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all three variables x,y, and z).

5For a discussion of this point and its plausibility on
physical grounds see, for example, A. S. Wightman,
Rev. Mod. Phys. 34, 845 (1962) and references, regard-
ing it, cited therein. This condition has been called the
regularity condition there. Although this condition is
not postulated by Wightman for photon fields, it be-
comes necessary in the extension of Wightman’s idea
of localizability to that of weak localizability of Ref. 11
above. Once the ¢ is assumed to be continuous, the de-
finition that the field ¢ is source-free if and only if
F(p,q;w) =0 almost everywhere may be restated with-
out the almost everywhere condition. This is because
the Lebesgue measure has support on the whole trans-
lation group, and any function which is continuous and
zero almost everywhere, with respect to such a mea-
sure, is necessarily zerc everywhere.

6gee, for example, B. A. Fuks, Introduction to the

Theory of Analytic Functions of Several Complex
Variables (Am. Math. Soc., Providence, R. 1., 1963).
1TA mathematically rigorous definition of fields is
given in R. F. Streater and A. S. Wightman, PCT, Spin
and Statistics and All That (Benjamin, New York, 1964).

BHere the distribution (p;(x,)¢a(x,)) is meant.

19Certain aspects of the distribution theory of the angu-
lar spectrum are developed in Part Il of Ref. 5 and in
Ref. 10,

Wgee, for example, E. M. Henley and W. Thirring,
Elementary Quantum Field Theory (McGraw-Hill, New
York, 1962).

2gee, for example, I. M. Gel’fand and G. E. Shilov,
Genevalized Functions (Academic, New York, 1964),
Vol. I.

Z0One ought to point out, however, that for a point
charge M is infinite, as is obvious from Eq. (4.4).
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Through a real and a complex linear combination of two conformal scalar fields, we obtain
the rubber-band field of the Virasoro-Shapiro model (VSM) and a complex field suited for
dual current models. A MOtius-invariant pionic off-shell extension of the VSM is then pre-
sented. Forlei2 =1, it has conformal invariance, and the associated sets of gauge as well
as supergauge identities are shown to be operative. For other specific values ofk,"", the
new amplitude gives a correct continuation away from &; 2= 1. By combined use of the com-
plex field and the Sakita-Gervais fields, we construct SU(1,1) and/or conformal-invariant
spinor generalizations of the Rebbi-Drummond model. Their analytic structure is studied.
In the particular case of the simple quark model with unitary spin of Bardakci and Halpern,
we find two conformal-invariant conserved vector currents. One of these is akin to an axial-
vector current as it exhibits a dual analog of partial conservation of axial-vector current.

I. INTRODUCTION

The duality principle and its elegant mathemati-
cal realizations, embodied in the N-point Vene-
ziano amplitude! and subsequent generaliza-
tions, 2% have proved rich in dynamical structure.
Though these discoveries in “axiomatic’’ duality
are still far from presenting a realistic picture of
hadronic reactions, they may yet provide the basic
elements for building a correct theory of strong
interactions.

These models share a serious deficiency at the
level of the Born term, nameiy the nroblem of
off-shell extension. It is closely tied to the prob-
lem of proper determination of electromagnetic
and weak currents in the context of a dual theory
of hadrons.” As photons and leptons usually are

assumed to couple to hadronic currents, this con-
nection is particularly marked if the currents (be
they scalar, pseudoscalar, vector, or axial-
vector) reflect the meromorphic structure of the
hadronic amplitudes. Indeed, in a world of reso-
nance-dominated hadronic S matrices, one would
expect that currents also be dominated by reso-
nances. The infinite sequence of vector mesons
in the dual hadronic spectrum thus furnishes a
framework for a generalized vector dominance.
The importance of dual electromagnetic and weak
currents is further underscored by their roles as
probes inte strong-interaction dynamics in the
testing of current algebra, chiral constraints, and
scaling laws. Therefore, a solution to the problem
of constructing dual off-shell amplitudes, con-
served vector currents (CVC), and partially con-
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served axial-vector currents (PCAC) stands as a
necessary step toward a more complete dual the-
ory.

Since Veneziano’s classic paper,® there have
been many attempts to build dual current ampli-
tudes.® These models strive to achieve a set of
minimal requirements desirable for the currents:

(1) all singularities as simple poles in k,2, the
invariant current momentum transfer squared,
and in the subenergy variables

(2) complete factorization, with a particle
spectrum preferably identical to the spectrum of
the on-shell amplitude;

(3) good asymptotic behavior in k;2and s, ,;

(4) divergence conditions from CVC, PCAC,
and current algebra,

(5) duality, planar or nonplanar, though planar
duality seems desirable if internal symmetries
are to be grafted on easily in the manner of
Paton and Chan,!? and if exotic amplitudes are to
be avoided.

The off-shell dual model proposed by Rebbi 1
and Drummond !> made a promising beginning in
view of these requirements. Clavelli and Ra-
mond '3 used a new SU(1, 1) coupling scheme and
presented a unified treatment of the various non-
planar models both on and off the mass shell,
notably of the off-shell Virasoro-Shapiro model!*
(VSM) and the Rebbi-Drummond model (RDM).
This paper is a spinor generalization of the work
of Clavelli and Ramond.

Through a real and a complex linear combina-
tion of two real conformal scalar fields, with
Neumann and Dirichlet boundary conditions, re-
spectively, we find the rubber-band field of Yoshi-
mura !® and Del Giudice and Di Vecchia € on the
one hand, and the complex field needed for dual
currents on the other. Equipped with these fields
and the conformal spinor fields of Sakita and
Gervais (SG),° we build a new class of dual models
of currents.'?'17

The combining of a Mdbius -invariant volume ele-
ment, two commuting Neveu-Schwartz (NS) fields,*
and the rubber-band field leads to a new current-
like vertex. For the mass shell limit #2=1, the
corresponding amplitude yields a conformal in-
variant NS-like extension of the fully symmetric
VSM. For other specific values of k2, it provides
a correct continuation in %% for the new amplitude.

Using the SG spinor fields and the complex field
with its finite exponential vertex transforming as
a conformal scalar for any %2, we find off-shell
amplitudes for a subclass of the generalized con-
formal dual models of Sakita and Gervais.® Ex-

2
;

cept for one conformal scalar current, our mod-
els possess SU(1, 1) invariance only and constitute
spinor generalizations of the Rebbi-Drummond
model. If the spinors carry quarklike SU(3) labels,
an off-shell extrapolation for the simple Bardakei
and Halpern (BH) dual quark model? results.
However, if they are Lorentz spinors, an off-
shell BH dual pion model!® is obtained. For the
first model, we also find two conformally invari-
ant conserved vector currents. One of these is
akin to an axial-vector current as it gives a dual
analog of PCAC.

Our paper is organized as follows. In Sec. II
we present the dual apparatus necessary for our
study. The formalism of conformal transforma-
tions and their associated irreducible fields is
briefly reviewed. The conformal spin-0 and -3
fields receive particular attention with respect to
their quantized forms and transformation laws
under the action of the conformal group.

In Sec. ITI, after a discussion of the mechanism
of conformal invariance in dual models, we con-
struct the rubber-band field and the complex field.
To achieve economy of presentation, we strike a
middle course between the Lagrangian® and the
group-theory !° methods. Thus, while the Nambu-
Susskind ?° picture is used to motivate dual emis-
sion vertices, the group-theoretical rules are in-
voked for the construction of manifestly cyclic-
symmetric dual amplitudes.

In Sec. IV, the currentlike pionic extension of
the VSM is presented. Explicit factorization is
carried out, and in the k,°=1 case, two sets of
Virasoro identities, as well as two sets of super-
gauge identities, are shown to be operative.

