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(3) In the sixth line after Eq. (II.9), read (II.2)
for (II.V).

(4) For the fractional power occurring in the de-
nominator of the unnumbered equation preceding
(II.18), read —,

' instead of ~3.

(5) For the fractional power appearing in the de-
nominator at the end of Eq. (II.19), read —,

' instead
of 3.

(6) In Eq. (II.20), insert

(7) In Eq. (11.3'I), read —instead of —.

(8) In Eq. (III.31), read instead of-
2n. +C

(9) The denominator of Eq. (III.32) should con-
tain m' instead of n'.

~Work supported in part by the National Science Foun-
dation.

~ J. Schwinger, Phys. Rev. 75, 1912 (1949), referred
to as paper I.

A systematic development of this new approach to
particle theory is described in J. Schwinger, Particles,
Sources, and Fields I (Addison-Wesley, Reading, Mass. ,
1970) and Particles, Sources, and Fields II («be pub-
lished) .

3This procedure resembles that introduced in an
earlier paper [J. Schwinger, Phys. Rev. 82, 664 (1951)j,
but is here applied to the system of charged particle
and photon.

4Retaining u here gives the essence of the first
quantum correction [J. Schwinger, Proc. Nat. Acad.
Sci. U. S. 40, 132 (1954), and the Russian literature
cited in Synchrotron Radiation, A. A. Sokolov and I. M.
Ternov (Pergamon, New York, 1968)].
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We solve the anharmonic-oscillator problem as given by Bender and Wu to include the S4

terms for the energy eignevalues and the h2 terms for the eigenfunctions by means of the
MQler and Good modified WKB method. This is done by accepting the harmonic oscillator
as a solved problem. We see that in doing so, not only can we get better energy eigenvalues,
but also we can get improved eigenfunctions.

I. INTRODUCTION

We will discuss the familiar anharmonic-oscilla-
tor problem. We are concerned here with the
simple one-dimensional oscillator with real and
positive oscillator strengths (k &0, a &0) as given
by the potential

V(x) = 2kx'+ax, k &0 and a &0.

When perturbation theory is used to solve the an-
harmonic-oscillator problem based on the solved
problem of the harmonic oscillator, the perturba-
tion series for the energy diverges and even
changes sign. A clear account of this is illustrat-

ed by Chan, Stelman, and Thompson' in their Ta-
ble III.

Such a simple but important problem has attract-
ed the attention of both the field theorists and the
chemists. The former are interested in it because
they desire to build a model field theory on it. The
latter are interested mainly due to the anharmonic
bonding problem. The reader is referred to Bender
and Wu' as well as the references listed there for
the detailed reason why the field theorists are in-
terested in the problem. As for the chemists,
Chen, Stelman, and Thompson' have given a good
account.

Of course an evaluation of the energy eigenvalues
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is important, since the validity of the method used
can be tested. It is even more important to obtain
the corresponding eigenfunctions, since, as an
example, the transition matrix elements could
then be determined. What we work out in this
paper are the energy eigenvalues to terms of the
order of S' based on the known values of the har-
monic oscillator, namely, E =(n+-,')k~, n =0, l,
2, . . . , and we also work out the corresponding
wave functions. We use the Miller and Good' modi-
fied WKB method which was extended to include
higher-order terms of the bound state by Lu. ' We
will see that by including higher-order terms, the
energy eigenvalues converge faster than the ordi-
nary WKB result' and improve the previous re-
sults reported. ' The eigenfunctions are better than
those given by Bender and Wu in the sense that
there is no need to divide the boundaries into sev-
eral regions so that the problem is less compli-
cated and much easier to handle.

The essence of the Miller and Good method is
that instead of starting with the free-particle wave
function, the exact solution of a known potential
that is as similar as possible to the unknown po-
tential is used as the trial wave function. In this
case, the known potential is chosen as the harmon-
ic-oscillator potential. The result of Miller and
Good using the zeroth-order terms in h' only in-
dicates that this choice gives the same answer as
the ordinary WKB method. This situation becomes
greatly improved if we include the A' terms. Here
the approximation includes the k' terms. By in-
cluding the 5' terms, the results obtained in the
modified WKB method are better than those of
both the modified WKB method to order h' and the
ordinary WKB method.

