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Those backward meson-baryon scattering and {baryon+antibaryon two mesons) processes
which are exotic in the direct channel are assumed to be dominated at high energy by the ex-
change of baryon trajectories whose imaginary parts cancel exactly. A solution to these con-
straints in accord with the lowest-lying baryon states is obtained; the residue ratios are found
to vary along the trajectory. Properties of a J = 2+ baryon octet in the mass range 1950-
2200 MeV, predicted by these constraints, are examined. For example, one expects (a)
a J~ = &~+ N (1950) with I'(zN) = 13 MeV and F (n~) = 80 MeV, whose effects might also be vis-
ible in z N-EZ, and (h) a J~ = ~ ' A(2100), with I'(Z w) = 22 MeV and I'(Z (1285)w) = 60 MeV,
whose I7N coupling should be very small. A further prediction is that of a G39 n.N resonance,
&(2200) (J = 9 ), whose effects could be visible in backward x+P scattering.

I. INTRODUCTION

The "matching" of low-energy and high-energy
descriptions of elementary particle scattering has
made use in the past few years of the principle of
"duality, "' which states that these two descriptions
are complementary to one another and possess an
intermediate-energy regime in which both are
valid. An amplitude which lacks resonant imagi-
nary parts at low energies may then be expected
to lack them at high energies as well (aside from
the special case of elastic processes, in which
diffraction plays a role). ' In the high-energy re-
gime, an exchange picture seems most economi-
cal. The imaginary parts provided by various ex-
changes must then cancel one another in channels
where no low-energy resonances are expected, if
duality is to hold.

The self-consistency of this scheme has been
the subject of much debate. It was pointed out
quite early" that imaginary parts of bb-bb am-
plitudes (b =baryon) could not be dominated by oc-
tet and singlet exchange at high energies and si-
multaneously be confined to octet and singlet con-
tributions in the direct channel.

One solution to the baryon-antibaryon problem,
suggested by the author, ' was the possible exist-
ence of exotic mesons (qqqqin the quark model,
as opposed to qq for the usual singlet and octet
mesons). ' Such mesons would couple only to bb
(not to pairs of ordinary mesons) and are not yet
ruled out by experiment.

Another solution which has gained widespread
favor has been the rejection of any bb channels
(and, indeed, of any channels with too high a
threshold) as unreliable. ' In this approach, known
as "broken duality, " one rejects constraints on
baryon trajectories arising from bb-MM (M =0

meson) while keeping those related to backward
meson-baryon scattering, Mb —bM.

In this paper we would like to point out some
consequences of an "exact duality" approach for
baryon exchange. The feasibility of such an ap-
proach has been demonstrated some time ago. '
The solution to the duality constraints in Ref. 7
incorporates -by construction —the baryon spec-
trum of the harmonic-oscillator quark model. ' In
terms of multiplets of SU(6) &&0(2), the following
states lie on the leading trajectory:

56, L=O,

70, L=1,

56 and 70, L=2,

70 and 56, L=3.

The fact that Eq. (1) would provide an acceptable
solution to duality constraints was conjectured
quite early. ' Our contribution will be to provide a
simplified means of solving the constraints con-
sistent with Eq. (1) and to use ihe predictions thus
obtained to suggest some worthwhile tests of this
spectrum.

At the moment, the data are still probably con-
sistent with a simpler spectrum '"

56, even L—70, odd L.

If it is imposed on the baryons, one cannot obtain
a consistent solution for Mb - bM and bb -MM.
This was the primary reason for rejecting some
of the constraints. The latter process was singled
out as possibly unreliable because of the apparent
difficulties '4 in bb -bb.

One would thus like to distinguish experimental-
ly between the spectrum (1) and the simpler ver-
sion (2). The existence of a VO, I.=2 multiplet
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degenerate with 56, L=2 would be the clearest
indication in favor of Eq. (1). A 56, 1, =3 degen-
erate with the known 70, L = 3 would also favor
the harmonic -osc Qlator spectrum.

We present and solve the constraint equations in
Sec. II. The most prominent SU(3) multiplet ex-
pected in 70, L = 2 but not in 56, L = 2 is an octet
with J =~2'. We shall discuss properties of this
octet in detail in Sec. III. The states in question
probably lie in the mass range 1950-2200 MeV.

In addition (Sec. IV) we discuss the prediction of
a G» pion-nucleon resonance, a (2200 Me'll', J~
=a2 ), whose effects could be visible in backward
pion-nucleon scattering. Such a resonance would
be a natural candidate for a 56, L =3 member.

Our discussion and conclusions are presented in
Sec. V. The Appendix contains an alternative
treatment of the constraint equations which allows
application of the model in Ref. 7 to partial-width
predictions. The results are very close to those
of Secs. III and IV.

II. CONSTRAINT EQUATIONS

A. Treatment of Spin

We shall be concerned with the following pro-
cesses:

MB-M'B' (s),
MM -BB' (t),
MB' -BM' (u);

MB-M'D (s),
MM' —BD (t),

MD -BM' (u);

and

MD -M'D' (s),
MM'-DD' (t),
MD'-DM' (u),

wave state by I J; l). Then

I J» =Z(»f01 J&)l J; I), (6)

P(l) ( )l

one finds

(10)

I J&).=p[-,'(I+orP&")](S&lOI J&)IJ; I) . (11)

The cases of interest to us and the partial waves
which contribute are shown in Table I. The pro-
jection operator —,

' [I+o7P"'] singles out those
partial waves with TP" ' = 0. One may thus sepa-
rate out two sequences:

1+ 3- 5+ (12)

JP 1 3+ 5- (13)

In the case of spin —, , the two helicity amplitudes
can be expressed in terms of 0 =+1 contributions,
with no further degrees of freedom. For MD
states, the fact that each helicity state of definite
0 receives contributions from two partial waves
accounts for the extra degrees of freedom. In
MB-MD, the four helicity amplitudes may be re-
expressed in terms of the following four transi-
tions:

(14)

where S is the baryon spin (-,
' or —,'). One may form

states of definite natural parity a (v=+1):

I
JA.), = [I JA.)+ (-) ""IJ—A.)] .