In Sec. V we construct spinor generalizations to
the Rebbi-Drummond model. Feynman-like rules
are derived. To illustrate the general analytic
structure of our models, for a simple case we
compute explicitly the two-point function, elastic
form factor, and photoproduction amplitude. For
the latter, we study its Regge and fixed-pole
structures, as well as its Bjorken scaling limit.

In Sec. VI, we present two conserved dual vector
currents exhibiting generalized vector dominance
for the simple dual quark model with unitary spin.3

II. CONFORMAL-INVARIANCE GROUP AND
IRREDUCIBLE FIELDS

Duality as realized in dual models is a precise
concept. Thus the SU(1,1) invariance®! of an ampli-
tude guarantees its dual character while its con-
formal invariance?? allows the elimination of all
ghosts. In the Lagrangian approach of Virasoro,
Sakita, and Gervais, an elegant theorem is
reached: Given any conformal-invariant two-
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dimensional local field theory, one can deduce a
dual model. In addition to providing a unifying
viewpoint for the investigation of dual amplitudes,
this method best reveals the basic relevance of
conformal transformations in two dimensions.

Let Z'=x"+iy’=F(Z) be a conformal mapping; then

az' _?z’
dz oz
aZl* *
) <BZ*> .1
= (x,y)e 0 (2.2)

Equation (2.2) can be construed as a local DXO,
group; D and O, are the dilatation and the two-
dimensional rotation groups with their respective
parameters u(x,y) and 8 (x,y).

Since in dual field theory, conformal transforma-
tions usurp the role of Lorentz transformations in
two-space, the basic objects to consider are the
irreducible fields of the conformal group ® DXO,,

YA a=-j)/2 LY AR (d+j)/2
g) <_ ‘I’J./(xyy)-

dZ*
(2.3)

The covariant field ¥, ; is characterized by its
signature d (a complex number) and j (2;j is an in-
teger), d being its dimension and j its conformal
spin. Moreover, ¥ remains irreducible under the
subgroup SL(2C) and can also be a representation
of space-time and internal symmetry groups.

Dual models are built % ¢ from conformal actions
I= j; d®Z £. £, the Lagrangian density, is made
of tensorial products and contractions of irreduci-
ble fields (2.3). D may be the Koba-Nielsen unit
disk or any other conformal equivalent domain.
We find it convenient to work on the upper half
plane Z =X + iY and the strip w =v +i6 configura-
tions with —o <y <4+o, 0<6 <7. These are re-
lated by the simple mapping Z=e%*. The Lagran-
gian method provides ready-made conformal-in-
variant current vertices in its actions 7/ and more
importantly the quantized fields and conserved
expressions which form the building blocks of our
current models. However, we choose the use of
group-theoretical rules!® in the subsequent con-
struction of dual amplitudes.

Given thatd?Z hasd =2 and j =0, if the free La-
grangian density is to be bilinear in the fields,
only two cases are possible:

ad 9%
3z 0z* ’

Yy, ,9") =<

@) £= (2.4)

where ® hasd =j =0;

oV

(b) L= i—‘II_O‘ gx—
i

(x,=ReZ, x,=ImZ), (2.5)

where
v
‘I’ =< ") ’
\I’Z

withd =¥j =-3. The 0,’s are the 2x2 Pauli ma-
trices. Notably 0, is the two-dimensional counter-
part of ¥,. If interaction Lagrangians for the
above fields are considered, again only two forms
result,

Line=&,(F0;(@+bo,)¥)(Fo;(a’ +b'0,)¥)
+ 8 T0,(c+do)¥),® . 2.6)

We shall refer to the sum of (2.4), (2.5), and (2.6)
as the dual Thirring model.®

When D is chosen to be the strip W, 6 and {=+iv
are interpreted as space and pure imaginary time
coordinates. Consequently, the mechanical sys-
tem described by the action I must be of finite ex-
tent, such as a string of length 7. One now allows
the conformal scalar and spinor fields to propa-
gate along the string. These fields obey their re-
spective conformal-invariant wave equations with
appropriate boundary conditions. For the system
(2.4) we have

2%, 2%y Ly, @.7)

36> 3’

the Laplace equation or Klein-Gordon equation
with imaginary time. For the purpose of building
dual current models, we shall need both the field
$,, associated with a string with free ends 8¢,/
89]g=0,r =0 and &,, associated with a string with
fixed ends &, [g-,,, =0. Standard canonical quan-
tization applied to (2.4) yields in the Heisenberg
picture

$,,0v,0)=x,+ip,In(ZZ*)

=~ 1
+Z — [(Z"+Z*")c,m+(Z"‘+ Z*"')c;'u],

n=1 \/Z_n
(2.8)
with
[Cnu, C;)‘] = 6uk6nm’ (2 -9)

k,A=1,2,3,4, a Lorentz vector label,? and m,n
=1,2,83,...,. (2.8) is the familiar Nambu-Suss-
kind ?° field with its zeroth model x,+ip,In(ZZ*)
identified with the center-of-mass motion of the
string in space-time such that [x,, p,]=145,.
Similarly ¢,, is given by

8,2, 27)= 1) 7= [@*"~2"d,,
n=1

+@EZ " =zx"MdL],  @.10)

with
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[dnwd;x]:au)\ﬁnm . (2-11)

Clearly (2.10) does not act at the boundary (Z =Z*),
but it may be relevant for the description of pro-
cesses taking place within the strip.
As for the spin-5 field, (2.5) leads to the Dirac
equations
0,0,¥=0,
_ 2.12)
9,¥o,=0,
which are the Cauchy-Riemann equations in dis-
guise. ¥ and ¥ appear in on-shell meson ampli-
tudes 3-8 as well as in models of dual fermions.?
We confine ourselves to the meson sector with the
relevant boundary conditions

¥, (v,0)=¥,,0),

¥, v, m)==¥,@, 1),

o A\

°% =22

36 |oeg " 96 ooy’ (2.13)
A

26 o=r a6 6=m

The associated Heisenberg fields® are

©
- +1/2
‘Ill_ 2 A A s

m= =

.
¥,= 5 2,

m= =
(2.14)
7= Z"‘) Zr-mr gt
T,-= f} z-mr12g T
m= =
where
{am ’ aJ} =6mn ’ (2 '15)

{a,,a}={a],al}=0.

The connection with the BH notation?® is accom-
plished via

am = bm 2
2.16)

a_,_n.=d}, m=0,1,....

The conformal transformations which leave D in-
variant are of crucial significance to the existence
of infinite set(s) of ghost-eliminating gauge iden-
tities in dual resonance models.?? The corre-
sponding Virasoro gauge operators L, are derived
from the Schwinger action principle with the varia-
tions (to first order in €)

Z'=(1+€)z, n=0,
@2.17)
Z'"=Z"+ne, n+0, n20.

These transformations leave the boundary condi-
tions invariant. The L,’s associated with the field
®,, are*

Lol
L®==p* =3 ncl-c,,
n=1
L =iV2np-c, =) [mn+m)%c,,,* c}

m=1

forn>0. (2.18)

Similar expressions are obtained for L’ and L’
connected to the field ¢,, except the zeroth-mode
p-dependent terms are absent.
For the spinor case, we have?®
L@ =" ala,, [m+5(n+1)]. 2.19)
The LS’ (G =a, c,d) are such that L_,=L} (n>0)
and they satisfy the conformal algebra

[L®, L] = (m —n)LY) (2.20)

except whenm +n =0, a c-number term irrelevant
to our work has to be added to the commutator.
L¥) L% hold special interest as they are the gen-
erators of the important subgroup SU(1, 1), the
mathematical earmark of duality.

