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We make use of the usual assumption that the strong-interaction Hamiltonian density con-
tains no parts with dimension larger than four to show that the a priori possibly different
dimensions of the time and space components of any four-vector, in particular the currents,
must in fact be the same. Furthermore, under slightly more restrictive, although conven-
tional, assumptions on scale-symmetry breaking, it is shown that the usual equal-time
commutators between the charges and the space components of the currents hold if and only
if the equal-time Gell-Mann commutators between the charges and the time components of
the currents are satisfied. Moreover, the equal-time Gell-Mann commutator algebra of the
time components of the currents implies that at most a first derivative of the 6 function
is contained in the equal-time commutators between their time and space components. The
conventional symmetry property of the first-order Schwinger terms in these commutators
furthermore follows. Incidentally, our results also imply that the local generalization of the
a terms does not contain any derivatives of the 6 function. In deriving our results we have
made no assumptions on the equal-time commutators of the Hamiltonian density and the cur-
rents.

I. INTRODUCTION

After some initial discussion'2 on the question
of "what are the dimensions (if any) of the space
components of the SU(3)8 SU(3) currents" it has
been agreed upon in the literature that scaling in
deep-inelastic scattering can certainly not be un-
derstood' from the scale properties of the currents
if their time and space components have different
dimensions. Therefore, it has become customary
to assume that these dimensions are identical.
Furthermore, there is agreement that the strong-
interaction Hamiitonian density T»(x) has only
parts with dimensions not exceeding four. "' It
is the first purpose of this paper to show that the
latter hypothesis implies the former one.

We would like to mention already at this point
that the algebra of fields does not provide a
counterexample to our theorem. Although in that
model the dimension of the space components of
the currents is one (as compared to the dimension
three for their time components) the Hamiltonian
density of that model contains a part with dimen-
sion six. This is in contradiction with the basic
assumption that T»(x) should only contain parts
with dimensions not exceeding four."

As our second point we shall apply the basic
ideas of the theory of broken scale invariance in
order to derive restrictions on the equal-time

commutators of the SU(3)Isl SU(3) currents. The
results are summarized at the end of the paper.
We obtain the full current-algebra information'
on the equal-time commutators

[~o(x), ~'„(0)]

[J;(x),&PS' (0))

from assuming

[J;(x) J (0)]=if'~' Jo(0)6(x) .
In the above we have denoted by 8; (a = 1-16) the
vector and axial-vector currents J'„=V„' for
a = 1-8 and J'„=A.'„' for a = 9-16. The generaliza-
tion of f'~ to the axial-vector indices a = 9-16 is
obvious.

Our results have frequently been conjectured in
discussions on current algebras. As a matter of
fact, some of them have already been derived pre-
viously, assuming, however, that the equal-time
commutators [iT»(x), Jo(0)] do not contain any non-
canonical terms. ' The most essential exception
is our result that the Gell-Mann expression for
[Q', Jt(0)] is equivalent to

[Q Z'(0)]=if "Z (0).
Previous derivations' of the preceding relation
have always assumed that
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dyy J 0 8"J' y =0

It is, however, well known" that both of these rela-
tions are equivalent.

II. THE DIMENSIONS OF THE CURRENT
COMPONENTS

Our first essential assumption'4 is that the had-
ronic Hamiltonian density T„(x) can be written as

gz

T„(x)= P T,',(x), (1)
j=l

with (Q~ is the dilatation charge)

[Q~, T,',(x)]=-i(l, + x" &„)T'„(x)

is nonvanishing. Say that the dimension of T~
for which this is the case is ly We may then
write

d'xx iTojo x, Jo 0 (7a)

and

l,„=l,+l, —4 ~ l

A completely analogous argument applied to (5b)
yields

(6b)

and thus l, =l . This is the desired result. The
argument also shows that the terms

and d'xx iTojo x, J„O (7b)

lj~4 (j=l, . . . , N, ) . (3)

It will be assumed throughout that l,. qt: lj for i Wj,
since this may always be achieved by recombina-
tions of the terms in Eq. (1). The scale-invari-
ant part of T«(i.e., that part of T„with dimen-
sion 4) will be denoted by T«. As we shall see,
such a part must necessarily be present. The as-
sumption in Eqs. (1)-(3)has a remarkable conse-
quence for an arbitrary four-vector with time and
space components having dimensions l, and l~,
respectively. Namely, it implies

d xx iToo x, Jo 0 =-J 0 (8)

and

d'xx iT~ x, J„O =g „Jo0

all vanish except for the ones involving T~. From
(6a) we have l, =4 and thus

~00 ~00 0

with pop defined to be the scale-invariant part of
Pop For the se,

The simple reason for this is covariance. On
these grounds we may write

T
d'xx i Q T'„(x),J,(0) =-J (0)

j=l

and

I
Pf ~

d'xx i Q T«(x), J„(0) =g Jo(0).
j=l

Equations (5) follow since the boost operators
Mo are given by

(Sa)

(5b)

Therefore, in particular, T~ is nonvanishing.

