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The known classical radiation spectrum of a high-energy charged particle in a homogen-
eous magnetic field is rederived. The method applies, and illuminates, an exact (to order
u) expression for the inverse propagation function of a spinless article in a homogeneous
field. An erratum list for paper I is appended.

For a long time I have wanted to reexamine a
classic situation of classical electrodynamics, that
of high-energy charged particles radiating in a
homogeneous magnetic field, from the modern
quantum viewpoint that employs the machinery of
propagation (Green's) functions. Since the electro-
magnetic and relativistic aspects of the problem
are quite transparent, the comparison should be
instructive in giving the more abstract quantum
procedure a concrete interpretation in a particular
instance. And, as an added bonus, the necessary
ability to treat motion in magnetic fields that goes
beyond the lowest orders in a perturbative expan-
sion should be helpful in answering questions about
very strong fields, to which recent astrophysical
speculations have directed attention. This paper
is devoted to describing one such procedure, and
applying it to rederive (for a spin-0 particle) the
known classical radiation result. ' Another method
is indicated in a separate paper of Yildiz. A sub-

dx)Kxfx ——,'fx II'+m ft) x

11 = (1/i) e —eqA,

is supplemented by the action contribution associ-
ated with the exchange of one virtual photon [cf.
Eq. (4-14.2) of PSF 112],

dx) dx') Q x iV x, v' P x' (2)

Here, written in a symbolic notation, we have

sequent joint paper will contain the analogous spin-
—,
' calculation, and a discussion of the anomalous
magnetic moment in strong fields.

The language and methodology of source theory'
will be used (which should not seriously impede
readers who are untutored in this art). The initial
action expression of spin-0 charged particles with
mass m,
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y=ZK,
where

(4)

M =fe', (211 —k) —. . .(211-k)+ c.t. ,
(dk) 1 1
28)' k' ll-k '+ m'

(3)

where the contact term (c.t.) is a linear function
of II' that is designed to satisfy the normalization
conditions. These require that M and its first de-
rivative with respect to II' vanish, in the null-field
situation, at Q + m'=0. The stationary action
principle, applied to the sum of (1) and (2), yields
the field solution that is conveyed symbolically by

&(=O(f(k)I(=O& f=&( O=(k)&dk)f(kl() I(=O&

(dk)
( )(28)'

The two devices transform M into

(12)

where the expectation value prefers to the $ =0
state.

The "time" development described by H is made
explicit by introducing quantities such as

M=-ie dssdue " " 2II-k e " 2II- k +c t. ,

g ' = I12+ m'+ M (5) ~(S) siss~8-(sH (14)
is the inverse of the modified (to order a) propa-
gation function.

The exact evaluation of M for an applied homo-
geneous electromagnetic field has two basic in-
gredients. The first is the exponential representa-
tion of the particle and photon propagation func-
tions,

which obey the equations of motion

f( ) [t( ) ff]ds

The full set of equations of motion is

dk(s)
ds

ds e», [tn-f)'+m23
(II —k)'+ m' —ie

ds2e -g. a2
—SE'

(6)

d((s)
dS

=2[k- ull(s)],

dII(s)
ds

= 2 us(IF[II(s) —k],

(16)

together with their product:

ds s dQek' (ll - k)'+ m'

In the latter we have used the parametrization

s, = su, s, = s(1- u) (8)

where the last equation applies the commutator

[lis ll„]= [ e g- I-kIA8(, -sQ „-8&IA„]

= Eeq'Ep p

The simplicity of the homogeneous field situa-
tion is the linearity of the equations of motion,
which permits their exact solution. ' Thus, writing
the last equation of (16) as

and introduced the 'Hamiltonian"

H=u(II —k}s+(1-u)k' =(k- ull)'+ u(1- u)II' . [8 soesssii(S)] [8 sseelksk]d 2„d
ds ds

we get

(18)

The second one is the replacement of the k inte-
gration by an algebraic procedure associated with
the vector f„ that is complementary to k„,

[~„,k„]= Ig„„.
Then, on using the four-dimensional transforma-
tion functions (primes to designate eigenvalues
are omitted)

gga(t' Ik& =(2„)s
8'"