We can check that the rigorous conformal trans-
formation laws for the above scalar and spinor
fields are in their differential forms

- 9 - 9
[L’fc.d)’ q)l'z]:(Z "+1§+Z* "+laz*>d>1.2’

2.21)

i)
Z‘"(Z& —%n)‘l’,_

[z, (;)] - .} e
1 Z*—"(Z*—i;?‘ —%n)\l!

with ¥, and ¥, transforming like ¥, and ¥, , re-
spectively. By iteration, these equations give ex-
plicit forms of

ex‘p(GL’sc'd))Ql.z(Z, Z*) exp(eL’Sc,d)) :4)1.2(2’7 ZI*)y

(2.23)
v,@2)
( )) ‘/’Z—
e (GL,,“ _ - L'fa)
Xp ‘I\;iZ) exp(—€L,”)
7%
aZ/ +1/2\I, (Z')
(5) e
= 0Z' W12 T (2') ’
(82*) vZ'*

(2.24)
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where

aZI _ Z/)-n+1

CIRT
by (2.17), (2.23), and (2.24) concur with the assign-
ment of d =j =0 for &, ,and -d =j =7 for ¥, and
¥,and -d =-j =3 for¥iand ¥,.

The algebraic forms of this section are essen-
tial for our construction of current amplitudes, as
are the group-theoretical rules to be discussed
next.

(2.25)

III. DUAL ON-SHELL AND OFF-SHELL VERTICES

A. Conformal Invariance of Amplitudes

A solution to the problem of building off-shell
dual amplitudes may be found in an analysis of
the mechanism of conformal invariance of known
on-shell dual models. Consider the generalized
Veneziano model with intercept a,=1 and the
Virasoro-Shapiro model (a,=2).

In the first case, the corresponding Koba-Niel-
sen amplitude #* is

1

N='C‘ az HIZI

Z,|** (3.1)

where in the real axis configuration the Z; are

real and ordered, with C the SU(1, 1) Haar mea-
sure, the infinite volume to be divided out of the
integrals. It may be expressed in the factorized

form of

- <o (‘n fdz Uk,, 2 2)) > (3.2)
where the Z integrations range over the entire
real axis, and T is the operator which causes the

Z, to be ordered;

explik @, Z,Z*)]| z=z%:
Z ’

with ®,, given by (2.8) and
exp(ik®,): =explik* & (2)] explik - (" (2)]
xexplik* &2 )],
(I’(O)(Z) Xy+ zZpu (3.4)

N 2)= \f—Z——c*Z"’

Uk,2)=

(3.3)

4’(1;)(2) =\/—2—; ﬁ C"HZ

The finite vertex (3.3) is obtained from a limiting
procedure

R e 69

where the non-normal ordered vertex exp@k- ®,)
is manifestly a conformal scalar but is divergent;
the infinity is removed by the renormalization
factor

E (Z,k?)5exp(R®In|Z -Z]). (3.6)
In the electrical analog picture of Nielsen,?® the
infinity in E, is the familiar divergence arising
from the self-interaction energy of a charge k. In
the limit of € - 0, E transforms irreducibly as

8z’
Bz

E.z' k?)=E.(Z, kz)[ +O(€)jl, (3.7)

i.e., an object with d =k? j=0. Since d =1, j =0

for dz, (3.7) dictates the mass-shell condition

k%=1 if A, is to be conformally invariant.
Similarly, the Virasoro-Shapiro amplitude is

_1 0 2 A 2kje Ry
Ay==11 deII 1z,-2,| , (3.8)
c i=1 i<j

where C is now the SL(2, C) Haar measure

d*z d*z,d*z,

C=
1z, Zbllzb Z.Z, -2

(3.9)

Equation (3.8) has in the factorized form

=é<0‘T(ii':11fdzz,U(k,,Z,,Z’f))’(>, (3.10)

Uk, Z, 2%) = explik - ®,(Z,2%)]: 3.11)
~1im LR 2] (3.12)

o EeZ, k%) 7’

where &, is the rubber-band field of Yoshimura,!s
Del Giudice, and Di Vecchia.l®

As in the o,=1 case, exp(k-®,) diverges and as
€-0, E.k,Z) is a d =k?, j=0 object. Since d?Z
has d =2, j =0, conformal invariance of A, de-
mands the mass-shell condition 22=2. With its Z
and Z* structure completely decoupled, reflecting
the SU(1,1)®SU(1, 1) symmetry, the VSM is just
a simple “squaring” of the a,=1 case.

The above discussion points out the root of past
frustrations in constructing factorizable dual mod-
els of currents. The missing element had been a
finite exponential vertex exp @k - ®) which trans-
forms as a conformal scalar for arbitrary values
of k. Next we present such an operator.

B. The Double String Fields

By inspection of the fields <I>W(Z,Z*) (2.8) and
®,,(Z,Z*) (2.10), associated, respectively, with a
string with free ends and one with fixed ends, we
can construct two new fields through the following
real and complex linear combinations:



1680 HSIUNG CHIA TZE 7

(@) ®,,=9,,+%,,
=x,+ip,In(ZZ*)

t -n n
+Z‘[— (A VA "'AnuZ
+B"uZ*'"+B,uZ*") s (3.13)

where
t_ Ly
A,,fﬁ(c,,uﬂd,,u),

nu \[—(C,,“ nu) (3.14)

1
to_ s gt
B,,u=‘/—2—(c,,“—zd,,u),
r(c +id,,),

satisfying the commutation relations

[Anu;A ] u)\émm) (3'15)

[Bnu ’ Bm)\] = 6u)\énm ’
and
[A, B]=0.

(3.13) is recognized as the field of the Virasoro-
Shapiro model.'®'® Thus the dual rubber band is
equivalent to a composite of two strings. We shall
subsequently use (3.13) to build currentlike spinor
extension of the VSM (Sec. IV B),

(b) &,,=8,,+id,, (3.16)

=x +ipu1n(ZZ*)

Z J—— (CouZ*™"+Cpu 2"
+D),Z"+D,,Z*™"], (3.17)

where
1
C,‘,ru=\/r—[c +d“] R

1
Cnu=T2'[cnu+dnu] ’

(3.18)
T = — T
_1_
Dnu=f2_[cnu'dnu],
with
[Cas> Cnl = 8,08
po AT (3.19)
[DnU!D ] uxénma
and
[c,D]=0.

The complex field ¢, which reduces to the usual
Fubini-Veneziano field at the strip boundary is
most suitable for the construction of off-shell ver-
tices.

While exp(ik-®,) [Eq. (3.12)] is divergent,
exp[ik-®,(Z,Z*)] is a finite conformal scalar for
any k2. Though the conformal scalarity of ¢, and
cxp(ik-®,) is manifest by construction, we can
easily check its equivalent differential statement
in

3
[Lm(bcu]=<Z-n+1 9 4 Z*ne1_C ><I> ,

aZ 3Z*
1L = -n+1 3 *-nv1 9 3 (320)
[L,, exp(ik tbc]_(Z AL P
x exp(ik-®.),

where the L, are obtained as the sum of the L.
(2.18) and the L!® taking into account the relations
(3.18). By virtue of the Baker-Hausdorff formula
we can cast exp(ik-®.) in an obviously finite and
useful normal ordered form

|z - z*|*
1Z [

with : exp(ik-®,): defined as in (3.4). The finite-
ness of the vertex is achieved at the high price of
introducing an imaginary coupling factor i for the
field ®,,. The net effect is to endow i®,, with a
wrong metric relative to ¢ ,. Amplitudes result-
ing from (3.17) consequently have ghosts, even
when they are conformal-invariant. This new fea-
ture is to be contrasted with the VSM, constructed
from :exp(¢k-®,) : which is ghost-free. However
the connected general gauge problem is beyond
the purpose of our study.

exp(ik-®,) = cexp(ik-®,): , (3.21)

t

C. Rules for Constructing Dual Current
Amplitudes

Having found the desirable current vertex (3.21),
we next discuss a few rules necessary for the con-
struction of our dual amplitudes.

