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(3) In the sixth line after Eq. (II.9), read (I1.2)
for (I.7).

(4) For the fractional power occurring in the de-
nominator of the unnumbered equation preceding
(11.18), read $ instead of %.

(5) For the fractional power appearing in the de-
nominator at the end of Eq. (I.19), read } instead
of 3.

(6) In Eq. (11.20), insert

1 2/3 2 1/3
r(s) <_‘i’_> instead of () (__w_) .
2 \2w, 2 \ 2w,

2
(7) In Eq. (I.37), read % instead of % .

n instead of 2

(8) In Eq. (II1.31), read o, .

(9) The denominator of Eq. (II1.32) should con-
tain 7° instead of 7°.

*Work supported in part by the National Science Foun-
dation.

1J. Schwinger, Phys. Rev. 75, 1912 (1949), referred
to as paper I.

2A systematic development of this new approach to
particle theory is described in J. Schwinger, Particles,
Sources, and Fields I (Addison-Wesley, Reading, Mass.,
1970) and Particles, Sources, and Fields II (to be pub-
lished).

3This procedure resembles that introduced in an
earlier paper [J. Schwinger, Phys. Rev. 82, 664 (1951)],
but is here applied to the system of charged particle
and photon.

Retaining « here gives the essence of the first
quantum correction [J. Schwinger, Proc. Nat. Acad.
Sci. U. S. 40, 132 (1954), and the Russian literature
cited in Synchrotron Radiation, A. A. Sokolov and I. M.
Ternov (Pergamon, New York, 1968)].
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We solve the anharmonic-oscillator problem as given by Bender and Wu to include the &*
terms for the energy eignevalues and the #* terms for the eigenfunctions by means of the
Miller and Good modified WKB method. This is done by accepting the harmonic oscillator
as a solved problem. We see that in doing so, not only can we get better energy eigenvalues,
but also we can get improved eigenfunctions.

I. INTRODUCTION ed by Chan, Stelman, and Thompson® in their Ta-

ble III.

We will discuss the familiar anharmonic-oscilla- Such a simple but important problem has attract-

tor problem. We are concerned here with the
simple one-dimensional oscillator with real and
positive oscillator strengths (¢ >0, a >0) as given
by the potential

V(x)=3kx*+ax*, k>0 and a>0. (1)

When perturbation theory is used to solve the an-
harmonic -oscillator problem based on the solved
problem of the harmonic oscillator, the perturba-
tion series for the energy diverges and even
changes sign. A clear account of this is illustrat-

ed the attention of both the field theorists and the
chemists. The former are interested in it because
they desire to build a model field theory on it. The
latter are interested mainly due to the anharmonic
bonding problem. The reader is referred to Bender
and Wu? as well as the references listed there for
the detailed reason why the field theorists are in-
terested in the problem. As for the chemists,
Chen, Stelman, and Thompson® have given a good
account,

Of course an evaluation of the energy eigenvalues
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is important, since the validity of the method used
can be tested. It is even more important to obtain
the corresponding eigenfunctions, since, as an
example, the transition matrix elements could
then be determined. What we work out in this
paper are the energy eigenvalues to terms of the
order of 7#* based on the known values of the har-
monic oscillator, namely, E = (n +3)iw, n=0,1,
2,..., and we also work out the corresponding
wave functions. We use the Miller and Good® modi-
fied WKB method which was extended to include
higher-order terms of the bound state by Lu.? We
will see that by including higher -order terms, the
energy eigenvalues converge faster than the ordi-
nary WKB result® and improve the previous re-
sults reported.® The eigenfunctions are better than
those given by Bender and Wu in the sense that
there is no need to divide the boundaries into sev-
eral regions so that the problem is less compli-
cated and much easier to handle.

The essence of the Miller and Good method is
that instead of starting with the free-particle wave
function, the exact solution of a known potential
that is as similar as possible to the unknown po-
tential is used as the trial wave function. In this
case, the known potential is chosen as the harmon-
ic-oscillator potential. The result of Miller and
Good using the zeroth-order terms in %2 only in-
dicates that this choice gives the same answer as
the ordinary WKB method. This situation becomes
greatly improved if we include the %2 terms. Here
the approximation includes the 7#Z* terms. By in-
cluding the %#* terms, the results obtained in the
modified WKB method are better than those of
both the modified WKB method to order %2 and the
ordinary WKB method.