Using the property

(S —zlOIJ —~) =(-)~ ' '(SA.lOI J~)
and the definitions of signature ~,

( )
J-1/2

and parity P" ',"

where M, M' denote mesons; B, B' denote elements
of the baryon octet; and D, D' denote elements of
the baryon decimet.

The definitions of s, t, and u channels conform
to the discussion of Ref. 11. The Regge limits
wiQ be taken as t- ~ or u -~, so that the Regge
trajectory is always exchanged in the s channel.

The process (3) has two independent helicity am-
plitudes for each J; processes (4) and (5) have four
and six, respectively. This may be seen directly
using the constraints of parity and time-reversal
invariance. " The partial-wave representation
allows a convenient interpretation of these ampli-
tudes. Denote a helicity state by I

J&t) and a partial-

TABLE I. Meson-baryon helicity states I JX) of
definite natural parity 0 = 7P.

Baryon spin 2 (A. =2):

Baryon spin ~(A, =~, 2):

IJz&, =-,'[Izz&+ Iz -x&],

(15)
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In MD-MD, there are six transitions:

0 =+1.

MD

l=J-2

/=8+2

l=J-—'

/=J+2

M'D'

3
2

+2
1+ 2 p

1
2

+ 3

3+ 2

(16)

(17)
Is= I/2'

J' 7T
/

r

Any resonance decays to MD via two partial
waves in principle. One may view the duality con-
straints as acting separately on each helicity am-
plitude, and hence on each partial wave. As an
example, we shall be considering the nh decays
of n, (1950) (the E» resonance) and a predicted
N(1950)(an I'„((N resonance), both with J~ =2~'.
The constraints will predict

I"tN (1950)-~~] =-,' r[~(1950)- t&.~]

Is=5/2 '

(b)

4e 8 7T

r

separately for E-wave and 11-wave contributions.
In the present work we shall treat only 0 = -1

constraints, which involve fewer trajectories and
are correspondingly cleaner. The highest-lying
0 =-1 trajectories, moreover, lead the highest
0 =+1 trajectories by at least half a unit. If the
sequence (1) is found to be preferred over (2), we
believe it will be on the basis of 0 =-1 states.

B. A Simple Example: mb, Scattering

Consider the process in Fig. 1(a):

7('n, '- 7( t),
" (s channel). (19)

The t channel of this reaction is exotic, and thus
for t-~ the imaginary parts due to s-channel
Regge trajectories must cancel one another:

&(+) + ~(-& (a)(3(+&+ 3(-)) () (20)

4(+) ((-&+ (4)(3(+) 3(-)) 0 (22)

The spectrum used in Eq. (2) of Ref. 6 implies
that for a=-1 trajectories, ;" '= —,'"'=0. This is
indeed consistent with the observed states

s(1236): m'=1.53, J~=-,",
N(1670) m'=2. 79, J'~= —,',
t), (1950) m'=3. 80, J~=@, etc.,

(23)

The residue functions are labeled by their s-chan-
nel isospin and signature T. A further constraint
comes from the reaction in Fig. 1(b):

(21)

whose u channel is exotic. As u -~, the contribu-
tions of positive- and negative-signature trajec-
tories are opposite in sign, ' leading to

Is= I/2

I =3/2:—8

FIG. 1. Diagrams for 7t4 n4. (a) Exotic in t channel.
(b) Exotic in u channel. Numbers below vertices
correspond to s-channel isospin Clebsch-Gordan coef-
ficients.

~-" &=0 at ~2 2y (25)

which seem to lie on a pair of degenerate trajec-
tories 14~ 15~

n~ (s) = ns (s) =0.15+0.88s (24)

Qn the other hand, with such a spectrum, one
cannot solve Eqs. (20) and (22) simultaneously:
The first implies —,

'"' = (as)(—," '), while the second
implies —,

'"' = (-', )(—," '). This relative factor of 2
w, .s first noted in Ref. V.

If one tries to solve Eqs. (20) and (22) with three
nonzero amplitudes, one encounters the following
difficulty. All these amplitudes must be propor-
tional to one another. At least one of these am-
plitudes must vanish at either the mass of n, (1236)
or of N(1670), since these two states are each
nondegenerate. But then the physical particle
pole will be absent as weQ.

The simultaneous solution of Eqs. (20) and (22)
then requires both I =-,' and —,

' amplitudes of both
signatures. Since these are constrained by only
two equations, they need not be proportional to
one another. There is thus room to impose the
following conditions, based on experiment

t&, (1236) has no N( ,")companion—
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TABLE II. Residue functions for ~Q amplitudes, labeled
by isospin and signature.

~g(+) /3(-) i (I 1)
1(+) /g( ) g(L +8)

Y'
& (-) /g(-)

tt (1670) has no b, (—,
'

) companion

The aficionado of SU(6)~ may calculate all resi-
due ratios between VO and 56, 'L = 2 decays from
Eq. (18) and between 56 and VO, L =3 decays from
Eq. (28). The objections raised in Ref. 19 to the
use of SU(6)~ will not apply to calculations of MB
or MD decays of leading I.= 2 states (they will be
purely E-wave) or leading L =3 states (G-wave
decays). The solution presented in the next sub-
section is more general in that the scales of MB
and MD decay widths are allowed to differ.