The method for obtaining the eigenfunctions is
illustrated to order 5' only. The technique devel-
oped is quite general and there is no difficulty in
going to higher orders in h'. Throughout we dis-
cuss the case where the coupling constant g is
real and positive. We feel that it is easy to gen-
eralize it to complex values but it is not necessary
to do so here.

II. EIGENVALUES TO THE ORDER 2

We are going to use the notations of Chan, Stel-
man, and Thompson by defining the following rela-
tions:

S=(4~ /k')~'x

k' = k + (ask s/m )~ s .

(2a)

(2b)

The Schrodinger equation under consideration is

d2 2m
d" [))+ (—E —-'kx' -ax')$= 0. (3)

By substitution, we can rewrite E(l. (3) to be

where

] = 4E&'/(k'v'n) (5a)

and

(a212/m))/2
k+(a'k'/m)~s ' (5b)

To the order 5', we see from previous work'
that the following formula holds:

P, dx-,-'h' p, "p, 'dx

P, dx--'k' P,"P, 'dx)

where p, and p, are defined in the equations

(6)

[(d'/dx')+p, '/I'][I)(x) =0,

[(d'/dx') +P,'/k'] 4)(x) = 0.
(Va)

(Vb)

Here the unknown part is represented by p, '
= 2m(E ——,

' kx' —ax') and the known part is repre-
sented by p, '=2m(E„o--,'kx'), where E„o =(n+-,'}
x k(k/m}~' with n =0, l, 2, . . . are the energy eigen-
values of (Vb). The contour integration is around
the two' turning points in both cases. Now it is
easy to see from (5a) that for a pure harmonic
oscillator,

A' =- X„o = 4n+ 2 with n = 0, 1, 2, . . . . (6)

The modified WKB method, as used by Miller and
Good, coincides with the ordinary WKB method so
far as the lowest-order eigenvalues are concerned.
We see that the discrepancy is immediately com-
pensated for by including the next-higher-order
terms. Now E(l. (6) is rewritten as

[(1' —S')«'+ (1' —S') «'] SS=$[1—(1 — )S' — «'S']«'SS -'(1 — ))[SS/[1 —(1 — )S' — "'S ]«'

+ n+' S'd S A — 1 —o.)S' —e~'S' +'

and
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TABLE I. Reduced energy levels of the anharmonic oscillator. (a) The exact result as given by Chan, Stelman, and
Thompson. (b) The modified WKB result to second order in k. (c) The modified WKB result to fourth order in S.
(d) The WKB result as given by Handelsman and Lew to second order in S. Notice that (b) and (c) are given to five
decimal points mainly because the improvement can only be seen there.

(a) (b)

n =0.2

(c) (a) (b)

n =0.8

(c)

2.042 70
6.510 50

11.6292
17.2332
23.2391
29.5930
36.2567
43.2010
50.4029
57.8438

2.192 03
7.338 24

13.6919
20.8389
28.6242
36.9519
45.7558
54.9874
64.6087
74.5895

2.355 26
8.13648

15.5569
23.9899
33.2344
43.1639
53.6926
64.7577
76.3107
88.3128

2.034 11
6.510 326

11.629 15
17.233 17
23.239 07
29.593 03
36.256 69
43.200 98
50.402 93
57.843 84

e =0.4
2.141136
7.342 51

13.692 17
20.839 06
28.624 37
36.951 98
45.755 91
54.987 42
64.608 74
74.589 54

n =0.6
2.251 10
8.148 09

15.557 36
23.990 31
33.234 62
43.164 01
53.692 68
64.757 76
76.310 76
88 ~ 312 91