P» eels
-2uks+ k,

eqQ
(20)

or

II(s) = e'"" 'Il + (1 —8'""Hs)k .
This is followed by the integration of the ( equa-
tion:

g2» 8OEsI

t'(s}= t'+ 2ks — II
eqE

(k I f& =
(2„).8

' ",
we have

eqF[$(s) —t j = Dk —AII,

where

(21)

(22)
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D=e "" '-1+2(1 —u}eqFs . (23)

s

&e-isH&
&

-isHff&
~S

The solution of the equations of motion is used
to rewrite the expectation value in (13) as

((2n —k)e ""(2II—k))

= &e-""[2n(s)—k](2n —k})

= &e-""&4n(1+A')n - &e-""k)2(2+A+ 2A')n

=&e "")un' —&e ""k&2ull+ &e ""k'),
(33)

from which, with the aid of Eqs. (27) and (30), it
immediately follows that

A
i l—n&e "")=uII' —2uII —II

s DT

+&e ™k(1+2A)k&,

where the transposed form of A. is

(24) AT A . eqE
+ II ——II -i trD'D D

(34)

A T -2M eaFs (25)

according to the antisymmetry of E„„. The ex-
pectation values with one and two additional factors
of A are reduced to the basic expectation value,
&e ""), as follows. We first note that

0=&[t., e-' "]&

4 A A @A+1
I&II +H ———u —+—II-ieqtr F-

D D D D

(33)

where the trace refers only to the vector indices.
In order to have a symmetrical matrix in the II
quadratic form, we rewrite this structure as

=&e ""[h(s)—t']&,

which implies [Eq. (21)]

&e-"Hk& =&e-'*H&—n .A
D

Similarly,

(2s)

(27)

which makes use of the commutator (17). Now,

A A A A 1 8D/ss sar/8g
D D D D 2eqF D

since

BD—= 2eqF(uA+ 1),8$

(3s)

=&e-""[((s) —( ][t'„(s)—t',,]& + &e-""[t , („,(s)]&

(2s)

QD T
— =-2eqF(uAr+ 1),

Qs

while A and D obey (31), in which A and A are
commutative. Accordingly, (35) becomes

leads to

O=(e ""(ak-An)„(ak-An)„ )

+(e '-'H&i(eqFDr)„„

and then

&e-isHk k ) —&e-isH& n n ~ q
,D, D

p
D

(30)

1 8 DulI'+ II — —ln ——T II ——,'i—tr le,
2eqF &s D ~s

and the integrated version is

(e iH-1
[det(D/2eqF)] '('

(38)

One can verify that the right-hand side matches
the left-hand side in its symmetry in p, and v. The
implied algebraic property is

a
&& exp -z suII —II ln — T II2eqF D

(3s)

AA. T + D+DT = 0 .

It is confirmed by noting, first, that

A. A" + A+A" =-0

(31}

(32)

The F-dependent factor is inserted into the de-
terminant in order to simplify the form of the in-
tegration constant C.

To evaluate C, we consider the limit of small s,
where

and, then, that D-A is an antisymmetrical ma-
trix.

The material for the main task, the evaluation
of (e ""},is now at hand. We construct a differ-
ential equation,

D
— --- —=s+u eqEs + ~ ",
2eqE

D = 1+224 eqF$'+ ' ' '
D

(4o)
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Then, (39) exhibits the dominant behavior (d—=I «1 (47)

, (s-isH )
1

(41)

and

J (dk) ass 2 1 1
(2s)' (4w)' is' ' (42)

iC= —
(4

We present the result as
3sM( 1 8) 1I 2eq~s 1/2(e" )=-( ), , det

(43)

in view of the four-dimensional nature of the de-
terminant. The singularity at s =0 arises from
the large values of k that are increasingly de-
manded, as s-0, by complimentarity with $ =0.
Accordingly, the limiting structure is given by the
elementary k integral

which is evidently a classical restriction. With
this identification, the u integral of Im M becomes
a spectral integral for the radiation.