~ -'"'=0 at n, =-'.
2 (26) C. Nb ~N'b'Solutions for 0=-1 Trajectories

These conditions can be used to our advantage.
It will be convenient to define

3I (2'I)

which corresponds in a quark model to the total
quark orbital angular momentum for the leading
0' = —states. (These have quark spin S, = —,

' and
J =L +S,.) One may then solve Eqs. (20) and (22)
at the two points L =0 and 1. One finds that the
ratios of residue functions are different at the Ago

points, as they must be in view of Eqs. (25) and
(26). We shall interpolate linearly between these
two points, expressing all residues in terms of
—," ' [which corresponds to the 6(1236)]. The re-
sult is shown in Table II.

Evaluating the ratios —," '/p ' at L =2, which
corresponds to physical J = ~2' particle poles in
both amplitudes, one obtains the prediction

r[X(1950,p) - t w] =-', r[~ (1950,1')-zs], (18)

which will be discussed further in Sec. III. At
L =3, one finds

r[x(2200, ~-)-~~] = 11r[t (2200„~-)-~~], (28)

which will be of interest in Sec. IV.
A model with precise functional form for the

residue functions has been constructed, ' and some
of its consequences discussed. " As we shall show
in the Appendix, the model reproduces the result
of Table II exactly for L =2, and is very close to
it for L, =3. The result (18) also follows in the
nonrelativistic quark model, ' and is not expected'
to be affected by relativistic extensions. "

We use the SU(3) crossing matrices of Ref. 1.1
to construct solutions obeying duality. The SU(3)
amplitudes are referred to a meson-first sign
convention. "

A number or letter will denote SU(3) quantum
numbers of s-channel residues, and a superscript
will indicate signature. The. letters (s, a) will
stand for octets coupled (symmetrically, antisym-
metrically) to an MB vertex. In MB -M'B', time-
reversal invariance dictates sa =as.

The constraints for processes (3)-(5) are sum-
marized in Tables III-V. In solving these con-
straints we use the leading o = -1 SU(3) multiplets
of Eq. (1), with S, = s and Z = L +S, :

L =2 L =3

10(,') 8(, )10(—,")—8(-,' )——
(~,)

—1- (a )
—~ ~ ~ .

2 2

(29)

The conditions imposed in solving the constraints
equations are

L =0 no 8

=1: no 10

Universal f/d for 8-MB.

(30)

(»)
(32)

The last is reasonable since all octets on the lead-
ing a = -1 trajectory arise from the same SU(6)~
multiplet (VO) and have the same S, (—,').

As in Sec. II 8, we solve the equations separately
at L =0 and 1, and then interpolate linearly be-

TABLE III. Constraints on j/IB M'B' amplitudes arising from suppression of
imaginary parts in exotic channels as t oru

No 10, or 10,*:
No 27, :
No 10'..

No 27'.

~8(1+ + 1 ) —
&& (ss+ + ss ) + ~4(10+ + 10 ) = 0

8
(1'

1 (1+
8

8
i (1+

+1 )+15(ss++ss ) —$(aa++aa ) —Pz(10++10 ) =0
2-1 ) — (as+ -as ) —&(ss+ —ss-) —~(10+-10 ) =0

5 4

—1 ) +
5

(ss+ —ss ) +$(aa+ —aa )+$(10+-10 ) =0
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TABLE IV. Constraints on MB M'D' amplitudes.

No ~10:

No 27, :
No 27„:

-~2 (s++s ) +
5

&10 (a++a ) —~(10++10 ) =0

&
(s++s ) —

I5 &5(a++a ) —~~W2 (10++10 ) =0

5
(s+ —s-)+ p&W5 (a+ —a )+6 W2(10+ —10 ) =0

III. THE ~ OCTET

The equations of Table VI may be evaluated at
I. =2 to give the ratios of octet to decimet cou-
plings of MB and MD:

MB II/IB:

ss /10

aa /ss

as /ss =I/v5;
(34)

s -/1O- =-5/8iÃ,

a /s = I/&5,
(35)

tween these points. The results, shown in Table
VI, have the following interesting properties:

(1) Factorieation. Every ratio has the property
that

(MB-MD) = (MB MB)(MD-MD).

This comes from the fact that all the leading o = -I
trajectories (S, = —,) are either decimets from 56
or octets from 70. For the leading 0 =+i trajec-
tories, such a. relation wouM not hold in general.

(2) Zeros. The ratios satisfy Eqs. (30) and (31).
(3) Value off/d. The universal f/d value turns

out to equal the SU(6)~ value,
(4) Weak I, dePendence of 8'/10 . The two

trajectories taken in the "broken duality" solution
to have an L -independent ratio have a ratio here
which is only weakly dependent on I. . The zero
at L, = -8 is not present in the model of Ref. 7,
and represents only an artifact of our linear ex-
trapolation.

The next two sections apply Table VI to some
experimental tests.

TABLE Vl. Linear interpolation of duality constraints
for 0' = -1 trajectories. The residue 10 is used as a ref-
erence since it corresponds to the lowest physical state.

MB ~ M'B'
10 /10 = 3(1 —1)

ss+ /10 = ~(L, + 8)

SS /10 32L

aa*/SS' =-
—,
'

as'/ss' =1/v 5

MB M'D'.

10+/10 =
3 (I —1)

s+/10-=5(1. +8)/48 vY

s-/10 =51.-/]. 6 ~2

a'/s' =1/W5 f/d = —
~3

MD ~ M'D'

10'/10- = —,
' (L,

- - 1)

8 /10 =4&8 (I +8)

8 /10 =(&~I-

member into MB and MD

I'[6 (1950)-Nm] —= I', (c.m. 3-momentum p, ), (SV)

I"[b, (1950)-~w] =—I', (c.m. 3-momentum p, ). (38)

Experimentally both these numbers are about 100
MeV." We shall express all I'(R-MB) as per-
centages of I', , and all I'(R-MD) as percentages
of I', , so that these values also reflect, approxi-
mately, widths in MeV.