The group-theoretical rules of Clavelli and
Ramond®® offer a systematic procedure for con-
structing manifestly cyclic-symmetric and dual
amplitudes. Since we shall deal strictly with fully
symmetric Mobius- (conformal-) invariant planar
and nonplanar on-shell models and their off-shell
extensions, it is possible to reformulate the rules
for writing on-shell and off-shell amplitudes in a
unified manner, as follows:

(1) The factorizable dual amplitude for the scat-
tering of N on-shell or off-shell particles reads

Ay= < (H Vik; {x})l > (3.22)
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C is the integrated infinite SU(1, 1) or SL(2C)
Haar measure, depending on which of the two is
the Mdbius invariance group of the amplitude.
Except for C, Ay is the projective vacuum expec-
tation value of “time” (¢=iln|Z|) ordered products
of d=j=0 vertices V(k;,{x;}.

(2) V(k,{r}) is the emission vertex for a particle
of momentum %k with quantum numbers collectively
labeled by {A}.

Thus in the planar on-shell case, we recall

V(k)=IdZ Uk, 2). (3.23)

B

B is the boundary of the strip, the unit circle, or
the real axis. Without allowing for space-time or
internal symmetry labels for the conformal spin-
ors, the general conformally invariant vertex
U(k,Z) (Ref. 5) for a meson of mass m;®= -k;*®
=-1+3(p;+q;) is

¥ (2,1 (Z,)%: sexplik;®,(Z,)]:
Z‘TD;+G;)/2 Z'."iz ’

(3.24)

where ¥ (Z), ¥,(Z), and & ,(Z) are given by (2.14)
and (3.4), respectively, with Z=Z*. The above
mass quantization condition easily follows from
the transformation laws (2.22), (3.5), and (3.7).
Appropriate selections of p; and g; reduce to vari-
ous known meson models.?

In the nonplanar case, we have

U(ki;Z()=

V()= JdZZ Uk, 2, 2*%) . (3.25)
D

D extends over the entire strip, the half plane,

or the whole complex plane as the case may be.

Equation (3.11) is an example of a covariant

U(k, Z,Z*) which yields the VSM.!*"'¢ Indeed, the

current vertices built from the composite fields

®,,(3.13) and &, (3.17) are necessarily of this

two-dimensional type.

The emission vertex V(k,{A}) has an intuitive
dynamical interpretation. Taking D as the strip
w=v+i8=InZ, MObius invariance of (3.22) allows
the choice of a projective frame defined by the
fixed points |Z,| =0, |Zy_,|=1, and |Z,|=w». In
this multiperipheral configuration we recover the
Nambu-Susskind'® picture (Fig.1). In brief, the
strip identified with the Harari-Rosner diagram,
is conceived as a world sheet swept in time t=iv
by a string of length 7. The string is presumably
made up of quark-antiquark pairs labeled by 0 <6
<w. For on-shell hadronic processes only the end
quarks at 0 and 7 can emit mesons at various ¢;
[Fig. 1(a)]. For off-shell objects the coupling
mechanism is unconstrained [Fig. (1(b)]. Any quark
of the string (or rather the double-string) can emit

(b)

FIG. 1. Dual emmission in the Nambu-Susskind
picture: (a) on-mass-shell, (b) off-mass-shell.

a current. Its position in Lorentz space-time is
described by either the real field &,, or the com-
plex field ¢,,. The scalar current emission ver-
tex, local in Minkowski space, then has the gener-
al form

Vix, {)\})=J;dZZJ({)«},Z,Z*)G“(xu-éu) (3.26)

or in momentum space

V(E, A} = L 4’z I}, 2, 2*) explik® (2, 2*)] ,

(3.27)

where ¢ ,=¢,,®_ and D spans the strip or any
other conformally equivalent domain. The

J({A}, Z, Z*) c-number or g-number function must
be such that V(k, {\}) transforms like an SU(1, 1)
scalar or better as a d=j=0 conformal represen-
tation. If quantum numbers are present, J must
also transform under the groups generating (A} as
the field of the emitted meson if the correct selec-
tion rules are to be enforced. As is clear from
(3.26), J represents a yet unspecified charge or
current density distribution in the internal two-
space; for instance, it could describe the flow of
unitary spin currents in the world sheet (Sec. VI).
In our current models to be discussed next, the
vertices (3.11) and (3.24) will be shown to be par-
ticular on-shell limits of specific realization of
the current emission vertex (3.27), which can also
be readily generalized for vector currents.
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IV. CURRENTLIKE GENERALIZATIONS OF
THE VSM

A. A Currentlike Extension of the VSM

In hyperbolic geometry,?” we can consider
the interior of the unit circle or the upper half-
plane as the conformal image of the non-Euclidean
plane. The |Z]|=1 circle or the real axis then cor-
responds to the infinitely distant horizon. The Lo-
bachevsky motions or conformal self-mappings of
the half-plane are represented by Mobius transfor-
mations of the form

,_aZ +B
—)/Z+6

aZ +3
vZ*¥+0

=7"* (4.1)

with a, B, v, & real and ad - pBy=1. The above

group of transformations leaves invariant the non-
Euclidean element area do=d?*Z/(ImZ)? which pro-
vides the necessary integration measure for the
construction of SU(1, 1) invariant current vertices.
Indeed under a Mobius mapping, ImZ transforms
as |dZ|, though it is not an irreducible object under
the action of general conformal transformations
(2.3).

Let us first consider a Mobius-invariant vertex
made out of the rubber-band field (3.14):

cexplik-® (Z,2%)]:

Vik) = J’ 427 (Im 7)%2-2 o
D Z|

{4.2)

D extends over the whole complex plane. Equation
(4.2) with the rule (3.22) gives the N-point ampli-
tude

\

—_
1 al o, rexplik;®,(Z,,Z29)]:
i=]

0). 4.3
) (4.3)

Mobius invariance is easily checked first by using the explicit transformation laws

ImZ'=|yZ+6|"*ImZ,

o7 k@ 2, 2N BT g )

e

cexplik-® (Z',72'%)]:

(4.4)

1Z|¥

where the vector E is a finite Mobius transformation and the components L, L

IZ/|k2 ’

(4.5)

s Of T are the sum of the

generators made out of 4, and B, oscillators, and second by using the fact that the L; ( =0, +1) annihilate

the bra and ket vacua.

By (3.8) and (3.10), the Koba-Nielsen amplitude for (4.3) is

N N
AN=51 HfarzZi (Imz)%°-2 ]|z, - Z,|?% (4.6)
1=1 i<j
which as Z;~Z,, allows singularities in k;-k; to occur off the real axis. Thus (4.2) does not qualify as a
current vertex in view of the desired properties for off-shell amplitudes listed in Sec. I. However, it does
provide a good continuation in the intercept o, of the VSM for o, #1,-1,-3... .13 Of special interest is the
case of k=2, where, apart from the SU(1, 1) Haar measure, (4.6) is the VSM. As the expectation value in
(4.3) for k;%=2 acquires the larger Mobius symmetry SL(2, C) [SU(1,1)®SU(1,1)], for a finite 4, C must
now be the SL(2, C) measure (3.9).