III. RESULTS FOR CURRENT ALGEBRAS

It is gratifying to learn that some of the classi-
cal questions in current algebras have an obvious
solution in a theory of broken scale invariance.
The present chapter is devoted to this topic.
Equations (1) and (3) are assumed throughout to-
gether with" chiral invariance of the scale-in-
variant part g~, i.e.,

(10)
Mo = d x x Too xo 0 x ~

We now observe that each of the terms

d xx iTo~ox~Jo0

in Eq. (5a) has a dimension, namely l, +i, —4.
This is for example seen by commuting the ex-
pression with QD and using the Jacobi identity.
Since we presently assume J, i.e., the right-
hand side of (5a), to have a dimension, only one
of the terms

The components of the J'„are assumed to have
dimensions and our theorem then implies that
l, = l~. With an obvious generalization of the f'"
to the axial indices a =9-16 the charge-charge
density commutators are

[qC gb(0)] if CbC JC(0)

These commutators now imply that l, = l~ =3. It
is obvious from Eqs. (8)-(10) that these equal-
time commutators are equivalent to the charge-
current commutators
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The derivation consists ia commuting Fge. (7)
written for J'„with Q'. The classical current-al-
gebra problem of relating the cemmutl, ters in
Eqs. (11) and (12) has therefore an obvious and

simple solution in the context of broken seaR in-
variance. Assuming Eq. (11) we may use the re-
lation"

((( z('o(l (f"=J (0') 'Jd—'y( (i;(((), P8( (((

together with the result in Eq. (12) in order to
see that

(12) and (14) would be to start with Eq. (13). Ac-
cording to a well-known argument we have

5"J'„(x)= [iT„(x),q'(x, )] . (16)

Equation (10) is seen to imply that 8"J'„has only
parts with dimensions belabor 4. This implies that
the right-hand side of (13) has no part with di-
mension 3. Since the left-hand side of that rela-
tion has dimension 3, Eqs. (12) and (14) follow.

Another classical current-algebra problem to
be answered in the context of scale-symmetry
breaking is the question of Schwinger terms in
the equal-time commutators [J';(x),J'(0)]. Our
essential current-algebra input will be to assume

d'yy J, o, ~"Jb y =0. (14)
[J()(x),J()(0))= if"'J()(0)5(x), (16)

[A derivation of Eq. (13) is given as a by-product
below. ] Incidentally, another way to obtain Eqs.

i.e., the local generalization of Eq. (11). We
shall furthermore need the following result":

&yy y, y, '''yg ooy p y =- y y y '''yg OyyJ O +y~y, '''y
0

+. +y.y.,y~ y.. .[Jo(0),J!,(y)))

A derivation starts from the formula'

hl 8i[r„(x),J;(0)]= 5"J'„(0)5(x)+J„'(x) 5(x)+ g j'(. . . ,„(0) 5(x),
BXk

which is a simple consequence of covariance, i.e., Eq. (5a) and the Heisenberg equation of motion
i [H, J;(x))]= &'JD(x). Our assumptions imply that the Schwinger terms j; . . . , (0) have only parts with di-
mension less than or equal to 4 —n. A well-known argument of Wilson then implies' that j. . . , is a
c number whereas the j, , «( . . ., all vanish. From (15) we obtainl l l2l3l@l5' ' 'l N

(18)

gl l gl2ja + C}l g gl2 el3ja = 0ill 2 l~l2l3

This relation does not imply the vanishing of j» and j;, , This, for example, could be seen in a theory
(see Ref. 10) containing a vector-gluon field 8„. Since the space components of such a field have dimen-
sion one, the expressions

2

jig (2 (3 3 ((g/g (2 (3 k (g(g (2 E(2(g (()
have the correct dimensions. They evidently also fulfill Eq. (19).

As one of our main points we obtain restrictions on the Schwinger terms in the current commutators in-
dependent of the unknown noncanonical terms in Eq. (18}.

