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In this paper we study the model in which a nonrelativistic harmonically bound electron
interacts with the dipole part of the electromagnetic field. With the introduction of a
shadow electromagnetic field, we find that, in contrast with the conventional treatment,
the unpleasant runaway modes do not occur. The scattering states of a physical photon
scattered by an electron are also given, and it is shown that these physical states form a
set of orthonormal states.

I. INTRODUCTION

Certain classical field theories, in particular
classical electron theory, have long been known
to suffer from the unphysical "runaway modes"—
solutions of the equation of motion which display
exponential time development. ' Runaway modes
have also been observed in many exactly solvable
model field theories whose Hamiltonians are
quadratic in the dynamical variables. ' In clas-
sical theory, the runaway modes are usually re-
moved by imposing suitable boundary conditions.
Similar techniques for treating these runaway
modes have also been suggested for quantum the-
ory. In this case the runaway modes are simply
not included in the eigenfunction expansion of the
field operators. It is clear that these ad hot".

prescriptions, namely, imposing boundary condi-
tion or truncating certain eigenmodes, would de-
stroy the self-consistency of the Hamiltonian dy-
namics of the system.

It is well understood that the existence of the
runaway modes in quantum theory is closely re-
lated to the infinite self-energy of the particle in
the point particle limit. This can easily be seen
in the model field theories. In the process of re-
normalization, the infinite positive self-energy

requires an infinite negative bare mass (for the
nonrelativistic case) in order to obtain a finite
physical mass. Consequently, the Hamiltonian is
not a positive-definite operator and admits imagi-
nary eigenvalues. The existence of the runaway
modes implies that this class of Hamiltonian is
either non-Hermitian or does not have eigenstates.
In fact, the renormalization operation in quantum
field theory is often beset by the inherent mathe-
matical ambiguities in manipulating divergent ex-
pression. Furthermore, to have a more realistic
field theory, one would prefer to have the unre-
normalized quantities such as masses and cou-
pling constants be finite. Therefore, a funda-
mental change in the conventional quantum field
theory seems to be necessary.

One way of eliminating the divergence is to in-
troduce states with negative norms. ' In a sense
the introduction of these states with indefinite
metric is to take care of the nonlocal interaction,
which experimentally manifests itself only in
high-energy scattering processes, and yet to
make the theory manifestly local such that the
Hamiltonian formalism is still suitable. It is
well known that the direct extension of the con-
ventional field theory to include the states with
indefinite metric encounters the fundamental dif-
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ficulty of negative probabilities. This difficulty
has been circumvented by the attractive idea of
"shadow states" introduced by Sudarshan. 4

Shadow states differ from the ordinary states in
that they "propagate" with half retarded and half
advanced Green's functions. This ensures that
they never become physical. In other words, the
shadow states would contribute to the dynamics
but do not alter the unitarity property of the the-
ory.

To obtain some more insight about the shadow-
state formalism, we study here the model in

which a nonrelativistic harmonically bound elec-
tron interacts with the dipole part of the electro-
magnetic field. It is found in Sec. II that with the
shadow electromagnetic field, the energy spec-
trum of the Hamiltonian, in contrast with the re-
sult of the conventional treatment, does not have
the unpleasant runaway modes. In Sec. III, fol-
lowing the idea of shadow "states, '* we obtain the
scattering states of one physical photon scattered
by the electron. It is also shown in Sec. IV that
these scattering states form a set of orthonormal
states.

II. ENERGY SPECTRUM

As mentioned in the Introduction, in addition to the ordinary electromagnetic field A, we introduce a
satellite field A, . For nomenclature purpose, we will call this satellite field a shadow electromagnetic
field. This is in contrast with the auxiliary field which gives the "nonelectromagnetic" force, as pro-
posed by Poincarb. The shadow field is a massive vector field with mass M and is realized in a general-
ized Hilbert space with indefinite metric. The Hamiltonian for the model we are interested in is

f p ef[-p(r -R)A(r)+p, (r —R)A, (r)]d rj'
2mO

+ [V x A(r)]' d~r —— ' + [V xA, (r)]'+ M'A '(r ) d'r,I "' BA(r) ' - -, , 1 sA, (r)
8m Bt

where m, is the bare mass and m is the observable mass of the electron; mK' is the spring coupling con-
stant. P and R are the momentum and position operators of the electron. When the shadow field is re-
moved, the remaining part of the Hamiltonian is the same as the conventional one.