The method for obtaining the eigenfunctions is
illustrated to order #2 only. The technique devel-
oped is quite general and there is no difficulty in
going to higher orders in #2. Throughout we dis-
cuss the case where the coupling constant a is
real and positive. We feel that it is easy to gen-
eralize it to complex values but it is not necessary
to do so here.

II. EIGENVALUES TO THE ORDER 7?2

We are going to use the notations of Chan, Stel-
man, and Thompson by defining the following rela-

tions:
J

AND B. L. YOUNG 7
S=(dmk’ /B3 4x, (2a)
k' =k +(a?H2/m)V3. (2b)

The Schrédinger equation under consideration is

d2
dx*

¢+2ﬁ—”;(5 —Lkx? —ax?)y=0. 3)

By substitution, we can rewrite Eq. (3) to be

d‘;—221p+%[x-(1—a)s-aﬂ/zs“]¢=o, (4)

where
A=4EmY2/ (k'Y 2p) (5a)
and
_ (azh—z/m)V2
B @R/ o)

To the order %2, we see from previous work?*
that the following formula holds:

$pidx=3i§p.p " dx

=f p.dx -éh—z P2'2P2-3 dx,

(8)

where p, and p, are defined in the equations

[(@%/dx®) +p,2/m?p(x) =0, (7a)

[(d%/dx®) +p,2/R?] $p(x)=0.

Here the unknown part is represented by p,?
=2m(E -3 kx® —ax®) and the known part is repre-
sented by p,? =2m(Ey o - 3kx%), where Ey o =(n+3%)
Xk /m)¥? withn=0,1,2, ... are the energy eigen-
values of (7Tb). The contour integration is around
the two turning points in both cases. Now it is
easy to see from (5a) that for a pure harmonic
oscillator,

(o)

A =Xpo. =4n+2 with n=0,1,2,.... (8)

The modified WKB method, as used by Miller and
Good, coincides with the ordinary WKB method so
far as the lowest-order eigenvalues are concerned.
We see that the discrepancy is immediately com-
pensated for by including the next-higher-order
terms. Now Eq. (6) is rewritten as

f [ =8)V24lar - 52)7¥2) dS=f[A -(1-a)$-a¥?s"Y2dS + L(1 - a)fds/[x -(1-a)$?-a¥2s%¥?

+a¥?§ $dS/[A - (1 - a)$* - a¥25"|Y?

and

9)
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TABLE I. Reduced energy levels of the anharmonic oscillator. (a) The exact result as given by Chan, Stelman, and
Thompson. (b) The modified WKB result to second order in #Z. (c) The modified WKB result to fourth order in 7.
(d) The WKB result as given by Handelsman and Lew to second order in #Z, Notice that (b) and (c) are given to five
decimal points mainly because the improvement can only be seen there.

n (a) (b) (c) @ n (@) (b) (c)

@=0.2 =0.8
0 2.042 70 2.03411 2.03720  1.98957 0 2.51648 2.36165 2.34145
1 6.510 50 6.510 326 6.51057  6.47373 1 8.880 62 8.900 00 8.898 18
2 11.6292 11.62915 11.62918  11.6011 2 17.2430 17.24336  17.24285
3 17.2332 17.23317 17.23317  17.2103 3 26.7955 26.79596  26.79575
4 23.2391 23.239 07 23.23907  23.2196 4 37.3022 37.30246  37.302 34
5  29.5930 29.593 03 29.59303  29.5760 5  48.6119 48.61208  48.61201
6  36.2567 36.256 69 26.25669  36.2414 6  60.6228 60.62291  60.622 87
7 43.2010 43.200 98 43.20098  43.1871 7 73.2604 73.26049  173.26046
8  50.4029 50.402 93 50.40293  50.3902 8  86.4675 86.46753 86,467 51
9  57.8438 57.843 84 57.84384  57.8321 9  100.1983 100.19833  100.198 32
a=0.4 a=1.0
0 2.19203 2.141136 2.14586  2.15181 0 2.671 95 2.47138 2.43585
1 7.33824 7.34251 7.34222 7.33983 1 9.574 58 9.60143 9.598 97
2 13.6919 13.69217 13.69201  13.6897 2 18.7872 18.78743 18.786 78
3 20.8389 20.839 06 20.83898  20.8370 3 29.3429 29.34354 29.34327
4 28.6242 28.624 37 28.62432  28.6226 4 40.9773 40.97751 40.97738
5  36.9519 36.95198 36.95195  36.9504 5  53.5174 53.51751 53.51743
6  45.7558 45.75591 45.75589  45.7546 6  66.8476 66.84766 66.847 61
7 54.9874 54.987 42 54.98741  54.9862 7 80.8835 80.88347 80.88343
8  64.6087 64.608 74 64.60873  64.6076 8  95.5600 95.560 03 95.560 00
9  74.5895 74.589 54 74.58953  74.5885 9  110.8256 110.82561  110.82559
a=0.6
0 2.35526 2.25110 2.245 64
1 8.13648 8.14809 8.14700
2 15.5569 15.557 36 15.55701
3 23.9899 23.990 31 23.990 16
4 33.2344 33.234 62 33.234 54
5  43.1639 43.164 01 43.16395
6  53.6926 53.692 68 53.692 65
7 64.7577 64.75776 64.75774
8  176.3107 76.310 76 76.310 74
9  88.3128 88.31291 88.312 89
$n-s592as=0. )