There is yet another simplification associated
with the restriction to high particle energy,

E»m. (48)

2eHus = +07, (49)

where ~ is a time variable and cd, is the rotational
frequency. According to the classical equations of
motion [p =evxH], the high-energy form of e, is

We first remark that the periodicity of motion in
the magnetic field H has its representation in the
exponential function e'"" ', where the nonzero
eigenvalues of F are +i H. [Recall that trF'
=-F""F „=2(E'—H ).] This gives the identifica-
tion

xexp jII
2 +ln -&~ -u s II

D
2eqE D

(44)

eII

and one can write (49) as

2EQS= T .

(50)

(51)
which is so written that the last two factors ap-
proach unity as F-0. The remainder, the struc-
ture of (e "") for F=0, is immediately evident
from the second version of H in E|I. (9) and the
integral (42).

We now have before us all the ingredients to con-
struct M as the double parametric integral of Eq.
(13). It is, however, not necessary to display M
in detail in order to make the principal application
of this paper —the derivation of the classical ra-
diation spectrum. Since the properties of the real
charged particle are essentially characterized by
II'+ m'=0, we only need M for this circumstance.
And, since radiative decay is the question of in-
terest, it is only the imaginary part of M that is
required. There is, furthermore, a simplifica-
tion associated with the concentration on classical
radiation. To appreciate it, let us note that in the
classical limit the k integral of e "~ should be
dominated by the point of stationary phase,

pn
2eilus -—«1 . (52)

Under these circumstances the logarithmic func-
tion in (44) has the leading terms

ln ——r = u's+ s u'(1 —u)'(eqF)'s',
2eqI"

(53)

which are comparable, since

D
II ln- —

~ II
2eqE D

= —m'u 's —s u'(1 —u)'(eHE)'s'

Now, the point about high energies is this. Only
a small fraction of the orbit, -m/E, is involved in
classical radiation toward a particular direction.
We therefore expect that the dominant contribu-
tions will come from values of us such that

—=2(k-uII) =0 .
Bk

(45)
= -m'u's[1+ s(1- u)'(eHusE/m)'] .

-k2=- u II2=u'm' (46)

but becomes so if u is sufficiently small. In this
circumstance, we can express the energy of the
radiated photon, k'= &, relative to the energy of
the particle, II'=E, by

The value of k thus selected, k=uII, is not that of
a real photon, in general,

The evaluation used here,

ll(eqF)'ll = -(HHE)',

(54)

(55)

assumes zero momentum parallel to the magnetic
field, confining the motion to the plane perpen-
dicular to the field. En the strict classical limit
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under consideration, we should also replace 1-u

by unity, ' in (54). As for the determinant of (Eq.
44), the expansion

D = 1+u'eqFs+ 3 u'(eqFs)'+
2eqFs

and the evaluation

2 D D
det =det

2eqFs 2eqFs 2eqFs

(56)

= det[1+~~u'(eqFs} )

= 1- —.
' u(2effus)' (57)

show that the determinant reduces to unity in the
classical high-energy limit, where both u and
2eHus are small quantities.

The terms of (24) that have one or two additional
factors of k clearly become relatively negligible
in the classical limit (as one can verify). In the
high-energy limit, we also have

A = 2-ueqFs+ 2(eqFus)2, (56)

where the antisymmetrical F term, which intro-
duces the commutator [II, II], is a negligible quan-
tum correction. Accordingly,

II ln ——rl = u)~[ ',-(m'/-E')+~((o ~)'] .2eqF

(60)

Putting together the limiting forms of the vari-
ous parts of M gives

((2II —k)e " (2II- k)) 4[, 2( ),](e "")
= -4E'[(m'/E') + —,'((u, r)'],

(59)

where the last version begins the process of in-
troducing the classical time variable T, for com-
parison with the known result. The other basic
combination is (54), which now reads

Ct "dT m', 2 ~ . 1m' ~, 3 m . 1mM —E dc@ —
E + —~ exp ~ 2E'T ~ E' xp &~2'r o T 2E g E (61)

which now incorporates the contact term that is required to make M vanish in the absence of the magnetic
field (&u, =0). What is needed for the description of radiative decay is