In dipole approximation A(R+r )=A(r) and A, (R+r)=A, (r), and thus

When A (r) and A, (r) are expanded in multipole waves, only the dipole parts interact with the electron.
Let us expand the fields inside a large sphere of radius L. The dipole parts of the fields in this expansion
can be written

nr
k =—

tl

where T means "transverse part. "' Similarly, the electric fields are given by

) g 3 '" sink„r
L " r
3"' smk rg ) g 3,smkr
L " r

(3)

where the p„and q „, and the p'„and q'„are, respectively, canonical conjugates and satisfy the commutation
relations

and
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Assuming p(r) and p, (r) to be spherically symmetric, one obtains

l 4 1/2 1/2

[p(r)A(r) ~ p(r),A, (r)[d'r= — Qt(„Ji sin(k„r)p(r)4 rdr+ — Q( f'sin(k„r)p, (r)ssrdr
n

4 1/2

Q k„(p'„q'„+p„q„).

p„and p'„are the form factors in k space. We shall be ultimately interested in the point electron limit
p„-1 and p„'-1.

In terms of the canonical conjugate variables q„, p„, q'„, and p'„, the Hamiltonian can be written

P2
H = + —,'mK R +2+(p„'+u„'q„) -2+(p + (df~ q } / u/2 k, P(P q( ——

( }1/2 k, P(P q',
m0 i i

with

e 2 4 e2 e ~ 4A

+
2m SL f f 2m0 3L m0 ]

k, k, p, p, q, ~ q, g —k, k, p', p*,q', ~ q', + —~ 3& k, k, p, P, q,
0 ff

(6)

(d„=k„, ~' = (k„'+ I')"'
Define the creation and annihilation operators as usual:

1
nj (2 1/2

(' nqn(+ p ()ns2'„)

~(
(2

rl/2 (~nqn(+ZPnj/ ~

2~m&

1
n( 1/2 1 nqnj (Pn() i

(d„

2(d„)

where i =1, 2, 3.

It is easy to see that the creation and annihilation operators defined in p) satlsiy the commut tion rel
tions

[a„,, a„,f] =5„„,6„,
and the rest of the commutators vanish. To simplify the notation, all vector notations will be suppressed
hereafter.

In terms of the creation and annihilation operators, the Hamiltonian becomes
2

H = + ,'mK2R2+ g—(ata,. + 2')(dj -Q (antanj ——2')(k)n,. ——P — g ', /2 pj(a~+a, )
0

——Jf — Z 1/2 (a( +aj)+ ~ ~ ~1
P'P'(a( +a()(af +af)

cf

+
S I ~ +12 P(Pf(a( + j)(af +af)+

3 L ~ 1/2 P Pf(aj + j)(af +'af)
e ~ k k . . .~ , ,~ , 2e ~ k kf

3mL~ ~;~;ff
3mL~ ~,~;ff

Let us denote the ground state of II with eigen-
value E, by lo& and the eigenstate with eigenvalue
E =E, +f(k E by Ih E&,

we obtain

0 = (E -E.)(«laj'Io&+ (f( E I[a.', H ll0&,
Hlo& =E,lo&,

Hlff E&=(E,+~E&laE&.

From the relations

(b, EI(E -H)atlo) =0,

(n. EI (E H)a, lo& =o,

(f EI(E H}a,. tlo&=o,

(o, E I (E -H)a'(
I 0) = 0,

(10}
=(E -E.-~(&&n Elajtlo&

e 2"' k,
(„)'1/2 p((«II'I 0&

2e' k,.
()1/2 pj(« I++ +'lo& s3m, I. (d()' '
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o = (E -E.)&n Ela; IO&+&~E l[ai, H]IO&

= (E —ED+ u, )&n Eia,. io&

k '„, p,.&nEiFiO&
m, 3I. (~,)'I2

+ '„, p, &nEiF+F'io&,
2e' k,.