2.037 20
6.510 57

11.629 18
17.233 17
23.239 07
29.593 03
26.256 69
43.200 98
50.402 93
57.843 84

2.145 86
7.342 22

13.692 01
20.838 98
28.624 32
36.951 95
45.755 89
54.987 41
64.608 73
74.589 53

2.245 64
8.147 00

15.557 01
23.990 16
33.234 54
43.16395
53.692 65
64.757 74
76.310 74
88.312 89

1.989 57
6.473 73

11.6011
17.2103
23.2196
29.5760
36.2414
43.1871
50.3902
57.8321

2.15181
7.339 83

13.6897
20.8370
28.6226
36.9504
45.7546
54.9862
64.6076
74.5885

2.51648
8.880 62

17.2430
26.7955
37.3022
48.6119
60.6228
73.2604
86.4675

100.1983

2.671 95
9.574 58

18.7872
29.3429
40.9773
53.5174
66.8476
80.8835
95.5600

110.8256

2.361 65
8.900 00

17.243 36
26.795 96
37.302 46
48.612 08
60.622 91
73.26049
86.467 53

100.19833

n =1.0
2.471 38
9.60143

18.78743
29.343 54
40.977 51
53.517 51
66.847 66
80.88347
95.560 03

110.825 61

2.341 45
8.898 18

17.242 85
26.795 75
37.302 34
48.612 01
60.622 87
73.26046
86.467 51

100.19832

2.435 85
9.598 97

18.786 78
29.343 27
40.977 38
53.51743
66.847 61
80.883 43
95.560 00

110.825 59

(A. —S') ~'dS= 0.

The numerical values in Table 1 indicate the importance of the terms to g in Eq. (6).
The evaluation of the first integral on the right-hand side of Eg. (9) is easily done by use of the elliptic

J.ntegrals with the following results:

[X —(1 — )S' — "'S']~'dS= ~'$ y, — q, S' —S' d$

S)g +S & dS

with

1 1 —a (1 —o)' 4A,
3jf2 + 3

(10)

(11a)

and
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1 1 —a (1 —a}2 4A.b'= —— y, +, +
2 Q (x 0 (11b)

The F and E are the complete elliptic integrals of the first and second kind. They can be approximated by
the polynomial approximation to within an error of 10 by the formulas given on p. 591 of Ref. V.

We will make use of the fact that the integrals involved are contour integrals. The evaluation of them is
greatly facilitated by the use of the external differentiation method. The same result can also be obtained
by using a table of integrals. We illustrate the former method by performing differentiation on both sides
of

dx 4
[(g2 yy}(52 x2)]/2 (g2 +$2}l/2 2 t

with respect to b' and using the relations

dF E —(1-K )F dE E —F
dK K(1-K) dK K

with K = b/[g2+ 52]'/2. We then obtain

dx 4(F -E)
(g2 A/2)l/2(52 x2}2'2 $2(g2 +52)l/2 (12)

The table of integrals' gives

(g2 yx2)V2(52 x2)2'2 52(g2 + fl2)l/2 l ' l ' fl2[(g2 +l22)($2 g2}]l/2r [F( K)-E( K)]+

with

(g2 /52)l/2 g
(g'+u')~' 6

Also notice that

E(m v+ 4l, K) = 2m E(,'v, K) ~ E(y, K-),

F(mlle s, K) =2mF(-,'x, K) ~F(4/, K) .

Here m is an integer and 4l =0 gives E(O, K) =0 and F(O, K) =0. Therefore, it gives

dx 4 1 1

(g2 ~ 2)I/2(b2 P)2'2 52( 2 ~52)l/2 [ (2 Ii ) (2 K)] ' (14)

Notice here that the contour integration leads from -b to 0 and 0 to b in the third and first quadrant and
from b to 0 and 0 to -b in the second and fourth quadrant, respectively. This gives the number 4 in front,
which is the same as before [Eq. (12)]. This external diffraction method is important in finding some of
the more complicated contour integrals used in Sec. III where we just list the results obtained and do not
go into details.

Similarly we get

2 1 2 2 1
(g2+ +2)2/2(52 2)2/2 g252( 2 52)2'2 [g (2& K) —(g - & )E(2& K)] (15a)

and

x'dx 4
( '+ ')2'(b' -d)v' ( + 52)2 2 [F(2&,K) —2E(2v, K)]. (15b)

With the identification g' and b2 as given in Eq. (11), Ell. (9) is readily evaluated.
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m. EIGENVALUES TO THE ORDER k4

Equations (3) and (4} of Ref. 4 are the equations to be used.
Equation (3} of Ref. 4 reads

1705

P,dx —
—,
'h' P, ') P, 'dx-,—', I' P," 'p, dx+ —' I P, ' 'P, 'dx

and Eq. (4) of Ref. 4 reads

p2dx sk P2') p2 dx -&&S P2 P2 dx+ res~ P'2' p2 dx

(16)

with

1T" 7 T"' 5 T'T" 1 T- 7 T ' 51 1 1 1 d g 2 2 + 2 2

48 T, 1536 T, ' 1536 T, ' ' 48 T 1536 T, ' 1536 (17)

p, , =-aR, , =-a(r, ,)?/'.