The numerical values in Table I indicate the importance of the terms to 72 in Eq. (6).

The evaluation of the first integral on the right-hand side of Eq. (9) is easily done by use of the elliptic
Jdntegrals with the following results:

_ z
$ir-a —a)Sz—a3/284]‘/2d3=a3/“f[—$7—1723-52—3‘} ds
o o
=¥ 1§ (02 - )@ + 572 ds

=a¥ (e +bz)’/2[b2F<(—[;z-£W)—2>+(bz ‘az)E<(—az—+‘;)_2)ﬁ>}’ 1o

e (052 2]
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1l 1-a ((1-a)? 4 \Y?
R e e ] (o)

The F and E are the complete elliptic integrals of the first and second kind. They can be approximated by
the polynomial approximation to within an error of 1078 by the formulas given on p. 591 of Ref. 7.

We will make use of the fact that the integrals involved are contour integrals. The evaluation of them is
greatly facilitated by the use of the external differentiation method. The same result can also be obtained
by using a table of integrals. We illustrate the former method by performing differentiation on both sides
of

dx _ 4 1
$ @ = e P )
with respect to 5% and using the relations

dF _E-(1-K)F dE _E-F

d —=——

ak - kK(1-k) M Gk Kk
with K =b/[a® + b?]'/2. We then obtain

. _4F-E)

f(a +x2)1/2(b2 _xz)afz bz(az +b2)1]§ . (12)

The table of integrals® gives

__4(F-E) u
f (a +22) Vz(bz ):Vz 'b2(a2+b2))/2 [F(Y,K) —E(Y’K)]+b2[(a2 +u2)(b2 _uz)]vz ) (13)

with

Also notice that
E(mm+¢,K)=2mE(37,K)+E(¢,K),
Fmnt¢,K)=2mF(3m1,K)+ F(¢,K) .

Here m is an integer and ¢ =0 gives E(0,K)=0 and F(0,K)=0. Therefore, it gives

4 L L
f(a +x2)’/2(b2 )3’2 =b2(a2 +b2)1/z[F(§"’K) 'E(E"’K)] . (14)

Notice here that the contour integration leads from —b to 0 and O to b in the third and first quadrant and
from b to 0 and 0 to -b in the second and fourth quadrant, respectively. This gives the number 4 in front,
which is the same as before [Eq. (12)]. This external diffraction method is important in finding some of
the more complicated contour integrals used in Sec. III where we just list the results obtained and do not
go into details.

Similarly we get

d 4
f(az +x2)3'2(;)c2 =72 N +0°)7° [a*F(zm,K) - (a* - b*)E(37,K)] (15a)
and
2 d 4 .
@ +x2)3’2’zb2 e @+ 6972 [F(zm,K) -2E(37,K)]. (15b)

With the identification @® and b* as given in Eq. (11), Eq. (9) is readily evaluated.
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=3

III. EIGENVALUES TO THE ORDER #*

Equations (3) and (4) of Ref. 4 are the equations to be used.
Equation (3) of Ref. 4 reads

pidx - 22 (p)/)Vp,2dx -5 1P (p,") VPdx+ 20t (p)'p,"dx
8

=fpz dx ';’ﬁzf(l’z’)zpz_s dx "‘1‘ r f(P ")zpz-sdx + 1w lZBh_ f(P Yp -7 dx
(16)
and Eq. (4) of Ref. 4 reads

f R -i Tl” a 7 T’.IIZ ’ m f i T 4 "2 5 T T m dx (17)
1748 T,¥2 71536 T,72 1536 ’72 2748 1,2 1536 77 *1536 T,7?
with

pr2=HR, ,=R(T, ,)"?.