In SU(6)~, I', and I', are related. We shall not
use such a relation here. Experimentally I',
seems at present to be at least a factor of 3 larger
than the value predicted by SU(6)~ on the basis of

$9
a

The decimet states will be assumed to follow an
equal-spacing rule, and the octet states to have a
mass-splitting pattern like that of the —,

' octet.
We then take for the masses

AID -MD:
8-/1O- =-'. .

We take as inputs typical widths for a ~2' decimet

TABLE V. Constraints on MD M'D' amplitudes,

IQ

a (1950)

Z,o(2030)

=,o (2110)

0 (2190)

8

x(1950)

Z, (2030)

A (2100)

:-,(2200)

No 27~:

No 27„or 35„:

(8++8 ) —f(10++10 ) =0

(8 -8 ) +~(3.0+ —10 ) =0

in order to have definite values when applying
barrier factor corrections to partial widths. The
partial widths I' are determined in terms of I', or
I', by (p = c.m. 3-momentum)
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I'/I', = (C/C, )'(p/p, )'(M, /M)' (i = I or 2). (40)

Here C/C, . refers to the product of an SU(3) isoscalar factor ratio and an amplitude ratio based on Eq. (34)
or (36):

R~8;

c( M )~ ()) 8 )0) (.)„, (10 8 )0)

R~ 10:

c())-Ma)gc, =
( (43)

The terms on the right-hand side in Eqs. (41)-(44)
are isoscalar factors with the meson-first pha, se
convention. " R denotes the decaying resonance.

Note that Eq. (40) incorporates a zero-radius
barrier factor appropriate for I' Moves. This is
correct for MB decays; for MD decays, one might
have had (in principle) H waves as well. Experi-

mentally the II -wave contribution is small, 23 and
we take it to be zero.

The calculated ratios I"/I', and I'/I, are shown
in Tables 7H and VIII, respectively. For each
resonance R we show the modes expected to be
most easily seen. The sign of C/C, is of interest
when discussing interference experiments. %e

TABLE VQ. Predicted partial widths I (R MB) as percentsges of I'& =- I'IA(1950) Ã~], for vari. ous resonances g
with J~ = —".

2

Resonance R (C/C))2 Sgn(C/C&)

l /I'& (pred. ) 1 exp
a

(%) (MeV)

6 (1950)

X(1950)

Ego(2030)

z8 (2o3o)

As (21oo)

1
8
I
2
1
8

1
3
1
2
1
3

1
3
1
8

12

(0)

100 (def.)
3.5

13
1.8
3.4

14
7,7
2.9

100

~30
30

(0(2110)

"-',(2200)

0 (2190)

1
2
1
8
1
8

14
18
9.3

From Ref. 16.
From B,ef. 24.
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TABLE VIII. Predicted partial widths I' (R MD) as percentages of I'2 ——I IQ(1950)—D7(].

Hesonance R (C/C2) 2 Sgn(C/C2)

I'/I'& (pred. )

(%)

~ exp

(MeV)

~(195O) 100 (def.)

4.4~10 '
-100

N (1950)

Z«(2030)

4
5

8
is

80

17

Z8(2030) 7.2

A8 (2100)

"«(2110)

10

"-,(2200) 1
5

5

0 (2190) 8.5

' From Ref. 16.
"See text: We regard the claim for a large value as spurious.

wouM like to point out several interesting features
of the table.

ta) Smallness of r[N(1950) -mN]. In the predic-
tion

r[a(1950)-nN] 8 ' (45)

centrifugal-barrier factors cancel out. This re-
sult is thus expected to be quite reliable. It has
been obtained previously in the harmonic-oscil-
lator quark model. " Qn the other hand, such a
model also predicts

r[~ (195o)-~~]
Y[~(1950)-~N] 8 '

where I' is I' divided by a suitable barrier factor.
This is the SU(6)~ prediction to which we referred
earlier, and which is not implied in the present
discuss ion

The smallness of the mN partial width of N(1950)
is expected to be reflected in a small elasticity
for this state, since the ms partial width of this
state is probably around 80 MeV. In or(wN)I „„
there is certainly no bump at this mass, which

lies right between the prominent N (1688; —,")and
N(2190; ~2 ) resonances. Nonetheless, a recent
phase-shift analysis" continues to suggest the
possible existence of an F» mN resonance with
mass around 2 Qeg. The parameters of this reso-
nance are not inconsistent with Eq. (45). If any-
thing, the experimental mN coupling is somewhat
larger than that predicted in Eq. (45):

r„,[r„(2000)—~N] = 80 Mev.

Such a large value, however, would begin to be
detectable as a bump in or(wN), », ."

(b) Large ~a mode ofN(1950). The prediction
(18), entailing (if r[&(1950)-m~] = 1o0 MeV)

r[N (1950)-wc] = 80 MeV,

implies that this state should show up in phase-
shift analyses of zN- m~. Referring to the signs
in Tables VQ and VIH, we expect amplitudes for

a[I"']N[I,'"']-w[I',"]b,[I,' ']

to be proportional to

X(~N ~n) = (II,"'-,' I,'"'~ ,'I, )(1I,"'
—,'I,'"~ ,'I, )m—[m' -s -—lmr,]-'

10
(49)
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A(v p-m'S )~„,=i(~5)'"t/2 (51)

i.e., strong destructive interference in w p-n'A
If l ~= 2I'„, as suggested by Tables VII and VIII,
this interference could even lead to complete sup-
pression of the b, (1950) bump in this reaction. In

the absence of N (1950), one would expect the reso-
nance contributions in reactions (50) and (51) to
be in the ratio of 9 to 2, respectively.

