5„D, +5„ry. ,
X=o y=0

(3.23)

where we have suppressed the (+) arguments for
the sake of notational simplicity. Equation (3.23),
which is a connected-kernel equation, is virtually
identical in form to the case without a three-body
force. The basic difference is that in contrast with
Eq. (3.16) the various zero-index components of
I,.and Tc', do not necessarily vanish unless there
are only pair interactions. The counterpart of
Eq. (3.23) corresponding to Eq. (3.12b) is easily
deduced.

Equations (3.20), (3.22), and (3.23) imply that
g 8, for p, o. w 4, satisfies
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(3.24)

as well as an equation corresponding to the second
of Eqs. (3.1'f), where

r 8 (a) = [6 [1v it (s)D,]6 '}8

and (in four dimensions)

3 3

r50 tDr, 5, K —„2|;, ).X=o 'g=o

Qne easily verifies that in the absence of three-
body forces

Equations (3.24) are connected-kernel equations
with no reference to index-four operators. In par-
ticular the K-matrix input consists only of the
operators Kz for P, at 4, just as in the (noncon-
nected-kernel} Heitler equation, which need only
satisfy

(K4 }'=K'8

in order to generate a unitary theory.
The difference between (3.24} and its counterpart

in the case with only pair interactions consists in
the presence of the terms

Z 5oq&qn= 2roa
/=0

and so the preceding term vanishes. Also,
3

Z 6ggK~= 2Koa
yj=o

(3.25)

(3.26)

when there are only pair interactions. Qne can
show using Eqs. (3.24) that (3.26) implies (3.25),
although the converse may not necessarily be true.
However, if one's input in the form of K8 violates
(3.26} then necessarily three-body forces are in-
cluded in this input.
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