B. A Spinor Extension of the VSM

One possible modification® of the vertex (4.2) is achieved when we introduce two mutually commuling
Neveu-Schwarz (NS) type fields*

H(Z)=_f;‘ bpuZ™, F{(Z*)=‘éi>,,,uz*"‘, (b by )=0, m=s%,43, ..., (4.7)
with the anti-commutation relations

b ba}=0,00mem 00 1B B} = 04s8mim -
The associated Virasoro generators are

LP=_L: D me2mb_b, . 1, LP=—i:n+2 m)b_ byum - (4.8)

-0 -0

H(Z) and H(Z*) transform like ¥, and ¥, (2.22), respectively.
According to (2.22), (4.4), and (4.5) we can write a new SU(1, 1) invariant vertex in
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k-H(Z)E-H(ZY)

[Z[# 1 :explik-®,(Z,2%)]:. (4.9)

V(k)= fD 42z (Imz)¥-1

Just as for the orbital model (4.2), the vertex of interest occurs when £2=1. Again we have SL(2C) as
well as conformal invariance of the amplitude A, resulting from (4.9). For #2=1, the vertex (4.9) con-
sists of the product of a NS vertex and its mirror counterpart with respect to the real axis. This is
apparent as we rewrite (4.9) as

; k- H(2) k+H(Z*) -
V0= [azazs amits s explik- QD) Sty s explie- QZ9):, (4.10)
( A PACEDPN Z*x(Z:1/2°
where we define in the manner of Di Vecchia and Del Giudice!®
®,,=Q,(2)+RQ,(2%; (4.11)
here

. = 1 _
Qu(Z)qu“-#- ZPOU an+Z ﬁ(AnuZn +A:LJZ n),
n=1

(4.12)
Q2% =Ty + 1By 102"+ 3 7—1,7(Bnpz*"+3"*uz*‘"),
with i
(o s Pov)=0,0,  {Gops Pou)=10,, ws)

and g, p, commuting with g,, p,. The associated Virasoro operators LE") (LEB’) are given by (2.18), where
the operators p and C, are replaced by p, (p,) and A, (B,).
Expressed in terms of (4.10), the N-point function

( Ldz dz*k'H(Zmexp[?‘k'Q(Zi)J k-H(Z}): explik - Q(2})] )’0>

Ay= Z, z*

(4.14)

i

[where C is now given by (3.9)] has its Z and Z* dependence entirely decoupled and is just the NS ampli-
tude “squared”. An obvious consequence of the above property is that the NS “G-parity” selection rule*

is also obeyed as A, =0 for N odd. To complete the analogy with the VSM'® and NSM,* we compose the sum
of generators

LA L®=L,, (4.15)
L +LP=L (4.16)

We then have

(L,, Uk, Z)]:Z"{ Z-a—az —n( )] Uk, 2), (4.17)

- -n * k2 T *

[L,, Uk, z*)|=2* [z 57’7—”< )] Uk, Z%), (4.18)
where

Uk, Z) =k H(Z): explik- Q(2)]:, Uk, Z¥)=k-H(Z*): explik- @(ZH)]:. {4.19)

Among the Virasoro operators (4.15) and (4.16), L, L, and L,, L, form the SU(1, 1) ®SU(1, 1) algebra
underlying the new model (4.14).

If we now define a total gauge operator LT =L, +L, and the vertex V(k, Z, Z¥)=UU, from (4.17) and (4.18)
we get

]LZ" V(k, Z, Z*)]:;[Z'"*l 4+ Z¥ne 3

- S H(ET e D) | W 2, 2, (4.20)

which is the differential statement that the dimension and conformal spin of V(k, Z, Z*)/| Z|¥*! are
d=—-(}*+1) and j=0. Since d?°Z has d=2, j=0, conformal invariance of (4.14) results for #?=1.
Using the same techniques as in Ref. 16, complete factorization of (4.14) in the multiperipheral con-
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figuration | Z,|=0, |Z,_.,|=1, |Z,|= is achieved.
We define the bra and ket states

I3

Izulmo | Z,| (0| V(&,, Z,, Z})=(0| explik, * (20 + o) VeBy 12k,0y 1, =( By, 04, (4.21)
;uln | ZyPVkyy Zy, Z9)0) =Ry by jpky by exPliky - (35+T0)]|0) = | @y, By (4.22)
N[> e

Owing to the SL(2, C) group properties [(4.17) and (4.18)] we have

Uk, 20k, 2%) = Z40Z*"0U (k, 1)T(k, 1) 2”202 * To.

(4.23)

Substituting the above relations in the amplitude (4.14), and remembering that L, and L, annihilate the

vacuum, we obtain

N‘Z.l'-fzw dg ( -3
”‘2 7 Yin

x<k" 4,1' [ Vik, ’( 3)10-20 exp[—i(6, = 65)(Lo = L)) - -

-Lo-L
X Vikyp 1 -Li) oo exp

N-l

with »_,=1, 6,_,=0. Performing the change of
variable x;=7; /7, (0 <x,<1) and Q,=6,-6,,,, we
then can do both the x; and Q, integrations which
finally yield

A =§;(k,, & |v(k)av(ks) « cAv(ky_) | By, ky),

(4.25)

where the sum is over the (N - 2)! permutations of
the momenta &,, %, ..., ky_,, and the Feynman-
like rules are

v(k) = b+ H(1) : exp[i#Q(1) ] exp[ik- @(1)] : k- H(1) ,
(4.26)

2 sina(L,— L,)
Ly+Ly+2 (Ly~L,)

A= (4.27)
The contribution to the amplitude of a pole in the
subenergy s=-7n°== ( Ji-,%,) then has the form

Ay=(plale), (4.28)
with
(pl=2(k, &, 0(k)Do (k) - - D(ky)

(4.29)
lq) =§v(k,+,)D- * ‘U(knq),d’}v, kn) .

Just as in the VSM, upon insertion of a complete
set of intermediate states |1), and because bé
=Py, =7 on a state |1), the projection operator
[sinn(L,~ L,)]/(L,~ L,) singles out as contributing
states only those |A) obeying the constraint equa-
tion

["i(eu-z = 9N—1)(Lo'zo)]v(k.v-n 1)] @y, kn>,
(4.24)
TIAT A+ Y mbled,
1=0 m=1/2
=2 BT *B,+ E rb,
n=0 r=1/2
(4.30)

For k%=1, making use of the commutators
[Lo-L_,, Uk, 1)])=~-nUk, 1)
and (4.31)
[L,-LZ_,, Uk, 1)) =~n0(k, 1) ,
we can show for any positive [ that
(plw, =(p|W,
=0, (4.32)
where
Wi=Lo-L{-(-1),
Wy=Lo- ZxT- (1-1)
are the Ward operators.
Following the method of Ref. 4, we define two
sets of supergauge operators
dQ(Z )

s

(4.33)

(4.34)

- § 2z R,

where the integral is evaluated along a small cir-
cle of the complex Z plane with the center at the
origin. The new operators obey the commutation
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relations
[ L-my G"] ="(%m— n)Gn+m ’
~ (4.35)
[L-rm Gn] = -(%m - n)Gn+m ’
{G", Gm}=2L-(n+m) ’

{En ’ Em}= 2Z-(n+m) .

(4.36)

J

Then we can express the state |®,, k) as
G.1/2G 1721k, 0). We note that the propagator
(4.27) has an alternative form

A=deZZ'L°‘22*’fo‘2, (4.37)
0]

where O is the unit disk. Utilizing (4.36) and
(4.37), (4.25) becomes

N-2
Ay= ; 11 ./; dzZi <OA.b, kllGx/z U(kz)Zz-L‘)“2 U(ka)' o U(kN—x)G—l/z 'km OA,b>
i=2

X(O0g3, klfax/zv(kz)z*z_zfzﬁ(ka)' < Ulky_)G_y /2|y, 05 35)-

Making use of the following relations,

(Lo+2) 1R, 04,5) =(Lo+3) |k, 05 5)=0, (4.39)
0=(0|G_,/,=(0|G_,,, (4.40)
and
[Lo, G_1/2]=—%G_1/2 ’
(4.41)

(Lo, 6-1/2] = —%6-1 /2 s

we can immediately show the decoupling of the
ground state {0, #|=(G| from any number of the
odd-parity “pions” {0, k|G, ,,G, s, i.e.,

Ag_(y-n)= 22€0, &y Iv(kz)AU(ka)‘ o
P

X Av(kN—l)G—l/zE-l/z ' ky, 0)
=0. (4.42)

Similarly, we can define a new Fock space F, just
as in the dual pion model and write the N-point
amplitude (4.25) as

Ay=2340, ky |v(ky) Av(ky) s « « Av(ky. )[Ry, 0)
P

(4.43)

where the “pion” is now the ground state of the new
space of oscillators,

A= f d?z 2 Lo-3/2 zx=Lo-3/2
®

2 sinm(Ly= L)
(Lo - Lo) ’

(4.44)

and (k) is given by (4.26). The adoption of F,
space formulation also permits an easier analysis
of the spectrum of physical states of the model.
In all respects, the new nonplanar model dupli-
cates the properties of the dual pion model. It
stands as a first example of a fully symmetric
model with supergauges. For other specific val-

(4.38)

T

ues of k2 (k2 #1), the N-point function resulting
from (4.9) provides a correct continuation in k>
for the new amplitude.