O=(E -E,)&aEiaf'lO&+&n El[a,.i, H]IO&

= (E -E, —u&', )&n. E ia. ',.~io&

(13)

or, equivalently,

mg 2 4e2 p 2 ps2
m = +0 QE 3L, 3 ~E2 (4)

2 ~E2 ~s2

(22)

Similar to the renormalization procedure used
by several authors, ' let us define the constant

4e 2

as the electromagnetic mass of the electron.
With the definition

2

+
3 i, ,'„g2 p(&n. EiF+F'io&,
3 gpss I (I~s jw

J./2

o =(E -E.)&nElallO&+&nEi[a; II]io&

(14)
m=m +5m,

Eq. (22} becomes

(23)

= (E E, +~', }-&b, Eicu',. io&

2 1/2

where

F =~Z i p'(a~ +a )
k;

, „'„,p', a', +a', .

2 2

P'&b EiF+F iO&3 L (~s)1/2 (15)

(16)

2 31, ~ ~E2 (d 2 +E2 s2
j

(24)

In the point electron limit p, = p', =1 and 5m = 0,
and (24) becomes

E2 + 31 ~ f +E2 2 + E2 (ds2
j 'C

(25)

Now it is easy to show that (25) does not have com-
plex roots for n. E . Assuming that (25}has a
pair of imaginary roots,

Similarly,

o = &~ E i (E -H)I
i o&

= (E -E.)&«II'I 0& -i~nK '&I. E iR[0&,

o =&~El(E -H)RIO&

(18}

4E =+iC,

then (25) becomes

4' C' -M
m = k3I. C'+K' ' (C'+fd*')(C'+&a, ') '

(26)

=(E E,)& nEIRI&O+—&~EIFIO&
0

&n. E IF+ F'IO& .
m0 3I (19)

From (11)-(15), (18), and (19) we obtain the equa-
tion

Since m )0 and all the quantities on the right-hand
side are positive except the negative sign, this
equation is inconsistent. Thus there is no solution
to the runaway mode equation for C.

III. SCATTERING STATES

4e'E'
2+ 3I.(mK -n. E mo}

2 s2
x k'

't

Q E2 ~ 2 Q E2 (gs2

x&6 Ei(F+F')i0) =0.
(20)

Equation (20) implies that

4e 4E 2 p] pg
3Lf K' —EEE f . ' — "EE ' '')EE

(21)

The introduction of a shadow field has nicely
eliminated the unpleasant runaway modes as we
have seen in the previous section. However, the
direct extension of the conventional theory to in-
clude this shadow field invokes a new difficulty,
namely, the negative probability. This negative-
probability problem has provided a deadlock in
the progress of the quantum theory with indefinite
metric for a long time. In the physical subspace
which only includes the sth, tes with positive-def-
inite metric, the unitarity condition is not satis-
fied if the causal propagation is used for the
states of the entire space. A breakthrough of this
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(E, -H)lk, &,=0,

we have

(29)

difficulty is due to the introduction of the idea of
shadow states. ~ 8hadow states propagate with half
retarded and half advanced Green's functions,
which ensures that they never become physical.
Therefore, the unitarity condition in the physical
subspace is always satisfied. The theory with

shadow states has been studied extensively in the
last few years. ' )In this section, following the idea
of shadow states, we will find the scattering states
of a physical photon scattered by an electron.

To start with, let us again denote the ground
state by IO) and the one-photon-scattering state
by Ik,), . Ik,), is an eigenstate of H with eigenvalue
E, =E2+ &u, . Ik,), can be written as

lk, &, =o1tl0&+ Ix&, . (28}

lx&, consists of outgoing states and shadow states.
To avoid inessential complications, let us assume
that K=O.

By making use of the relation

e 2 '" k12)i-)L)lx).=-~ xx ~ '„,)'&)

3M0 ~(d&~

where F and F' were defined in (16}and (17).
With the help of the relation

(30)

Zlo& =0.