In the reaction m p - 7t b, ', one would expect con-
structive interference between b, (1950) and N(1950):

A(m-p- n-A')~„, = ,'i (-', )'-"-—+ . (52)
N

We see that the effects of this constructive inter-
ference will be rather mild. Equation (49) implies
some deviation from a single Breit-signer shaye
for m p —m'6' around 1950 MeV as long as FN c F~.

(c) Detection of N(1950) in mN-KZ
discussion leads to the predictions

A. (m'p -K' Z')
i... = i/I'~, (53)

(54)(.-P-K Z-)l„, =-;i[1/I', I/»„],
&(~ P -K'Z')~... = (-.'tVf )[I/r, +I/41 „]. (55)

The presence of the n. (1950) in reaction (53) is
weD known. ' Note the similarity of this pattern
to Eqs. (50)-(52). Experimentally there seems
to be little evidence for a bump at 1950 MeV in
either m' p-K'Z or m p-K'Z'. " Phase-shift
analyses of these reactions would be extremely
interesting.

Note that in Eqs. (51) and (54), the suppression
of the b, (1950) peak is correlated with exotic t
channel exchange.

(d) Smallness of I'[A, (2100)-KN]; alternative
decays. We have predicted the existence of a J~
=-,'+ A resonance whose KN coupling vanishes iden-
tically since f/d= =,'. Just as in the case of
A(1830, —,

' ),"one might expect some experimen-
tal deviation from this value, allowing a small but
nonzero KV coupling. The dominant decay modes
should be wZ and mY*, :

I'[A, (2100, &')- wZ] = 22 MeV,

I'[As(2100, ~2+) -wl;*] = 60 MeV.

(56)

(5'I)

where I, =—S"'+I3N'= I,"'+ Is~', m=1950 MeV, and

F~, F„are total widths. The purely I = —,
' contribu-

tion has been measured rather well in the reaction
m'p- m'6", ' corresponding to a value at reso-
nance of

a(v'p- v'n, ")~„,=-i(-,')'"/I"~ . (50)

Equation (39) implies that we should expect, at the
resonance peak,

An Eo, resonance in KN- nZ, of mass 2015 MeV,
appears in one analysis. " This would be an ac-
ceptable candidate for the state predicted here.

(e) Z (2030) decays.
By comparing signs for Z, (2030) and Z,o(2030)

couplings in Tables VII and VIII, one sees that the
two states will interfere constructively in KN
—(KN, KA) but destructively in KN - (wA, n Z, and
mI',*). In every case where destnxctive interference
is predicted, duality graphs" predict a net can-
cenation of imaginary parts as s- ~, t fixed. The
two Z (2030) states thus are expected to participate
in local averaging. (For KN-NK, s -~, u fixed,
the corresyonding averaging requires the addi-
tional contribution of negative-parity s-channel
states. ) This provides a check that our signs are
correct.

Experimentally the wZ/K N ratio for Z (2030)
seems to be lower" than one would expect from
assigning Z(2030) to Z„. However, the vA/KN
ratio is consistent with the decimet assignment.
No mixing or interference effects between Z„and
Z, can alter the predicted nA/mZ ratio, which
seems to underestimate the observed value. '0

Because of the possibility of mixing as well as
interference, we hesitate to make a full analysis
at present. At the very least, one can expect the
resonance shapes to be different in the two cases
KN-KN and KN~m(A or Z).

(f) = decays. The dominant modes depend on
the SU(3) representation, as one can see from
Tables VII and VIII.

(g) Some SU(3) remarks. The Regge recurrence
of the 0 (1670) is predicted to have an appreciable
K:- partial width. The A(1950) -Kl'*, mode is un-
likely to be as large (-3 MeV) as claimed in Ref.
16. Probably the bump in this channel comes from
the P-wave decay of the P» or E35 resonance, both
of which lie nearby. "

There are thus several interesting tests for
whether the leading ~~+ baryons near 2 GeV consist
of just a decimet or of a decimet and an octet.

IV. d(2200, ~ ).

The Regge recurrence of the D»(16'tO, —,
'

) wN

resonance should be degenerate with an I = —,
' state

if the spectrum (1) is correct. We can use duality
to estimate the couylings of this state.

It is necessary first of all to confirm the exist-
ence of the state G„(2200) predicted as the re-
currence of the D»(16VO) on the basis of Eq. (24).
Such a state would contribute to the dip in back-
ward m p scattering at p~ =2.15 GeV/c (Ref. 31)
and to the bump in or(m p) now ascribed purely to
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the G»(2190) resonance.
When extrapolated to L =3, Table VI predicts

I'[N (2200) —mN] 11
r[~ (220o) -~N] 32 (58)

as well as Eq. (28).
In contrast with the situation at Jp = &', it is the

A which has the bigger mN partial width at, , by a
fa,ctor of 3. The 7ta channel is relatively useless
in looking for the a(2200); the elastic channel is
preferable.

A ~ (2200, a2 ) would show up most directly as a
deep dip in backward m'p elastic scattering. The
existence of this dip has been known for a long
time, ' but it was usually ascribed to the "blank
space" between the peaks due to b, (1950, ~2') and
s (2420, ~').