1 1——1m M = d&u P(&u), —
E (gp

(62)

where

P( )
+

d
~ 1 2 2 elute[2+ /E )r+24 ~0 r ] 1P(QP) = CO dT 2 + gQ)p Tr o E T

-2r 2

Q ~ ~

gl 2 2, stuart(X+ gX )
2r (63)

the last form introduces the variables

x= 2moT
2 (g Sl

(64)

The physical identification of P(&u) follows on writing the inverse propagation function (omitting ReM) as
2

II + m —E+-,i ——ImM2 & ~

(65)

which displays (62}as the damping constant of the system. Therefore &o 'P(&u) is the probability per unit
time for radiation into a unit ~ interval, and P(&o) is the spectral distribution of the radiated power The.
results stated in Eq. (63) coincide with the classically derived ones contained in Eqs. (II-5) and (II-7) of
paper I.

APPENDIX read

Paper I seems to have escaped proofreading,
since it contains a number of rather obvious typo-
graphical errors. Among these are the following:

(1}In the first of the three equations of (I.30),

dQ dA—for-
4r 4'

(2) In Eq. (I.44), read sin'8 cos'p for sin'8cos'8.
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(3) In the sixth line after Eq. (II.9), read (II.2)
for (II.V).

(4) For the fractional power occurring in the de-
nominator of the unnumbered equation preceding
(II.18), read —,

' instead of ~3.

(5) For the fractional power appearing in the de-
nominator at the end of Eq. (II.19), read —,

' instead
of 3.

(6) In Eq. (II.20), insert

(7) In Eq. (11.3'I), read —instead of —.

(8) In Eq. (III.31), read instead of-
2n. +C

(9) The denominator of Eq. (III.32) should con-
tain m' instead of n'.

~Work supported in part by the National Science Foun-
dation.

~ J. Schwinger, Phys. Rev. 75, 1912 (1949), referred
to as paper I.

A systematic development of this new approach to
particle theory is described in J. Schwinger, Particles,
Sources, and Fields I (Addison-Wesley, Reading, Mass. ,
1970) and Particles, Sources, and Fields II («be pub-
lished) .

3This procedure resembles that introduced in an
earlier paper [J. Schwinger, Phys. Rev. 82, 664 (1951)j,
but is here applied to the system of charged particle
and photon.

4Retaining u here gives the essence of the first
quantum correction [J. Schwinger, Proc. Nat. Acad.
Sci. U. S. 40, 132 (1954), and the Russian literature
cited in Synchrotron Radiation, A. A. Sokolov and I. M.
Ternov (Pergamon, New York, 1968)].
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We solve the anharmonic-oscillator problem as given by Bender and Wu to include the S4

terms for the energy eignevalues and the h2 terms for the eigenfunctions by means of the
MQler and Good modified WKB method. This is done by accepting the harmonic oscillator
as a solved problem. We see that in doing so, not only can we get better energy eigenvalues,
but also we can get improved eigenfunctions.

I. INTRODUCTION

We will discuss the familiar anharmonic-oscilla-
tor problem. We are concerned here with the
simple one-dimensional oscillator with real and
positive oscillator strengths (k &0, a &0) as given
by the potential

V(x) = 2kx'+ax, k &0 and a &0.

When perturbation theory is used to solve the an-
harmonic-oscillator problem based on the solved
problem of the harmonic oscillator, the perturba-
tion series for the energy diverges and even
changes sign. A clear account of this is illustrat-

ed by Chan, Stelman, and Thompson' in their Ta-
ble III.

Such a simple but important problem has attract-
ed the attention of both the field theorists and the
chemists. The former are interested in it because
they desire to build a model field theory on it. The
latter are interested mainly due to the anharmonic
bonding problem. The reader is referred to Bender
and Wu' as well as the references listed there for
the detailed reason why the field theorists are in-
terested in the problem. As for the chemists,
Chen, Stelman, and Thompson' have given a good
account.

Of course an evaluation of the energy eigenvalues