Equation (lV} is obtained from Eq. (16) after integrating by parts several times. Equation (16}can be di-
rectly seen as an extension of Eq. (6) by including the I terms. Equation (17) is the equation to work with
here. We list in the following the formulas used in evaluating the integrals, which are obtained by means
of differentiation before the contour integrals are evaluated. In Table I we list the results and it can be
seen that the contributions of the 5' terms are in the right direction. They are converging and they give
us a feeling that this modified WEB approximation is essentially correct, in spite of the complexity of the
higher -order terms.

The following formulas shown here are important:

+)v, =(-—', ) 4bm(, b, )&, [F(2??', K)(-6a +2a'b')+E(2??, K)(6a' —14a'b' —4b'}], (18)

,)» [(6a' + 27a'b' —3a'b') F(-,'?/, K) + (-6a' —30a'b' + 30a'b' + 6b')E(-,'?/, K)],

(19)

,)??/, [(-24a' —117a'b' —2VOa~b'+15a'be)F( —', ?T, K)

and

+(24a'+129a b +324a b' -195a2bs —30b8)E(~???,K)], (20)

»&, [a'(120a' + V35aeb' + 2250a'b' —345a'b' —60b') F(,'?/, K)—
+ (-120a" —795a'b' —2595a'b'+ 2595a'b'+ 795a'b'+120b")E(-'w K)]

The additional terms added to the right-hand side of Eq. (6) through Eq. (17) are

7 T 5 T r T Ifi

d + 1 1
1536 T, 1536

(21)

= -1 dS dS
1536 [g (1 - n)S2 v'S~]T/2 p (1 ~)S2 vmy v/2

S'd S
[w —(1 —a)S' —a~ 'S']'/'

1 4224 d S /768(1 —n} 4224(b-'—a'! dS
1536 ~fv4 (b2 c?)5S'2( ~aS22)v2 I o?5, 4 ~??/4 (b2 q2)?! 2(a2 ?. S??)7/2

-224(1 —a') 768(1 —u), 4224 dS
2?/4 ?$4 ??/4 (b2 g)7/2( 2+S?)7/2 ? (22)
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and the higher terms of Eq. (9) in 1i' are zero [e.g. , Eq. (9a)]. The definitions of the parameters n, a,
and b are the same as in Eq. (5b), Eq. (lla), and Eq. (lib). They are easily handled by a computer .The

results obtained for different ~ values up to the order of h' are given in Table I. An important fact of

this calculation is that the contribution due to Fi terms above is very small but in the right direction.

IV. EIGENFUNCTIONS TO THE ORDER OF 8

Assume that r is the one-dimensional space co-
ordinate of the anharmonic oscillator. Since we
know that

ltd2' = — g)dg
y

then by several integrations by parts, Eq. (6) can
be written as

/tl P I
1 1

24T'/2 T ~ T"
1 1 1

24' 1/2 y i y!2
2 2 2

where as before

Because there is no longer any apparent diver-
gence in the second-order term in Ii2, we can
evaluate this contour integral as follows:

l ] 1 P ill P I/2
1 1

1 24 y 1/2 g' r
Z

t2
r

1
1 1 1

lit y ir2
2

2 24 rI 1/2 ry I y r2
x 1 2 2 2

dx

(24)

where ~, and x, are the corresponding turning
points. We see that the above gives us the rela-
tion

.= x(r),

P„(~ ) = [ (r)j ' ~S(x(r)) . (27)

where x is the one-dimensional space coordinate
of the harmonic oscillator. The wave function of
the harmonic oscillator i.s already known and giv-
en by

(26)

with $ =(mk/k')'" x and H„eibgtnhe Hermite poly-
nomials. Therefore, the wave function of the an-
harmoni oscillator is'