Qne can make an order-of-magnitude estimate
of I"[N(2200) -wN] and r[a (2200) -mN] by assuming
that the comxnon unknown factor in the residue
functions depends exponentially on L . In this
way, by taking the geometric mean of
1 [L(1950)—nN] and r'[6 (2420) —vN] we obtain an
estimate of 10 at L =3. The predictions of
Table VI at L =3 then imply

1[N(2200)-mN] = I [I [z(1950)-nN]]'"
x (r[b. (2420) - nN] j'",

r[~(22oo) - ~N] = —,'&r[~(195o)-~N]]'~2

x fr [~(2420) —~N]] ".
(59)

(60)

and

I (a a~) 1-
r (~ -Nw) 3

r(N'-~n)-- =2
F(N-Nw) (62)

when zero-radius barrier factors are used. The
SU(6)~ ratio

r(a -&n) r(N -aw) 5
r(6-Nm) r(vV-Nw) 32

is independent of barrier factors and indicates

(63)

Barrier factors roughly cancel out in this proce-
dure; they may be treated more exactly by apply-
ing (59) and (60) instead to

r
(p/p )2l +I

where p, is any suitable scale factor and p is the
magnitude of the c.m. 3-momentum.

The inelasticities of the two predicted ~2 states
may be estimated using SU(6)~, since these par
ticular estimates all refer to decays involving a
single partial wave (G wave). " The results imply

that the "leakage" of the G» resonance a (2200) in-
to wA should be considerably less'than that of the
G, g N (2200).

Qne might expect the G39 to have some easily
observed decay modes besides mN and mA. Some
time ago an enhancement at p~ = 2.26 GeV/c was
noted" in the cross section for forming a wN(16VO)
system in the I= —, mN channel. The exact nature
of the N(1670) was not specified, but it appeared
to be produced predominantly in the forward di-
rection, indicating baryon-exchange or direct-
channel effects. Perhaps the predicted G39 state
is related to this effect.

V. DISCUSSION AND CONCLUSIONS

We have shown in some detail the existence of a
consistent solution to all duality constraints for
baryon exchange. This does not solve all problems
for duality; for instance, the elastic baryon-anti-
baryon system remains a, puzzle. The difficulty
is most easily seen in 6-6 scattering: Both s and
t channels must ha,ve only I=O or I, with I =2 a.nd
3 suppressed. This cannot be done without the I=0
and I contributions vanishing as well. The alter-
natives are as follows:

(a) Exotic mesons exist, 3 coupled only to baryon-
antibaryon final states, or

(b) duality does not hold for nondiffractive bb
—bb amplitudes; their saturation by resonances is
a poor approximation.

Very likely (b) is true. Nonetheless, one is not
thereby required to reject the usefulness of bb
-MM constraints. Indeed, duality diagrams"
show quite clearly that without exotic mesons,
duality will fail for bb-bb. At the same time,
these diagrams hint that a dual solution should
exist for bb-MM. Moreover, such a solution
should have properties in common with the quark
model. We reiterate that this solution has already
been constructed in Ref. 7, and all we have done
here is to divest it of some of its seeming model
dependence and present some experimental im-
plications.

It should be pointed out that the saturation of bb

imaginary parts by resonances is still an unproven
assumption. Indeed, both bb -MM (Ref. 34) and
bb - bb systems seem to have remarkably few
prominent resonances. However, the possibility
of a large number of overlapping states, perhaps
even with similar quantum numbers, is not ex-
cluded by the data.

We have not discussed two very important areas:
The o =+I constraints and backward meson-baryon
scattering.

Qne can obtain spectroscopic predictions for
o =+1 from those for v = -1 states using SU(6)~,
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ss /ss'=0. 84L, —O.IV,

as /ss'=-0. 10L,-0.80,

aa /ss'=0. 32L, +0.5V.

(65)

One can construct models, however, similar to
that in Ref. V, based on the sequence 8'—1,8

8', 1', . . ., for which the vanishing of all octet
amplitudes at L,.= -1 occurs simply as a result of
suppressing the 1' at L, =O. (The construction of
such a model for 0 = -1 constraints is shown in the
Appendix. ) Hence all one can say regarding the
result (64) is that it is an interesting example of
how constraints which vary along the trajectory
can suit the needs of backward meson-baryon
scattering fits. On the other hand, the effects of
Regge cuts in such fits is of course a matter of
speculation. "

or its relaxed version presented in Ref. 19. We
have not found tests of the existence of VO, L =2
and 56, L =3 multiplets, based on this approach,
which are as clean-cut as those already presented.
On the other hand, the 0 =+1 constraints are of
interest with respect to one prediction they make
for backward meson-baryon scattering.

A standing problem confronting any dual theory
of baryon exchange " ' is the prediction of a tra-
jectory degenerate with the N, i.e., the N,
whose contribution to backward mN scattering may
be expected to fill the dip in the I=-,' exchange am-
plitude. "

We have attempted to solve the exact-duality
constraints for MB-M'B' with a pattern of zeros,
f/d ratios, and other SU(6)~ requirements which
appear to be the most reasonable for the 0 =1 tra-
jectories. The assumptions may be summarized
by saying that of the states with J= L+ p, we ex-
pect those with S, =-, to be on higher trajectories
than those with S, = —,'.' Pn the other hand, we ig-
nore differences among different SU(3} represen-
tations with J=L+—,', S, =-,'. A corollary of this
is that 10'/1' = ~» all along the trajectory, since
both of these will come only from VO with the
above assumption.

As before, a linear interpolation of the con-
straints is made, with the amplitude ss' serving
as a reference. If this is done, one finds, for
mN -Nm,

0.21+0.24L,

P„1+0.1L, (64)

This expression vanishes very close to L+= -1,
the position of the dip in der/du(n'p -pm'). Such a'

zero is not expected in general in @ther N-exchange
processes, since the amplitudes ss, as, and aa
turn out to violate factorizability rather badly:

8, =3AB;L (1 + p),

8 ( =AB,[8 + (1 + 9p) L i,
with

(66)

p&0,

where A is an over-all factor with zeros at L = -1,
-2, . . ., and 8,'. refers to any of the octet ampli-
tudes in Tables III-V, whose choice will deter-
mine the value of the constant B,. In MD -MD,
B=~«, in MD-MB, B =&5 B, =4~52, in MB-MB,

In discussing backward meson-nucleon scatter-
ing, it was found 3' that the choice p = 0, made here
and in our Louvain lecture, ~' did not permit a
satisfactory fit to the data. On the other hand, the
case p= 1 has some merit, which we discuss
briefly.