Equation (17) is obtained from Eq. (16) after integrating by parts several times. Equation (16) can be di-
rectly seen as an extension of Eq. (6) by including the #* terms. Equation (17) is the equation to work with
here. We list in the following the formulas used in evaluating the integrals, which are obtained by means
of differentiation before the contour integrals are evaluated. In Table I we list the results and it can be
seen that the contributions of the #* terms are in the right direction. They are converging and they give
us a feeling that this modified WKB approximation is essentially correct, in spite of the complexity of the
higher-order terms.

The following formulas shown here are important:

1
$ +x2)-‘“(b= A = ) G g P e K)(-64" +20%) + B, K)(Ba' ~ 140" ~ 4], (18)
4 1
f(a +x2)5"~’(b2 )72 9 2D 10777 [(6a° +27a%b® - 3a*b®)F(37, K) +(—6a® — 30a’b? +30a%h* +6b°)E(37,K)],
(19)
4 1
[ 37 +x2)y2(b2 77 = - 35 e T (246 - 1176%2 - 270a%* + 1547 F (37, K)
+(24a° +120a% +324a%"* - 1954%° - 306%)E (37, K)], (20)

and

_ 4 1
f(a 24 x2)7 2(bz x2)72 225 a®%(a® +b?)V 2

[a®(1204® +735a%2 +2250a'h* — 345a%b° — 60b°%)F(37, K)

+(=120a'° - 7954%2 — 25954°b* + 2595a%b° + 795a%b® + 1206'°)E (37, K)] .

(21)
The additional terms added to the right-hand side of Eq. (8) through Eq. (17) are
7 T T m
‘1536f RE d“lsss 777 4%
-1 ( . ds $%ds
Ta3g (2241 - 0§ A ooe —avesTr + 1681 - @a?§ -0 -5 T?
S*d S
3
+4224 o f[/\ TA-aF - a3'284]772>
- 1 [4224 ds [168(1 — @) 4224(b% -a?)
1536 a7 % (»? _Se)slz(az+sz)5fz —K PLCIE PR @ = )"/2(a e
-224(1 - o?) 768(1— 4224
( V3 puEL a® - 2 ? a ) @ = 7/2(a +52)7 2} (22)
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and the higher terms of Eq. (9) in /#* are zero |e.g., Eq. (9a)]. The definitions of the parameters «, a,
and b are the same as in Eq. (5b), Eq. (11a), and Eq. (11b). They are easily handled by a computer. The
results obtained for different o values up to the order of #* are given in Table I. An important fact of
this calculation is that the contribution due to /#* terms above is very small but in the right direction.

IV. EIGENFUNCTIONS TO THE ORDER OF %

Assume that » is the one-dimensional space co-
ordinate of the anharmonic oscillator. Since we
know that

f udv = —f vdu,

then by several integrations by parts, Eq. (6) can
be written as

1 TLW 7;“) 1 )
f[Rl_24Tll/2 < Tl, - TIIZ Jd7

1 T. ™ T. n2 )1
- _—— =2 _ 2 ) ldr
f[Rz 24T2”2< T, T T,” ’

where as before
R ,= Tl,zl/z EpLz/ﬁ .