Commuting (18) with J,'(y) at equal times and using (16) a somewhat lengthy formula is obtained. It
reads

[Jo(0), a"J', (y)]5(x y) —[Jt(y), —e"J'„(0)]5(x)+[Jo(0),J,'(x)] 5(x —y}—[J',(y), J„'(x)] 5(x)

b (2
a 8=if"'5"J'„(x)5(x)5(y)+if"'J;(x)5(y) 5(x)+g [J,(0)j; . . ., (0)] . 5(x)

k kn
N N

—g [Jo(0),j.'," ..(y)) 5(x- y) - p if"'j;, , (o)5(y) . . . 5(~) .
kgb cx =2 kl

This relation has the important feature that upon multiplication with x y„y„and integration over x
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and y the unknown terms involving j, . . . , drop out. The result of this procedure is Eq. (17). The reader
should notice that for P =1 Eq. (17) reduces to Eq. (13}.

It is next our aim to derive restrictions on the Schwinger terms in the equal-time commutators

a „a e „8 a a
[J;(x),J'(0}]= if "J'(0)6(x)+8",(0) 5(x) + C"„(0.) 5( x)+D" „„(0) 5(x) .

ex,
(2o)

(21)

In this relation, the dimensions of B, C, and D are 2, 1, and 0, respectively. According to Vfilson's
argument' as mentioned above, there are no Schwinger terms of higher order in Eq. (20). Furthermore,
D"»„has dimension 0 and thus must be a c number. Moreover, it is symmetric in the indices Lkn and

covariant under rotations. Counting dimensions we obtain from Eq. (17) that both sides of that relation
vanish. This implies immediately that no gradient terms are contained in [J,(x), s J„(0)]. In addition,

Db Dab + Dab Dab

(22)

and

ba +~ab +2gtCab 0m;n n;m n;ml (23)

Equation (21}implies that D';...,,, =0. In order to see this we note that due to rotational invariance and

symmetry in the last three indices D".„„canbe written asm: n&n2n3

Dab Dab( + +
m;n&~n& gmn&g~n~ gm~8 p& nmgn& ng|n)2

and thus D"=9D" immediately follows from twice applying (21). Therefore, there are no third-order
Schwinger terms in the current commutators.

t remains to be shown that C".„, vanishes. To see this we first of all interchange a and b together
with m and n in Eq. (23) and add the result to Eq. (23) itself. We obtain

sl(C~b + ( b+ ) 0

With the help of (22} this may be rewritten as

8 C, „(x}=0.
Xg

(24}

(25}

The result C, '.
n

=0 then follows from the preceding equation. To show this one first recalls that C, '.
n has

dimension one. Incidentally, the example,

(with Q" a scalar operator) shows that in the derivation of C;", „=0 from the above, information on the
dimension of C„" „ is actually needed. One then proceeds to note that no part of ~ C". has a dimension0 k;mn
above two (since dimH(1). Therefore, one concludes that (the dependence of e on 0', m', and n' is sup-
pressed)

[s,C;l, ,„.(x), C„" „(y)]=e,", „6.(x-y)

with a c number e", , „. Operating with fd'yy, s/sy„on Eq. (26) we then immediately see that e'„'.„„=0.
Thus, in particular,

&nl [Bgc„" „(x), C „(0)]III& =0 .

We therefore also have that

(26)

(27a}

J dP.P. d'Pgl &Ill c ..(o)IP; ~&l'(e "' "+e'' ")=o .
0 Ot

(27b)

This follows upon introducing a complete set of intermediate states in (27). Upon applying rd'xe' ~' " to
(27b) we obtain

r d&,q, Z(l &nl c~'.„,„(0)l &„q; o&I'+
I &nl c, „(o)l q„-q; n&l'] =o .

0 Ct
(27c)
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greb gybo
~ (28)

This is the current-algebra symmetry property of
the first-order Schwinger terms in the current
commutator s.

IV, CONCLUSIONS

We made use of the usual assumption that the
strong-interaction Hamiltonian density T»(x} con-
tains no parts with dimension larger than four to
show that the c priori possibly different dimen-
sions of the time and space components of any
four-vector, in particular the currents, must in
fact be the same.

We should emphasize [Eq. (Sb)] that the Hamil-
tonian density T»(x) of any model has a part with
dimension l, —1~+4. In particular, the T„(x)of
the algebra of fields (l, =3, l~ = 1) has a part with
dimension six.

We then proceeded to derive constraints on cur-
rent commutators from dimensional arguments.

Both terms in the curly parentheses are positive
and thus the local operators C, '. „annihilate the
vacuum. Therefore, the desired result C, '.„„=0
follows.