V. OFF-SHELL AMPLITUDES
A. The Rebbi-Drummond Model (RDM)

In this section we make use of the exponential
vertex exp[ik* ®,(Z, Z*)] and the proper bilinears
in the SG conformal spinor fields in building off-
shell models.

Expressed in the variable of the conformal frame
Z=X+1Y of the upper-half plane, the simplest
current vertex has the form

V(k)=/D“(Ifn—ZZ)2exp[ik-<I>c(Z, z9], (5.1)

where D is the upper-half plane.

Its Mobius-scalar character is obvious from pre-
vious considerations (4.4) and (3.20). Equation
(5.1) corresponds to choosing a c-number density
J(Z, z*)=(ImZ2)™2. According to the rule (3.22),
the N-point current amplitude for (5.1) is then

a,=Llolr(1 deZ (ImZ,)"2
N C< (I=Il b i “{

xexplik, - ®.(Z,, ZT)])

o> . (5.2)

As in the VSM, the | Z|-ordering of the vacuum ex-
pectation value in (5.2) is required for the con-
vergence of the commutator

(85U z,, 21), @32, Z)]=26,,In|1 - 2%/Z,),
(5.3)

|z;1>1z;| when i>j

where &%), and &(;) are defined in the same way as

(3.4). The normal-ordered form (3.21) and the
commutation relations (5.3), together with the
usual conditions
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(+) ]0) <0|@( =) =0 ,
pu10)=0,

and

[Xu,Px]=i5ux

are sufficient to show that
< 0

Consequently

i=

(5.4)

4= I'—'If CL 11 z- 2% (5.5)
¥ C ks Jp Imz)? i ¥ !

is just the Rebbi off-shell amplitude.!!

By inspection, the zeros and infinities of the
integrand in (5.5) are observed to occur only when
Z;~Zy at the real axis, the boundary of the half
plane. They thus ensure the correct singularity
structure in the external masses % as well as in
the subenergies S, , =—(Z}’i=1 k).

The Drummond amplitude? results from a mod-
ified vertex differing from (5.1) by a multiplicative
factor (3 2 , an entire function of ¥*. This rather
ad hoc alteration® has the virtue of eliminating
the Gaussian behavior of the elastic form factor,
a bad feature of the Rebbi model which renders it
unsuitable for analysis of scaling limits (k2 - «).
In subsequent discussions we shall always deal
with the modified vertex as it gives rise to a fall-
ing form factor F(k?)axc1/|k| as k2~ o,

B. Spinor Off-Shell Dual Models

When all the currents are set on their tachyon
mass shell (k,2 =1), the RDM reduces to the sym-
metrized sum of the conventional Veneziano am-
plitude.’® Can the fully symmetric amplitudes of
the generalized SG dual models be extrapolated
analogously off-shell? The answer is affirmative
for a subclass of these models.

The new SU(1, 1) invariant vertices for dual cur-
rents can be induced from a simple observation.
Under a Mdébius transformation

(2", 2'%)= |y Z + 5| 2exp(iE+ L)

x (2, z*)exp(~iE-T'?) (5.6)
where j(Z, z*)=gy/| z|,
¥ <‘I/2
is given by (2.14) and transforms according to

(2.22). j(z, z*), being a conformal vector, trans-
forms like (ImZ2)~! (4.4) under the SU(1, 1) sub-

(I exlin-oclz, 20) o)< 1T 124~ 2517,

CHIA TZE 7

group. This suggests a whole new class of Mdbius-
invariant emission vertices of the kind

V"(k)=f d*Z(Am2)=2[: §(z,2%):)*

x(3)** explik- @ (2, 2*)]
(p=0,1,2,...), (5.7)

where the normal ordering of the bilinears pre-
vents contraction of a spinor field at Z and its
conjugate field at Z*. Such contraction would give
rise to infinite residues for the poles of (5.7)
which occur at the boundary (Z=2Z*). Furthermore
it can be verified that only one component of the
spinor field y,(Z) and §,(Z*) [or ¢,(Z*) and §,(Z)]
can be used to make up j(Z, Z*) if factors of the
form |Z,-Z,| ™, m,, being some positive inte-
ger, are to be avoided. The latter terms would
cause unwanted singularities of the Drummond
type'® to occur inside the strip when Z;~Z,. So
we choose j(Z,Z*) =§,(Z*W,(2)/|Z|. Due to the
symmetry between Z and Z* basic to our coupling
scheme (a mirror symmetry guaranteeing both the
occurence of the correct singularities at the bound-
ary and the Mdbius invariance of the emission ver-
tex V?(k), off-shell extrapolation of the SG gen-
eralized dual vertices (3.24) is possible only for
p;=q;. Therefore our scheme precludes an off-
shell extrapolation of the Neveu-Schwarz model
where the vertex is linear in the conformal spinor
field. This situation has its parallel in ordinary
field theory where the currents are always com-
posed of spinor bilinears.

Just as in the RDM (p=0), the vertex V* (k) has
poles at kF2=1-p,~p, ~1-p,...; this is seen di-
rectly by an expansion of the integrand of (5.7)
about the real axis:

°° R(X, k)
V (k)= f ka ,.oap(k) n’

b

(5.8)
@A) =(1=p)= .

The residue of the first pole ¥*=1 - p,
7 b T dX & » i
Vi(k)= 7 ¥ (X)¥,(X) ) : exp[ikd,(X)]:

(5.9)

is identical to the on-shell vertex for a subclass
of the SG generalized dual models (3.24).

When all the external legs are put on their mass-
shell values k;%=1- p, the amplitude

A= é<o‘r(§ Vh(k,)) o> (5.10)

becomes in the notations of Ref. 5.
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N
v [I ———— IX X, || X = X R (5.11)
H kz' 1+pl allgraphs‘[ f =1 x i /

the residue of which is the generalization of the conformal-invariant N-point function with unit intercept.
Equation (5.11) can be partitioned in the manner of Fairlie and Jones'” into 3(N - 1)! terms corresponding
to all noncyclic and nonanticyclic permutations of the N legs.

