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We unitarize the lotv-energy symmetric wN amplitude introduced by Altarelli et al. under
the assumption that the 27( intermediate state in the t-channel unitarity condition is the dom-
inant contribution. The low-energy xn' amplitude is described using a model of Graham and
Johnson. The unitarity corrections at the current-algebra point are found to be small. Hence,
considerations of t-channel analyticity probably do not seriously affect the calculation by
Cheng and Dashen of the ~N o term.

I. INTRODUCTION

The 0 terms in meson-baryon scattering have
been the focus of considerable attention recently
as they can provide important information about
how chiral symmetry (and perhaps scale invari-
ance) is broken. Of particular interest has been
the surprisingly large value of 0» —-110 MeV cal-
culated by Cheng and Dashen' which seemed to
make the symmetry-breaking model of Gell-Mann,
Oakes, and Renner' (GMOR) less attractive. This
value was soon shown" to be consistent with the
GMOR model, however, provided that the chiral-
and scale-invariance limits are realized simulta-
neously. In addition, there have been other cal-
culations' of 0» which yield substantially lower
values and, hence, do not require this connection
between chiral and scale invariance. It thus be-
comes very important to estimate, if possible,
the magnitude of corrections to the Cheng-Dashen
result, among others.

To this end, two types of corrections have been
considered. The first, which takes into account
the effect of N* resonances on the extrapolation
from soft to hard pions, has been found" to be
quite small [-O(m, ~im„')]. The second source of
uncertainty in the Cheng-Dashen result concerns
the effects of t-channel analyticity. It is this lat-
ter type of correction which interests us here.

An initial calculation, ' making use of analytic
hard-pion methods, ' found a tremendously large
correction. This seemed to us a very surprising
result. ' We decided therefore, that it would be
worthwhile to undertake an independent analysis
of the effects of t-channel analyticity. Hence, in
the following, we present an elementary calcula-
tion in which approximate unitarity is imposed on
the relevant mN scattering amplitude in the t-chan-
nel, i.e., mm -NN. The assumption is made that
the most important contribution to the unitarity
relation comes from the two-pion state. This
seems to be an eminently reasonable approxima-

II. UNITARITY CONSTRAINTS IN THE t CHANNEL

For arbitrary initial and final states, i and f,
the unitarity of the S matrix implies that the T
matrix satisfies the well-known relation"

i(Th —T~~) =(2w)'g5'(P, . —P„)Tq~„T„, (2.I)

As we wish to apply Eq. (2.l) to the process ww

-NN, we take

~ i) =
~ w(q)w(q'))

and

If &
=

I iq(p)iq(p'))

with q+q' P+P' and t=(q+q')', s=(q-P) and
u=(p —q')'. We make the approximation of keep-
ing only the 2w state in the sum and thus

~ n)

tion, because the value of t at which the current-
algebra result holds lies well below the mm thresh-
old.

The mN amplitude used in the calculation will be
that given by Altarelli, Cabibbo, and Maiani. ~"
The mm amplitude is taken from a model for low-
energy mm scattering developed by one of the au-
thors (RHG) in collaboration with Johnson. "

It will be shown that the change in the mN ampli-
tude as a result of its unitarization in the t chan-
nel amounts to only a few percent, at the current-
algebra point. Thus, the calculation of 0» by
Cheng and Dashen is probably not seriously af-
fected by questions of t-channel analyticity.

The paper is organized as follows: In Sec. II
we sketch a derivation of the unitarity relation for
helicity amplitudes from which is constructed a
partially unitarized t-channel helicity amplitude
for mN scattering in terms of "bare" mN and mm

helicity amplitudes; in Secs. III and IV, respec-
tively, we discuss the models for mm and mN scat-
tering employed in the analysis; our results and
conclusions are presented in Sec. V.
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=I })(k}v(k')&. We are led, in the t-channel center-
of-mass system, to the relation

l(T„„—T „}=(2 j' I dG, T„„T (2.2)

where T~, and T„„represent the amplitudes for
mm -NN and ~~ - v v, respectively, while W = v' t
and 4k =t —4p. ' with p. the pion mass. We want
now to use Eq. (2.2) to obtain a unitarity constraint
on t-channel helicity amplitudes.

We denote a two-particle helicity state vector in

the usual way by

I e» (l)» 9 2» )22» 'Y&

where 6I, p give the relative orientation of the par-
ticles in their center-of-mass system, p, , and p, ,
are their respective helicities and y represents
any other quantum numbers necessary to describe
the two-particle system.