Because there is no longer any apparent diver-
gence in the second-order term in %%, we can
evaluate this contour integral as follows:

r 1 1 T ™ T”2>]
—_— | 1
f,[R‘ 24 T1”2<T1' 7,7 )1

1

x 1 1 T. " T”IIZ
=£ [Rz—ijzlﬁ(—,ﬁT——‘—‘,zﬂdx,
1

2 2
(24)
where 7, and x, are the corresponding turning

points. We see that the above gives us the rela-
tion

x=x(r), (25)
where x is the one-dimensional space coordinate
of the harmonic oscillator. The wave function of

the harmonic oscillator is already known and giv-
en by

¢, (x)=H (E)e~¥°72 (28)

with & =(mk/%?)'/* x and H, being the Hermite poly-
nomials. Therefore, the wave function of the an-
harmonic oscillator is®

D7) =[] b (x(7)) . 27

—

Of course we see that for x> | x;| and x<=| x|
mapping to » = | »,| and » < =|7,|, there is one-to-
one correspondence. But both R, and R, simulta-
neously turn from real values to imaginary values.
The equation is still valid outside of the turning-
point regions. We just have to multiply by ¢ to
transform both sides into real quantities. There
appears to be a divergence at first glance in the
place where 7,’=T,"’=0. There are important
conditions used in deriving Eq. (23), simply 7,’
#0 and 7,”#0. Or we have to return back to the
earlier Eq. (6), where, as » and x are close to
zero, only the zeroth-order terms contribute. Or
we canapproximate the case by choosing a finite
distance around both 7, and x,,, such that only the
zeroth-order terms contribute there and with ade-
quate connections outside. Thus the eigenfunction
obtained is valid throughout.

In so doing, we think that we get a better eigen-
function than Bender and Wu, for then we have
avoided the necessity of dividing the space into
many regions where each of the regions has its
own form of valid wave function.

V. REMARKS

As we look at the results in Table I, several in-
teresting things can be seen. First, the modified
WKB method gives better over-all results than the
ordinary WKB results to second order in # already
and this leaves very little room for improvement
to fourth order in #. Although the terms of fourth
order in # are messy, the contribution to the over-
all values is small. Here we begin to consider the
accuracy of the exact result which is obtained by
the method of diagonalization. It could be possible
that there are some errors to the fourth or fifth
decimal points due to roundoff. Second, we see
that the modified WKB method cannot give the
eigenvalues for n=0 and n=1. However, the re-
sults indicate that the eigenvalues for n=2 or
above are already good. We see that this state-
ment is true too even if we include the %Z* terms.
This seems contrary to our anticipation, namely,
the improvement obtained with the 7* terms is
not drastic. However, it is in the right direction.
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In parts II and III of the present series of papers, the localization problem was studied for
the cases of relativistic nonzero mass (spin 0, 3) and zero mass (spin 0, 3, and 1). With a
set of postulates, of which the basic one is the imposition of Lorentz invariance of localiza-
tion (LIL) (which is a self-consistency requirement), it was possible to define the position
operator uniquely (except for a constant in the spin-}, nonzero-mass case). For the deter-
mination of the position operators it was enough to consider only very special cases of homo-~
geneous Lorentz transformations. One of the purposes of the present paper is to consider the
effect of arbitrary inhomogeneous continuous Lorentz transformations in order to obtain
general Poincaré-invariant localization (GPIL). Our main result will be that localization is
LIL if and only if it is GPIL. InII and III, LIL was obtained in spite of the fact that the posi~
tion operators were rot 4-vector operators but only 3-vector operators. In this paper,
following Fleming, we construct formally covariant position operators from the 3-vector
operators. We prove that their eigenfunctions are just the localized states defined in the

GPIL sense.

I. INTRODUCTION

A. General

In papers II (Ref. 1) and III (Ref. 2) of the present
series, the problem of localizability of elementary
systems in relativistic quantum mechanics was
considered by requiring the consistency of the de-
scription of localization from different inertial
frames as the only basic assumption; the position
operators were uniquely defined (except for a con-
stant in the spin-}, nonzero-mass case®), and
their form was found explicitly. In Il the nonzero-
mass systems of spin 0 and } were ccnsidered,
and in III the zero-mass systems of spin 0, 5, and
1 were considered.

The basic assumption (Postulate 4 of II) is a
self-consistency one: If a state is a 1-localized
state' (i.e., an eigenstate of only one component
of the position operator X) in a two-dimensional
plane, e.g., X*=0 at ¢=0, then, making a homoge-
neous continuous Lorentz transformation such
that the region of localization remains invariant,
the transformed state is again a localized state in
the same region. This is what was called Loventz-
invariant localization (LIL). It is clear that only
very special cases of homogeneous Lorentz trans-
formations leave invariant those two-dimensional
planes,

One of the purposes of the present paper is to
consider the effect of arbitrary inhomogeneous
continuous Lerentz transformations on states