Our derivation of C, '. „=0 has assumed positivi-
ty of the metric and existence of the spectral in-
tegral in (2Vb). If this is, however, not the case,
the result C„". „=0 still follows if all local opera-
tors of the theory can be constructed as polyno-
mials in space derivatives of local operators with
dimensions less than three. This remark is of
interest since in a vector-gluon theory (as given
for example in Ref. 10) the latter hypothesis holds
although the metric is not positive definite. At
equal times a local operator X with dixnension
less than 3 has with C„". „ the commutator

[Cf'. „(x),X(0)]=d,". „5(x) .
In the above, d~". „can only be present for dim X
=2 and is in that case a c number. Hence, we ob-
tain as before d~". „=0 from 8'C, '. „=0. Thus,
C, '. „commutes with all the local operators of
the theory under our present assumptions and is
therefore a c number. Since, however, dimC, '. „
=1, a c number is also excluded, and thus C . „
=0 follows.

In summary, we have shown that

C" =0k;mn

and therefore [Eq. (23)]

From chiral invariance of the scale-invariant
part of T»(x) we showed that the equal-time com-
mutator s

[Qll J5(0)] if C C JC(0)

are valid if and only if

(29)

(30}

with

(33)

We should like to finish with two remarks.
Firstly, no assumptions were made here on the
equal-time commutators i[T»(x), Jo(0)]. It is well
known that assuming absence of noncanonical
terms (i.e., Schwinger terms of at least second
order} in this equal-time commutator some of
our results are implied. We find it gratifying
that the theory of broken scale invariance yields
results on the chiral algebra and chiral symme-
try breaking already expected on different
grounds. Secondly, we evidently have assumed
throughout the existence of the occurring equal-
time commutators. The occurrence of nonexist-
ing equal-time commutators [such as, for exam-
ple, an infinite c number in Eq. (32)] would lead
to obvious modifications.
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This equivalence was one of our new essential re-
sults. Furthermore, it wal ~een that no gradient
terms are present in [4;(x), s"J'„(0)]. The argu-
xnent of Wilson that no local operator except a c
number can have a dimension below l. was in ad-
dition finally adopted. The local generalization of
Eq. (29), i.e. (with a=1-16; J~M'„' denote the
axial-vector currents and an obvious generaliza-
tion of the f tensor is involved)

[4O(x), Zt(0)] = if ' 'Zo(0)5(x), (31)

was then seen to imply the complete current-alge-
bra information on the commutators of the charge
densities with the current densities, i.e., it was
shown that Eq. (31) implies that

[J;(x),P (0)]=if' J'(0)+B" (0) 5(x)

(32)
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In this paper we study the model in which a nonrelativistic harmonically bound electron
interacts with the dipole part of the electromagnetic field. With the introduction of a
shadow electromagnetic field, we find that, in contrast with the conventional treatment,
the unpleasant runaway modes do not occur. The scattering states of a physical photon
scattered by an electron are also given, and it is shown that these physical states form a
set of orthonormal states.

I. INTRODUCTION

Certain classical field theories, in particular
classical electron theory, have long been known
to suffer from the unphysical "runaway modes"—
solutions of the equation of motion which display
exponential time development. ' Runaway modes
have also been observed in many exactly solvable
model field theories whose Hamiltonians are
quadratic in the dynamical variables. ' In clas-
sical theory, the runaway modes are usually re-
moved by imposing suitable boundary conditions.
Similar techniques for treating these runaway
modes have also been suggested for quantum the-
ory. In this case the runaway modes are simply
not included in the eigenfunction expansion of the
field operators. It is clear that these ad hot".

prescriptions, namely, imposing boundary condi-
tion or truncating certain eigenmodes, would de-
stroy the self-consistency of the Hamiltonian dy-
namics of the system.

It is well understood that the existence of the
runaway modes in quantum theory is closely re-
lated to the infinite self-energy of the particle in
the point particle limit. This can easily be seen
in the model field theories. In the process of re-
normalization, the infinite positive self-energy

requires an infinite negative bare mass (for the
nonrelativistic case) in order to obtain a finite
physical mass. Consequently, the Hamiltonian is
not a positive-definite operator and admits imagi-
nary eigenvalues. The existence of the runaway
modes implies that this class of Hamiltonian is
either non-Hermitian or does not have eigenstates.
In fact, the renormalization operation in quantum
field theory is often beset by the inherent mathe-
matical ambiguities in manipulating divergent ex-
pression. Furthermore, to have a more realistic
field theory, one would prefer to have the unre-
normalized quantities such as masses and cou-
pling constants be finite. Therefore, a funda-
mental change in the conventional quantum field
theory seems to be necessary.

One way of eliminating the divergence is to in-
troduce states with negative norms. ' In a sense
the introduction of these states with indefinite
metric is to take care of the nonlocal interaction,
which experimentally manifests itself only in
high-energy scattering processes, and yet to
make the theory manifestly local such that the
Hamiltonian formalism is still suitable. It is
well known that the direct extension of the con-
ventional field theory to include the states with
indefinite metric encounters the fundamental dif-