Due to the Mdbius invariance, we can reduce (5.10) to an explicit factorized form by the Fubini-Vene-
ziano technique® and obtain a set of Feynman-like rules for off-shell processes. To factorize A, ina
multiperipheral configuration, we must pay the price of putting at least two currents on their tachyon mass
shells. Thus the choice of the standard set of fixed points X;,=0, X,_,=1, X, = and the corresponding
Haar measure

dX,dXy,d Xy

X Kyl Xy - Xl Xy X5 (5.12)
leads directly to the requirement
2=1-p,, i=1,N-1,N. (5.13)
By the SU(1, 1) group property (3.20), we get
|Z [Foexp[ik-®.(6)]|Z |"Lo=exp[ik- ®(2,2¥%)], (5.14)
where
®.,(0)=X, + Z 7 (€l + Cpet™+ (D], + D, e (5.15)

and Z=ve'®. With the on-shell ground-state bra and ket defined as

lim  lim  &,X0|V*i(k,)= f d X, (ky | (body)r , (5.16)

X; =0 k2 >(1-p))

lim lim  X,2k,2V?¥(k,)|0) = f dXy(bldbyw |k, (5.17)

Xy =0 ky2 —>(1-py)

the residual amplitude A, for N-3 currents and three tachyons can be written as

- = : -2
S JE o ()

Vi+1
r:
i=3

X <k\T(: explik, ®c(0,)]: [ ¥ (0,)¥(6,) :]*= (%:)nllo rexpliky ®c(6,)]: -

-L,
x(f.u:a) texpliky_ ®c(1)]: [ W6 y_,)¥(6 4_,) 2] pN_l)

YN-1

kN> , (5.18)

where we have used (5.16), (5.17), and the fact that L, annihilates the bra or ket vacuum. Performing the
usual change of variables u,=7,/7,,,, 0 <u, <1 with the Jacobian

=881, (5.19)

and carrying out all the u, integrations, we arrive at the final form

A= Tk | (0o} D22 (k) AT (k) + D201 (k)G a1 By ) (5.20)
where the sum is over all the (z - 2)! permutations of the momenta Ryykgy ooy ky_y,
_ 1
A= Hip-1’ (5.21)

with
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H=Y [n(C}+C,+ D} D)+ (n+ )by +b,+dy +d,)]

n=0

and

I""(k,-)=frr deilsinei]“iz“”‘ "2 ,(0,)¥,(6,):] % : explik; < ®c(6,)]:

with

¥ (0) = Z‘_‘, b}, exp(i(m +3)6]+d,, exp[-i(m+3)d] ,
m=0

¥, ()= Ej b, exp[i(m+$)6]+ d}, exp[-i(m+ 3)8] .

m=0

I'*?(k) is meromorphic in %*> with the poles occuring
at the boundary (6 =0, 7). It is now apparent that
only two currents, k, and &, need to be put on their
tachyon mass shells since the Feynman-like rules
[(5.21)-(5.23)] give the amplitude for N -2 cur-
rents and two hadrons to be (5.20) where qll the
r*(k) (6=2,3,...,N-1) are now of the form
(5.23). While we deduce this result from the com-
plete factorizability of (5.20), we could obtain it
directly from (5.10). Instead of fixing three verti-
cal lines (X, =0, X,_, =1, X,=) which corre-
spond to the measure (5.12), we could choose two
vertical lines (X, =0, X, =) and one fixed circle
Vy1= 1.2

Having two hadrons in the amplitude is in no way
a drawback. From a physical standpoint, (5.20)
suffices for all purposes since at least one hadron
must be present in each side of a reaction to act
as a source for the currents.

To go to the world sheet representation, we per-
form the change in variable u, =exp[-i(¢; —¢,,,)]
=e'™i where 7 is a relative time since the operator
(5.21)

Ay =i/ drexp[-i(H + p# = 1)7] (5.25)
)

takes the familiar form of the Feynman propagator.
The interesting connection with a parton model
suggested by this string picture is discussed by
Susskind, Nielsen et al.*

In a way analogous to the factorization of the
VSM, the contribution at a pole in the variable

Si....:==(32}-1k;)* may be expressed as
Ay=(plale), (5.26)
where
lg) =25 (TP A T ) (bg d3)?¥ | ky)
’ (5.27)

(Pl =§<k1l(bodo)’l(]"PgA e r\D,) .

KA
(5.22)
(:=2,3,...,N=2), (5.23)
(5.24)
r
Accordingly, as a consequence of SU(1,1) in-
variance of the amplitude, (p| obeys the Fubini-
Veneziano Ward-like identity
pNL,-L_)=0. (5.28)

The models discussed previously have been devoid
of spin or internal symmetry degrees of freedom.
Since the assignment of Lorentz spin and internal
symmetry labels to the orbital oscillators C, and
D, would lead to exotic states on the leading tra-
jectory, the task of bearing these important quan-
tum numbers rests entirely with the conformal
spinor fields. For instance, we can thus have
(v=v,)

_(ITA%y)

iNZ,Z2*%) ==,

IZ] (5.29)

where the conformal fields ¥ and ¥ are at the same
time quarklike 4-spinors and unitary spinors. I
and A“ are a Dirac 4x 4 matrix and a unitary spin
3x3 matrix, respectively. The two cases of p=1
and p=2 are of special interest among the possible
current vertices (5.7). In the first instance if we
allow the ¥’s to be unitary spinors, we have a
Mbbius-invariant off-shell vertex for the simple
BH dual quark model.?

V' (k)™ = fDd 2z (Imz)! :\T;)\ZMI‘IJ:(%)"2 exp(ik- &,).
(5.30)

Since we also succeed in constructing a conserved
vector current for this model (Sec. VI), it is worth
recalling the main features of the on-shell ampli-
tude. This model has a leading vacuum trajectory
with unit intercept and a quark-antiquark (octet
and singlet) trajectory with an intercept one unit
lower that has a massless “pion” and a massive
“p” at ¥ =1. Moreover, it contains exotic reso-
nances starting three units below the vacuum tra-
jectory.

If we allow ¥ and ¥ to be Lorentz spinors and
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introduce and additional Lorentz-scalar, one-com-
ponent conformal spinor ¥,(Z) (¥,(Z*)), we can
construct the Mdbius-invariant vertex

(Imz)~!

Z] (: TSRy ¥ :+:0,0,:)

V(k)=fDd’Z

x(3)** explik- & (2, 2%)]- (5.31)
Equation (5.31) is then the off-shell vertex for the
dual pion quark model,'® which while having a rich-
er spectrum contains the NS model. The bilinear
current of a spinless quark field ¥, has the proper-
ty of giving at the boundary, 7° the fifth component
field appearing in the BH models.®

For p=2, in a model without spin and quantum
numbers, we have

V3(k)= f a*z[:§(z, z*) : 123" explik- .(2, Z*)].
D

(5.32)

This current vertex is not only SU(1, 1) but also
conformal-invariant. In fact, apart from

exp(ik- ®.), its integrand is but one of the two
available interaction Lagrangian densities (2.6)
where ¥ (¥) is restricted to be a one-component
spinor. We shall reserve discussion of conformal-
invariant vertices for a later section on vector
currents.

C. A Few Illustrative Computations

It is sufficient to take the case of p, =1 in (5.20)
to illustrate the general analytic properties of the
new amplitude (5.10). The photoproduction ampli-
tude is thus given by the residue of (5.20) for n=4,
all p, =1, at the pole k,®=0 (Fig. 2):

Ay=(ky | (bodo) [ T,AT, + T,AT, ] (1dY) [ . (5.33)
Defining
ag= "(q + kl)a )

a,=-(g+k)*, (5.34)
a, = "(q+k4)a ’

and
q=ky,

the st term is computed to be

I = VrTGe+INTGE - ) T(=30 -G (o +T=p) +1)

q=K, !

‘ K3(X3=|)

S ==
K| K4
(X|=O) (X4=°°)
(a)
9 Ks q K 3

(b)

FIG. 2. Photoproduction amplitude.