We have, therefore,

(32)

2e

(33)

Here the Green's function G = 1//(E, -H) is not yet
defined. Following the prescription of shadow
states, we choose the boundary condition in such
a way that

F(E, -H)lo&=0 (31)

and the assumption that K =0, it can be shown that

2e' k, 1 2e2 k, 1
Ik1&+=a&10)+ 3 I (~ )1/2 E -H ' F +

xk f (w )1/2 5'E H
F'0 (34)

0 f f + 0

Here 6x means that the principal value is to be taken. After some tedious but straightforward manipulation,
(34} can be written

1k'&+ = s& I 0& +~ 1/2 + 6'2)e k~ Qf pg
2xL ( ) 4 xi+)E 4 xi) )

with

(35)

p 2e2k,

0

B(&d/)
1-B()d/)

4e'k,
B(~,)=P 3

16'
4P) —GP&

(36a}

(36b)

(36c)

IV. ORTHONORMALITY OF THE SCATTERING STATES

According to the theory of shadow states, one can find a complete set of orthonormal states for the phys-
ical channel and a complete set of orthonormal states for the shadow channel. These two subspaces are
expected to be orthogonal to each other. In this section we shall explicitly show that the states given in
(34} form a set of orthonormal states,

,(k, lk, &, =5„.
From (34) we have

2e2 k, 1, 1

2e kg 1 1

(35')

(37}
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The first term on the right-hand side may be written as

2e2 k„. 1 1

J
(38)

The relation

a, (E, -H)~0) =0

yields

2e' k,. 1
(39)

By making use of the commutation relation of the creation and annihilation operators and Eq. (39), the
first term in (38) takes the form

(0[a,azti0) =6,, +(Qiana, iO)

2e' k, k; 1 1
3moL fco&v& p"2 E, -(d~-H E, —~, -H

It can also be shown that

and

1 1 2e2 k, 1
'», -»», —,-» ' s» t, )'" », -»)

k)a,F=, „~-+Fa, .
(47& (

(41)

(42)

Substituting (39)-(42) into (38), we get

1 1
3m, L (~,(u, '" Eo 4P~ H Eo R] H

2e2 k k 11 2e k, kg () ~ 1
(~ P.») 0

2 2

&u& —&u& +i& 3moL (&u, &u&)~ &u& —~& +ie 3m L (u&sp )~~2

1 2e OF . F, O + OF'6' FO
u& —u, + je 3m L (&u, &v&)" E~ -H +ie 8& H-

2 2

1 2e' ' k k~ 1
(d) —(dg 3moL (d~ld)

(43)

With the help of (34) and (42), we have

2e' k
~ Q7

(44)

~ 3„',»t I„.((o»'»
'

»o) (0»"'» ' » 0)) . (48)

Substituting {43)-(48) into (3V), and making use of the fact that F and E' are Hermitian operators, we ob-
tain
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hence

o y o

I I
~,. —u&,. +is SmL (&u, &o,)"' E, —~,. H-E, —&u,. H-

(d —(d& QPPlI (d;(d. go —(d& -H

I I I I
E, —&u, -H E, —~,. H -(E,—u&, H)(E-, —&u, -H) '

(46)

(47)

(35')

V. CONCLUSION

We have made an interesting observation that,
with the introduction of the shadow electromag-
magnetic field, the runaway modes do not occur
in the dipole approximation model of electrody-
namics. This result might not be so surprising.
The runaway modes in the conventional theory are
often attributed to the fact that the self-energy of
the electron is infinite; consequently, the bare
electron mass has to be negative-infinite, which
makes the Hamiltonian of the system not positive-
definite. With the introduction of the shadow field,
the self-energy becomes finite and the Hamilto-
nian can be positive-definite; therefore, the run-
away modes do not occur.

For further understanding of the physical sig-
nificance of the shadow fieM, we also give, as an
example, the physical photon scattering states
and show that they form a set of orthonormal
states. The boundary conditions adopted in the
shadow-state theory are to ensure that the shadow
states would contribute to the dynamics, but do not
alter the unitarity property of the S matrix.