From the double zero near e„=—,
' of the inter-

ference between I=-,' and I = —,
' exchange in back-

ward nN scattering, ' it appears that the imagi-
nary part of the I = —,

' amplitude vanishes at this
point. This can be arranged if 10 -10' = 0 there.
(The negative sign comes from the opposite rela-
tive parity of the two trajectories. ) With p =0,
10 and 10' have opposite sign for L &1, but if
one takes p= 1 the desired cancellation can indeed
be achieved. "

The choice p= 1 does not by itself solve the
problem" of the relative phase of I=-,' and I=-,' ex-
change amplitudes at 180'. The most naive appli-
cation of N —~~ exchange to mN -Nn, without any
zeros in residue functions between particle poles
and u = 0, seems to give the correct relative phase
(roughly 60')." It does not seem to be possible,

The choice of 10 as a reference amplitude for
the solutions was made arbitrarily, since it cor-
responds to the best-known resonances. A more
general parametrization of both positive and nega-
tive signature decimet and octet amplitudes may
be made. In this case all amplitudes are taken
as polynomials in L of the lowest possible order
consistent with the constraints. The general forms
may be constructed easily based on Tables III-V
and on the zeros we have assumed. There are fur-
ther points at which all amplitudes must vanish,
of course: For negative integer L the signature
factors

(+I -e "~-)/sinmL -=$(~)

have poles which must be canceled by an over-all
multiplicative factor such as I/F(L +1).

The general form of solutions in Ref. 39 is then

10 =A(1+ pI ),
10' = ,'A(L -1—},
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with any choice of p close to unity, to reproduce
this phase in the present solution with N and

A, +b, s alone. These difficulties are alluded to in
Ref. 39." Moreover, whereas 0=+1 decimet con-
tributions are not required in solving 0 =+1 con-
straints, they may be present. This would alter
the choice p=1.

With the choice p c0, several of our conclusions
must be modified. The estimates of Sec. III for
partial widths of the ~2' octet are based on ratios
such as

(6-/10-],.„,=, P {S-/10-}...,, , (67)

so that all our predicted octet partial widths must
be multiplied by (1+ p)/(I +2p), or —', when p =1.

Similar ratios of interest when 1. =3 are

I'[N(2200)-a ]= - „,' ), , (22 MeV)
1 +2.45p

= 20 MeV for p= 1.
As noted, the condition p = 1 in Eqs. (70) and (71)
follows only from applying the form (66) to back-
ward meson-baryon scattering, "and is not a nec-
essary feature of the constraint equations.

Similar estimates for ~(2200) decays are much
more sensitive to the value of p:

1[6,(2200)-Nw]=
(1 )

—,i, 1 „, (32 MeV)

=8 MeV for p=1,
and, again using SU(6)~,

I'[4(2200) hn j =
(
—— )„, ),g, (11 MeV)

1

=3 MeV for p=1. (73)

(10'/10-]..., , = f10"/10-). .. , . (69)

We thus expect the predictions of
I' [N(2200) —mN, mb, ] in Sec. IV to be fairly reliable:

1+2.45p
F[N(2200) -N1T] =

p/,'( ),~2 (11 MeV)

=10 MeV for p=1, (70)

where we have taken I"[a(1950, 2420) -mN]
= (100, 30) MeV, respectively, in applying Eq. (59),
and, using SU(6)~ as mentioned,

Recent attempts 4' to fit new data ~ on backward
elastic m'p scattering near F, =2.2 GeV seem to
require some negative-parity resonance near this
mass. The cross section at 180' depends only on
I'„, and (J+-,')I',„/I'~, ~. One cannot extract I',„
without an assumption about the spin, which we
predict should be +2.

As this manuscript was in preparation, prelimi-
nary data on mN-mmN were brought to our atten-
tion'~ which suggest that the partial width l,
—= I'[a (1950)- n b, ]= 100 MeV quoted in Ref. 16 may
be an overestimate by as much as a factor of 3 or
4, as a result of a sizable pN content of the mN

FIG. 2. Comparison of linear and quark-model (Ref. 7) interpolations of duality constraints for MD —M'D' residue
ratios.
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mode. A smaller value would certainly be more
in accord with SU(6)~, making the estimates in
Secs. IV and V more believable. It would reduce,
correspondingly, all the other partial-width pre-
dictions quoted here for ~2' states into MD. The
percentages in Table VIII would, of course, re-
main the same.

To summarize, the spectroscopic predictions of
exact duality for baryons turn out to be quite rich
in the mass region around 2 GeV. We believe the
testing of these predictions to be one of the most
fruitful uses to which phase-shift analyses could
be put in the near future.

Note added. The present work utilizes a collec-
tion of leading o = -1 trajectories which has been
discussed before. ' ' These involve octets and
decimets of both signatures. It should be stressed,
however, that the feasibility of relating such a
solution to the harmonic oscillator spectrum (29)
or even to any physically reasonable spectrum
has not generally been accepted in the literature.
This is because of a supposed difficulty in impos-
ing Eqs. (30) and (31). A simple example may il-
lustrate the source of confusion.

Consider the relation (10')/(10 ) =-,'(L -1) in
Table VI. This ratio becomes negative for L &1.
(In the notation of Ref. 6 this appears to be a dif-
ficulty since both 10' and 10 are expressed as
sums of squares of factorized couplings. ) The
actual residue of a pole in an elastic amplitude
must not become negative, of course, but this
will not occur in the present case.