The T matrix in this basis can be expressed in
terms of amplitudes of definite total angular mo-
mentum J as"

(8', p', t(.,', ttGr'I Tl 8, p, p„p„y& =—Q(2J+1)D „(Q', 8', -p')D„'„(y, e, -p) (u,', t'2r'I T'I t)p Gr&,4& ~,~

(2.3)

where the D„„are the familiar rotation matrices, p, = p, , —p.„p.' = p, ,' —p, ,', and M is the third component of
the total angular momentum. If we use the representation (2.3) for TR, and T„ in Eq. (2.2), making use
of the orthogonality of the rotation matrices, we obtain'+"

lm(v, p„NNI T'I «& =-(»)' (p, p„NNI T'1»&*(»I T'I «& (2.4)

If we define

(p, ,p.„NN
I

T
I

vv& —=Rd „«(t)
and

(vvl T'I )Tv& =G'(t),

Eq. (2.4) takes the form

(2.5)

(2.6}

Im R „„GG(t)= ,'2('p(t) R „—„—G. G(Gt)G (t) (2.7)

with

p(t) =-2k
(2 3)

We could attempt to construct a complex amplitude by taking as its imaginary part Eq. (2.7) and as its
real part the original (real) amplitude, R . However, this introduces an unwanted singularity at t =0. An
analytic amplitude, real below the 7(v threshold and having Eq. (2.7) as its imaginary part above, is giv-

nll, I6 by

R„"„„(l)=R„„(t)~ ', 'p(t)l ( (
R„„—„(l)G (t) — lp(l)R „—,„(l)G (t}

t) 1'

(2.9)

where we have defined

H(t) = v'p(t) ln
p(t)+ 1

(2.10)

We have used the superscript u to denote that the amplitude R has been approximately unitarized in the
small-t region.

If we take the pion momenta along the z axis in the c.m. system, then we can write Eq. (2.3) in the form
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„=—Q(2~+ 1 }Do( (4), 6, -4))&)', „.00 . (2.11)

Then,

(2.12)

It can be seen from the first line of Eq. (2.9) that the real part of R "~ below the )7x threshold is not equal
to R J. It is the magnitude of the change which we will estimate in the following. We must first find a suit-
able G~(t).

A', (t, s) = ,'[F(t, s)+F-(t, u)] —2F(s, u), — (3.1)

where F(x, y) is a quadratic polynomial symmetric
in its arguments,

F(x, y)=A+B(x+y)+Cxy+D(x'+y') . (3.2)

III. MODEL FOR mm SCATTERING

To determine G (t) we will use a model" for
low-energy mm scattering which is crossing-sym-
metric and satisfies, in addition to the Adler con-
dition, a set of rigorous constraints. The rele-
vant t-channel amplitude with isospin zero is"

m
p

and I' represent, re spec tive ly, the mas s and

width of the p meson while X is a parameter whose
preferred range" is 0:X~—,'. Terms of order
-y.' have been dropped in Eq. (3.4).

Now it turns out in this model, and experimen-
tally, that the D and higher partial waves are neg-
ligible, for small t, compared to the S waves. In
what follows then, we will retain only the S-wave
part of A', . If we write

A, (t, s) =—Q (2J'+1)Az(t)D~*(P, 8, —(I))
J

In the t channel, t is the square of the center-of-
mass energy, the scattering angle is

2s
cosg = 1+

t —4p,

s+t+ u=4q'.

then

g (KT + l)A~(t}P,(cos 8),1

J

1

A, (t) =2v A', (t, s)P( coes)d( coes) .
-1

We find, from Eqs. (3.1), (3.2), and (3.11),

(3.10)

(3.11)

The connection between the amplitude A', and the
T matrix we are using here is given by

T„,(f, s) =-,A', (t, s) .1
(3.3)

The coefficients appearing in Eq. (3.2) have been
determined" to be

A, (f) = 2 v[5A + 4B(t + 2l(,')], (3.12)

where terms of O(u. ') have been omitted. " Using
Eqs. (3.4) and (3.5) in Eq. (3.12) we have

A, (t) = 6va, (2t —i(.') .
From the relative normalization given in Eq. (3.3)
we then find that

A=—-3p. a, ,

B = ~ a, —a,(2 + X)
P

C = —,'(2+%)
P

and

(3.4)

(3.5)

(3.6)

3G'(f) =—,a, (2t —p. ') .

As discussed above, we assume that

Gz(f) =0, j& 1 .