Of course we see that for x&
f x, [ and x & —

[ x, [

mapping to r ~
f r, f

and r & —[r,[, there is one-to-
one correspondence. But both 8, and 82 simu1. ta.-
neously turn from real values to imaginary values.
The equation is still valid outside of the turning-
point regions. We just have to multiply by i to
transform both sides into real quantities. There
appears to be a divergence at first glance in the
place where T, '= T2'=0. There are important
conditions used in deriving Eq. (23), simply T, '

~0 and I'2'+0. Or we have to return back to the
earlier Eq. (6), where, as r and x are close to
zero, only the zeroth-order terms contribute. Or
we can approximate the case by choosing a finite
distance around both ~;„and x;„such that only the
zeroth-order terms contribute there and with ade-
quate connections outside. Thus the eigenfunction
obtained is valid throughout.

In so doing, we think that we get a better eigen-
function than Bender and Wu, for then we have
avoided the necessity of dividing the space into
many regions where each of the regions has its
own form of valid wave function.

V. REMARKS

As we look at the results in Table I, several in-
teresting things can be seen. First, the modified
WKB method gives better over-all results than the
ordinary WEB results to second order in 5 already
and this leaves very little room for improvement
to fourth order in A. . Although the terms of fourth
order in Pi are messy, the contribution to the over-
all values is small. Here we begin to consider the
accuracy of the exact result which is obtained by
the method of diagonalization. It could be possible
that there are some errors to the fourth or fifth
decimal points due to roundoff. Second, we see
that the modified WEB method cannot give the
eigenvalues for n=0 and n=1. However, the re-
sults indicate that the eigenvalues for n = 2 or
above are already good. We see that this state-
ment is true too even if we include the h4 terms.
Th-.s seems contrary to our anticipation, namely,
the improvement obtained with the k4 terms is
not drastic. However, it is in the right direction.
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In parts II and. III of the present series of papers, the localization problem was studied for
the cases of relativistic nonzero mass (spin 0, 2) and zero mass (spin 0, 2, and 1). With a
set of postulates, of which the basic one is the imposition of Lorentz invariance of ~ocaliza-
tion {LIL) (which is a self-consistency requirement), it was possible to define the position
operator uniquely (except for a constant in the spin--.', nonzero-mass case). I'or the deter-
mination of the position operators it was enough to consider only very special cases of homo-
geneous Lorentz transformations. One of the purposes of the present paper is to consider the
effect of arbitrary inhomogeneous continuous Lorentz transformations in order to obtain
general Poincare-invariant localization (GPIL). Our main result will be that localization is
LIL if and only if it is GPIL. In II md III, LIL was obtained in spite of the fact that the posi-
tion operators were rot 4-vector operators but only 3-vector operators. In this paper,
following Fleming, we construct formally covariant position operators from the 3-vector
operators. We prove that their. eigenfunctions are just the localized states defined in the
GPIL sense.

I. INTRODUCTION

A. General

In papers II (Ref. I) and III (Ref. 2) of the present
series, the problem of localizability of elementary
systems in relativistic quantum mechanics was
considered by requiring the consisten y of the de--
scription of localization from different inertial
frames as the only basic assumption; the p'.position
operators were uniquely defined (except for a con-
stant in the spin--.'-, nonzero-nIass case"), an(!
their form was found explicitly. In II the nonz ro-
mass systems of spin 0 and —.'- were "cnsidered,
and in III the zero-mass systems of spin 0, , and
1 were considered.

The basic assumption (Postulate 4 of II) is a
self-consistency one: If a state is a 1-localized
state' (i.e. , an eigenstate of only one component
of the position operator X) in a two-dimensional
plane, e.g. , X'=0 at t=0, then, making a homoge-
neous cont''nuous Lorentz transformation such
that the region of localization remains invariant,
the transformed state is again a localized state in
the same region. This is what was called Lorentz-
in.»m. iant localization (LIL). It i.s clear that only
very special cases of homogeneous Lorentz trans-
formation' leave invariant those two-dimensional
planes.

One of the purposes of the present paper is to
con,"ider the effect of arbitrary inhomogeneous
continuous Lorentz transformations on states