The behavior of residues in Table VI for L &0
should be mentioned briefly. As stated just above
Eq. (66), a spectrum with no particles for L & 0
is desired; it can be achieved by fiat. Hence no
problems with positivity arise in this region.
Figure 2 then shows that no positivity problems
will arise at any particle poles.

The spin interpretation of residue functions at
unphysical points should be clarified. The rela-
tions we obtain for given o refer to lj jtja] and lfm

which are definite functions of J, as illustrated in
Eqs. (14)-(1V). (For MB- MB, the relations are

1
tinitiaf tfinal ~+ 2 )

The parity is defined with respect to I, and hence
alternates along the trajectory. Thus, for exam-
ple, while 10 refers to P =+ at the physical points
L =0 and 2, it refers to P = —at I. =1 (J~ =-' )
from the standpoint of spin relations. The sig-
nature label 7 = —. should thus not be interpreted
as requiring I =+ all along the trajectory. This
label only indicates at what point a given residue
function corresponds to poles.

The consequence of discussing a =+1 and 0 = -1
constraints separately is that we are unable to

make statements such as those of Ref. 46 regard-
ing local duality among s-channel resonances.
The connection of our work with attempts to pre-
pare the ground for explicit dual models is thus
unclear. In the context of such models, inci-
dentally, we have sidestepped the very important
problem of parity-doubled baryon states, 4' treated
in Refs. 39, 48, and 49. The question of whether
parity doublets are canceled by exp]icit functions
with an infinite number of zeros'9 4' or by fixed
cuts in the angular momentum plane4' remains
obscure, and must be solved before explicit dual
models for meson-baryon scattering can be con-
structed.

The importance of looking for the states men-
tioned above has also been stressed" as a test of
the harmonic-oscillator quark model, as con-
trasted, e.g. , with the simpler level scheme in

(2) 6, 10.51
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A, , (2 V) —=A (mc ) =
8-ch reps

W„(2V) -=B(st) =
g- ch reps

A„(35)= C(st) =
s —ch reps

where the elements of the crossing matrices X„
and X„,are given in Ref. 11. Specifically,

A (s u) = ~15 v V A (6) —~WVA (10) (A

B(St) =~152, (6) + ~12 A, (10),
C (st) =3B(st) .

(A5)

(A6)

APPENDIX: ALTERNATIVE METHOD OF SOLUTION;
A MODEL AMPLITUDE

We introduce here an alternative method of solv-
ing the constraint equations, "which allows use of
the model of Ref. 7.

The method involves identifying each exotic am-
plitude with a function having poles in the two
crossed channels. When discussing s -channel
Regge poles, we shall be concerned only with func-
tions having poles in s and u (exotic t) or s and t
(exotic u). Such functions have been called "nexus
functions. " The Veneziano amplitude ' is an ex-
ample of such a function.

Consider first the process MD-M'O'. We set
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%ith a change of normalization, this reads as fol-
lows,

./AID -MD:

X. (——,'o. ,)
LJ L —a,

(A15)

A.,(10) =-,'[B,(st)+2A. ,(su)],
4, (8) =~[B,(st) -A. , (su)] .

(A7)

(A8)

A, (I0) = -,'-[B,(st) +24, (su)],

A, (8„)=~2, [B,(st) -A., (su)]

= ES ~,(8.,) = 5~,(8..) . (A10)

Similarly one can construct solutions to MB-MB
and MB-MD involving only leading octets and

decimets~ as follows.
MB MB:

B,(st)- (~,)'
L~ L —n,

These correspond to the highest spin resonances
at L = o&, . In Eq. (A15) we have used the fact that
at any value of s, n„= -a, +const. Factorization
at n, =O requires ~,'=~,&, and p,'= p, p, ~ The
relative scale of A., and A., is arbitrary but will be
specified in SU(6)~.

At each pole in n„one can separate out posi-
tive- and negative-signature contributions using,
for any function f(st),

f (st) = f '"(s, t) + f ' '(s, t),

A, (10) = —', [B~(st) +2A3(su)] (A11)

A.,(8,) =- 5[B,(st) -A.,(su)] /12' = v 5 A, (8,).
f '"(s, t) =--,' [f(s, t) + f (s, -t)] . (A18)

(A12)

Here A, applies to an entire amplitude, not just to
its imaginary part.

The functions A, (su) and B;(st) may be chosen
so as to eliminate the appropriate contributions
at L =0 and 1. ln Hef. 7 these functions are con-
structed explicitly from (spinless) quark lines
and correspond to the two topologically distinct
duality graphs for meson-baryon scattering:

A, (su) = A, dx x "~ '(1 -x)
0

B.(st) — t&. dxx- s- (1 x)

Here we shall take n, to refer to L, and e, , are
t- and u -channel trajectories.

For o -- -I trajectories we want no pole in A, (8)
at o'„=0 and no leading pole in A, (10) at n, = 1.
can be verH'ied that X,. = I.L, ensures this.

The leading power of n, in A (su) and B(st) is
given near a pole n, =L (L =0, 1, . . .) by

Qne then finds, at integral values of L, relations
such as

MD MD:

r. -x+y

5(2~ +1)
4(2~ +2)

5(2'-1)
4(2i+2) '

(A19)

(A20)

which (it may be verified) satisfy the original con-
straints of Table V for all L. Moreover, these
ratios agree with the linear interpolation of the
constraints not only at L =0 and 1 (where they
must) but also at L =2. At L = 3, use of Eqs.
(A19)-(A21) would replace the number ~, obtained
in Eq. (28), by ~5. The linear interpolation of
Table VI in fact fits Eqs. (A19)-(A21) fairly well
over a considerable range of L, as shown in Fig.
2.

The solutions for MB-MB and MB-MD differ
from Eqs. (A19)-(A21) only in common scale fac-
tors, which bear the same ratio as in Table VI.
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