IV. THE LOW-ENERGY PION-NUCLEON
AMPLITUDE

(3.14)

(3.15)

D =-,'(X+-,') „+, ,
P

where

(3.7) Pion-nucleon scattering may be described in
terms of the four invariant amplitudes, "A('(v, t)
and B(')(v, t) where

and

4k =m —4p,

1 m 1
p

8 k '
P

(3.6}

(3.9)

S —0
P =

4m

and

s+ t+ u =2m'+ 2p.',

(4.1)

(4 2)
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m being the nucleon mass; the plus and minus
signs on A and B correspond to t-channel isospin
zero and one, respectively.

Let us consider the crossing-even (under v

—-v) combination"

F '
(v, t) =A '

(v, t)+ vB '(v, t) .
We may explicitly remove the Born pole from
F '(v, t) by forming"

2 v 2
F(+)(v t) F(+)(v t)

3

where

(4.3)

(4.4)

t —2p.
v

4m
(4 5)

and g is the pion-nucleon coupling constant (g'/
4v = 14.6). The amplitude F is analytic in a neigh-
borhood about v = t =0 where it can be expanded in
the form

F '(v, t) =at), +bt+ cv' . (4.6)

The coefficients a, b, and c have been determined
by Altarelli et al."and their values will be used
in Sec. V for our numerical estimate of the unitar-
ity correction.

Since the amplitudes A(v, t) and B(v, t) are lin-
early related to the helicity amplitudes R 1 .~ and
R i i ~, we have22 from Eqs. (2.12) and (3.15)

ity at the current-algebra point, v = v~ =0, we will
drop this term in the following [f(t} is finite in
the limit v~ -0].

Using Eqs. (4.6), (4.8), and (4.9), we find

F (&) = 4 w' 8 ~ * I q I'~I i I' ) .
6m

(4.11)

V. RESULTS AND CONCLUSIONS

9 2

G'(2p') =—,a, .
4m

(5.1)

Taking m~ = 765 MeV and I
~

=135 MeV, we find

Qg 1.7 x 10 -' MeV (5.2)

and so

G (2g2) =-8.3x10 (5.3)

From Eq. (4.11) the contribution of F' at t =2)(,'
is

F'(2)), ') = 4(va
't(2+b)(.'+ v' cp, ') . (5 4)

We have assembled enough information in the
previous sections to enable us to estimate the uni-
tarity correction to the result of Cheng and Dash-
en. To this end we will use Eq. (4.10) to calcu-
late the difference between F"(v, t) and F(v, t) at
the current-algebra point v =0 and vs=0 (t =2t), ').

The mm scattering contribution to this correction
is determined from Eq. (3.14) to be

F"(v, t) =F(v, t)+—H(t)FO(t)GO(t), (4 t) Using the values of a and c from the analysis of
Altarelli et al. ," we get

where

l
F'(t) =2m d(cose)F(v, t) .

The dependence of v on 6) is given by

(4.8)

F'(2 )t(=l. f x10 ' MeV ' .

Finally, since

H(2)), ') =-,'v',

(5.5}

(5.6)

where

Iql II)l „,6
m

(4.9)
we obtain the fractional correction

F"(0, 2I ')-F(o, 2P') 21„10 2

F(o, 2) ') (5.7)

and

l q I

= l(t —4) ')'"

l p l

= —,'(t —4m')"

are the c.m. momenta of the pions and nucleons,
respectively.

We can rewrite the correction to F(v, t) in terms
of F'(t) as

corresponding to the Cheng-Dashen value of 0»
=110 MeV. As an indication of the sensitivity of
our result on the value of o», the fractional cor-
rection is =-2.4x10 ' for a»=50 MeV.

It is possible to carry out the above analysis
with off-mass-shell pions in which case we would
work with amplitudes F(v, t, q', q"), etc. which
depend explicitly on the pion four-momenta q' and
q'2. We find for the case of massless pions (q=q
=0) that

F" (v, t) =F(v, t)+—H(t)F (t)G (t)+f (t}vt) .
(4.10)

F"(0,00050) —F(0% 09 0, 0) 2

F(0, 0, 0, 0) (5.8}

The last term in Eq. (4.10) arises from the S-wave
projection of the last term in Eq.(4.4}. Since we
are interested in determining the effects of unitar-

independent of the values of a».
It can be seen from Eqs. (5.7) and (5.8) that cor-

rections to F(v, t), due to the imposition of approx-
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imate t -channel unitarity, amount to only a few

percent, at v = v~ = 0. Thus, we would not expect
corrections to the Cheng-Dashen method, arising
from conside rations of t-channe 1 analytic ity, to
be greater than a few percent.