As a physical theory, one would ask: What will
be the difference between the predictions of the
present theory and the usual quantum electrody-

namics? This problem is closely related to the
value of the shadow photon mass M. It is not dif-
ficult to see that, for small I, the predictions of
the present theory will be very much different
from the conventional one, but for M -~, they
wiQ be the same. However, we know that the
usual quantum electrodynamics is, except in the
extremely high-energy region, in good agreement
with experiments. One would therefore anticipate
that M will be very large. From the experimental
tests of the quantum electrodynamics, we would
expect I to be at least in the region of GeV or
larger. ' In other words, the deviation from the
conventional theory manifests itself only in high-
energy experiments which in turn would give us
the information about the value of the shadow pho-
ton mass M. The model presented in this paper
is a nonrelativistic model and is applicable only in
the low-energy region; therefore, the predictions
of this model will not have any visible difference
from those of the conventional one.
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A field theory is quantized covariantly on Lorentz-invariant surfaces. Dilatations replace
time translations as dynamical equations of motion. This leads to an operator formulation
for Euclidean quantum field theory. A covariant thermodynamics is developed, with which
the Hagedorn spectrum can be obtained, given further hypotheses. The Virasoro algebra of
the dual resonance model is derived in a wide class of 2-dimensional Euclidean field theories.

I. INTRODUCTION

We present a new method of quantizing a field
theory. In conventional quantization, time is se-
lected as the direction of propagation and the quan-
tization conditions (commutators) are imposed on
the spacelike surface t =constant. The recent
lightlike quantization allows the system to develop
along the x'= (x'+x') jv 2 coordinate, ' and commu-
tators are given on the surface x' = constants The
former scheme has the advantage of closely fol-
lowing physical intuition based on the nonrelativis-
tic SchrMinger equation, and has gained wide ac-
ceptance. The latter technique appears particular-
ly useful in discussions of high-energy behavior,
and commutators on lightlike surfaces have been
profitably employed in this connection. ~ However,
neither method is Lorentz-invariant, though of
course the complete theory possesses this prop-
erty.

The approach which we have developed selects
the spacelike surface x' =positive constant =&2 as
the surface of quantization, and propagation takes
place in the "perpendicular" direction, i.e., along
xl'. Clearly the technique is Lorentz-invariant.
In a sense it is intermediate between time quan-
tization and lightlike quantization: at x = ~ our
surface can also satisfy t =constant; at x'=0, our
surface can also coincide with x'= constant. 4

Although covariant quantization can be carried
out in Minkowski space or in Euclidean space, it
appears to be more useful in the latter than in the
former. The reason is that in Minkowski space
the hyperboloids x' =7' do not span all of space-

time: as v' varies from 0 to ~, the region outside
the light-cone x'& 0 is not reached. Consequently
the propagation of the system in this domain must
be examined separately. A related problem is
that translation generators —the momentum op-
erators -are hard to define. ' In Euclidean space
this problem does not exist. In this paper we con-
fine our attention to Euclidean field theory. '

Qf course the physical content of a theory is not
changed by the choice of quantization surface.
Indeed, as Schwinger and Tomonaga have shown,
any spacelike surface may be used for quantization
purposes. (However, since our surface is not
asymptotically flat one cannot directly make use
of the general 8chwinger Tomonag-a result. ) Thus
we do not expect to obtain a different Feynman-
Dyson expansion for the S matrix. Nevertheless,
as with lightlike quantization, we hope that our
technique, by organizing the theory in a novel
fashion, wiQ prove itself convenient for analyzing
certain problems and wQ1 provide new insights
into the structure of fieM theories.

For example, there is considerable interest in
relating the dual resonance model to a conventional
field theory. ' We believe that our quantization
technique will provide a bridge for the formalism
of these two theoretical ideas —indeed as will be
seen, our method, when applied to 2-dimensional
models, is very similar to that used in dual reso-
nance models. As an application of the general
formalism, it mill be shown that any 2-dimension-
al field theory which possesses a traceless sym-
metric energy-momentum tensor gives rise to
the Virasoro algebra, ' up to a c number; a result