In passing, we note that our results can be ap-
plied to another problem - that of determining the
difference between the o term evaluated at t = 2 p.',
c»(2p, ), and at t =0, cr»(0). The former quantity
is the actual result of the Cheng-Dashen method

(up to terms of order p, '}while the latter is ob-
tained in the limit of zero pion mass . We find'

(2p )- o (0)

=F„[F"(0,2p }+F "(0,0, 0, 0) + O(p )]
-4.1 MeV (5 9)

for the Cheng-Dashen value of o„„(2p.') = 110 MeV.
This result may be compared with a recent calcu-
lation" by Pagels and Pardee who determine
c„„(2p, ') —o„„(0)from a once-subtracted disper-
sion relation whose discontinuity is approximated
by the 2 m contribution. They find

o»(2 p, ') —c»(0) = 13 MeV (Pagels-Pardee)

(5.10)

independent of the value of o»(2p, ').
The difference in magnitude and sign between

Eqs. (5.9) and (5.10) arises for several reasons.
First, our approach is designed mainly to give
unitarity corrections at the current-algebra point
and, because of the simple models used in the cal-
culations, off -mass- shell extrapolations can only

be estimated very roughly.
In the second place, the estimate of Pagels and

Pardee is based on a leading term which is for-
mally of order p, '. Ours is of order -p,

' since, in
the model of Altare lli e t al . which we have used,
the relation F(0, 2 p, ') + F(0, 0, 0, 0) = 0 for the "bare"
amplitudes holds good to within 1%. This relation
could be violated by terms of O(p, ') without appre-

ciablyy

affecting our main conclusions about unitar-
ity corrections .

To conclude, we have carried out an independent
investigation of the possible effects of t-channel
analytic ity on the calculation of Cheng and Dashen
for the mN o te rm . We impose approximate t-chan-
nel unitarity on a simple model of low-energy mN

scattering and find a correction to the "bare" am-
plitude amounting to only a few percent. This in-
dicates that considerations of t-channel analyticity
should not greatly affect the procedure of Cheng
and Da she n .

If our results are taken together with those of
Brown e t aL.' and Altarelli et al. ,

'"it seems that
the technique of Che ng and Da she n should be taken
rather seriously . Other types of calculations of
&r» (such as those of von Hippel and Kim' or Eric-
son and Rho') which find substantially lower val-
ue s for o», may be subject to proportionately
larger corrections .
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The scattering formalism of Alt, Grassberger, and Sandhas is extended to include a pos-
sible three-particle interaction. This is then employed to find a set of scattering integral
equations in which no unphysical auxiliary amplitudes related to the three-body force appear,
as well as to develop a practical method for treating perturbatively the effect of a weak
three-body force. The general K-matrix formalism and connected-kernel Heitler equations
are also developed. This yields some indication of the structure that might be expected in
a relativistic connected-kernel K-matrix formalism.

I. INTRODUCTION

Virtually all of the existing calculations of both
the bound and the continuum states of the three-
nucleon system (or any other three-particle sys-
tem, such as that consisting of three pions) in-
clude only two-particle interactions. The role of
a three-nucleon force is unclear at present, ' and
its possible nature is obscured by the uncertain-
ties in the off-shell behavior of the two-nucleon
transition amplitude. Given the validity of a non-
relativistic dynamics for the three-nucleon sys-
tem, it is obvious that the questions of off-shell
behavior and of the magnitude and character of the
three-nucleon force are intimately correlated,
assuming that the bound-state and on-shell scatter-
ing parameters of both the two- and the three-nu-
clean systems have been accounted for. These
questions are also rather ill-defined if one adopts
the stance of phenomenological potential scatter-
ing, and should they prove to be quantitatively
significant a somewhat more fundamental approach
to the entire problem may be in order.

Nonetheless, there are several reasons for ex-
amining how a three-particle force alters the

scattering integral equations and the computational
procedures derived from them. One of these is
the opportunity to examine in a dynamically well-
defined framework a situation somewhat related
to the relativistic three-particle problem. Another
is to use these equations to formulate modifica-
tions of some of the standard methods for calcu-
lating three-particle amplitudes so that three-par-
ticle forces can be introduced and their effects
studied.

The rather straightforward modification of the
three-particle scattering integral equations which
is entailed when three-body forces are included in
addition to the usual pair interactions was first
pointed out by Newton. ' Calculations using a sep-
arable three-nucleon force to simulate some of
the noncentral and short-range features of the
two-nucleon interaction were carried out by
Phillips. ' Both of the preceding authors employed,
essentially, the Lovelace4 version of the scatter-
ing integral equations.

Our objectives in this paper are twofold. First,
we wish to embed the ideas of Newton and Phillips
within the somewhat more practical form of the
scattering integral equations due to Alt, Grass-