- 1 "
A,"=fdrf d6|sing|?* =1y~ %s~2| 1 — yet® | ks=2
o V]
x[7*(1 -4 sin®6) + |1 - 7re?|?
+72|1-7et?|?], (5.35)

while the ut term after a change of variable »' =1/
can be cast into a form identical to (5.35) except
the r integration now ranges from 1 to «. Con-
sequently the complete amplitude can be written as

A4=f dz (Imz)ﬂ-x(lz'z)q.kl-x(’l - ZIZ)q-ks-l
D

x(1z|*(1-4sin’9)+ |1-Z|*+[2|*[1-2]|],
(5.36)
where Z =r¢'® and D spans the entire upper half-
plane. Next we evaluate an integral of the general
form
I =fd22 (ImZ)"(IZI‘)’("””’(I 1 _le)-(-r/au) s
D

(5.37)
where p, o, and 7 are not functions of Z. Using
the formula

f tPe™?'dt =T(p + 1)p~v+D (5.38)
0

(Rep>0,Rev>1) with p=|Z|? and |1 - Z|?,

the Z integral is Gaussian and subsequent integrals
are readily put into the forms of integral repre-
sentations of ¥ and g functions. We find

TGo+ )37 +1)I(-1(0 +7) - p)

(5.39)
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Using (5.39), we can evaluate (5.36) explicitly and find
D(-3 (@ + D)) (=3 (@, - DN T(=3 (@, - 1))

|=3

A=/7T(% qz)[

F(_%(as + at))r‘(_% (at + au) + 1) r‘(-% (au + as))

(=3 (o, + D) T(=3 (o, -1 (=5 (e, - 1))

T (o + o) T(=3 (0, + 0) + D T(=3 (@, + @)

r(_.;— (au + 1)) r(-*% (aL— 1))1-‘("% (at -1)

T T(-2 (o + N T3 (o, + ap) + DT(—2 (@, + @)

(5.40)

942 (-3 (e + D) (=3 (a, + 1) T(=3 (@, +1)) }
T NI, +a) + D=3 (e, +a,) + D=3 (a, +a) + DI

Therefore the resulting nonplanar amplitude is completely symmetric in o,, @,, and ¢,. Its residue at
the pole ¢%=0 is an explicit expression for the residue of (5.11) in the particular case of n=4 and p,; =1

(¢ =1,2,3,4).

For an analysis of the ¢-channel singularity structure, we need only to A%* (5.35). As in the Veneziano
model the main contribution of the integrand to the asymptotic behavior o ~ -« arises near »=1. Since
by construction all singularities of the model must occur at the boundary, the connection between Regge
and fixed poles can be shown by restricting ourselves to a domain of sufficiently small 6.

Following Drummond,*? we set » =1 -« and demand O<u <R and 0< §<H, both R and H be small. The

pertinent piece of A$t is

Ast =fﬂd6 6"2'1fkdu (1 —2)~% 22 + 02) 57 (1 —u)?(1 - 46%) + (? + 62) + (1 = u)?(u® + 6%)]. (5.41)
0 o

For large values of a,, we invoke the Mellin transform technique

A;‘=f d(-a)(=a) Tt
4]

(5.42)

Then the right-most singularity of A3 in the J plane defines the leading high-a, behavior of A%!, Using
the smallness of u and omitting an irrelevant factor (-J), we find

H R
A'y:f o 9.;2-1‘[ duw’ [(u2+92)°'k3'1+(u2+ 92)q~k3] .
o 0

(5.43)

After change of variable ¢ =6/u which permits the separation of the integration into two parts, we find

H/R R o H/® )
A3'=(fo ) du+j;1md¢-/; d“) R R I B

(5.44)

We approximate (1+®2)7" %31 in the first term and ¢ '3 in the second. We can then evaluate the par-

tial-wave amplitude A3! to give

J 2

q

A,,N(H/R)[ 1 1 ]+(R/H)[ :
J -

J—(a,-1) T-(a,+ D] @+1

(5.45) displays the main feature of the amplitude,
the existence of a multiplicative fixed pole at J
=-1 along with Regge poles at J=a,+ 1. The fixed
pole disappears when the current is put on its
mass shell value at g?=0. One can also verify
that the Compton amplitude shows a similar struc-
ture.

The explicit form (5.40) allows for an easy anal-
ysis of the Bjorken scaling behavior of A,. Main-
taining ¢ fixed with

asz—quy auz(l"w)qz’ qz"w, (5'46)

we obtain

1 1
at—1)+J—(a,+1)] : (5.45)

A=V (g T (=3 (o + D w(w = D] ez,
(5.47)

So scaling behavior is peculiar in that it goes with
a power factor, a function of the momentum trans-
fer. Due to the rather ad hoc modification of the
current vertex (Sec. V A) used to get rid of Gaus-
sian form factors,” any conclusion reached in scal-
ing analysis of our current models must be taken
with caution. From the group-theoretical point

of view, we are free to multiply the invariant
current vertex (5.7) by a suitable form factor

F(k?), an entire function of ¥*. As emphasized
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by Rebbi,™ a definite form for the k* dependence

of V?(k) is unlikely to be given by duality alone

and may well require the postulate of current alge-
bra. With this reservation regarding k* behavior
in mind, we proceed to compute the form factor
from A, to give

F(q2)=f"|sin9|°2de

_TGITGg* ) (5.48)
I(z¢°+1)

So F(q?) has poles spaced by two units at ¢° = -1,

-3,-5,..., and behaves like 1/|g| as ¢ - =.

Though the absence of a pole at ¢° =0 in (5.48)
is consistent with the decoupling of an odd num-
ber of massless on-shell particles, the vanishing
of the elastic form factor which is necessary for
consistency can only be implemented by the in-
clusion of some internal symmetry in the model.
For example, the “pion” elastic form factor re-
sulting from the off-shell vertex for the BH sim-
ple quark model (5.30) is zero owing to the com-
pletely antisymmetric SU(3) coupling factor. The
above observation underscores the importance of
incorporating internal quantum numbers in our
generalized off-shell vertices (5.7), if consistency
is to be achieved between on and off-shell ampli-
tudes. We shall take up a particular off-shell mod-
el with SU(3) symmetry in our discussion of con-
served vector currents in Sec. VI.

Finally, by adopting Drummond’s method of
dividing out the Haar measure, we can check that
the propagator for the current in this case of p=1
is of the form A,(¢®) x1/¢%. This result is unsatis-
factory in that it does not have an infinite sequence
of poles, a structure to be expected of a candidate
for hadronic photon propagator.’?:3

VI. DUAL VECTOR AND “AXIAL-" VECTOR CURRENTS

A. Nambu’s Method

Weak and electromagnetic processes involve vec-
tor and axial-vector rather than scalar currents.
Our scheme allows for a specific realization of
Nambu’s ansatz® for the construction of conserved
vector currents in a dual theory. Repeating the
formal argument of Nambu, we assume the exis-
tence of a conserved current j; (x;, x,) ({=1,2) in
the internal space of the world sheet with j; taken
to be entirely decoupled from space-time degrees
of freedom,

aiji=0‘ (6.1)

Proceeding as in (3.28), and making use of the new-
ly acquired complex field $,, (3.17), we can con-

struct a vector current in the external 4-space as

Jy (x)=j; d°Z j;9;9,0%x, -&,,), (6.2)
or in momentum space

J, (k):fD d°z j,0,8,, explik - ®,). 6.3)
In consequence of (6.1),

ik J()= fo 4?7 8,[j, explik - &,)] . 6.4)

By Gauss’s theorem, (6.4) results in current con-
servation if

ik Jik)= fds’j-ﬁexp(ik )
B

=0, (6.5)

where B is the boundary of D and 1 is a unit vector
normal to B. Thus (6.3) is conserved whenever the
internal current satisfies

Jefif,=0, (6.6)

provided the factor exp¢k®,) is well behaved at B.
One of the merits of the complex field is that this
proviso is obeyed. Indeed, while the connection
(3.18) would indicate a divergent exp(ik+ ®,) ac-
cording to our discussion in Sec. IIIA, in fact we
have

exp(ik - ®,)=| 2sind |**: exp(ik - &,): (6.7)

by formula (3.21). Therefore for spacelike k2
(2> 0), exp(k-®, ) vanishes at the boundary. For
other values of k2, we invoke the usual analytic
continuation argument.

B. Conserved Internal Currents

The power and elegance of Nambu’s method rests
on the interconnection between the conservation of
the external space-time current and that of the in-
ternal current. The existence of two conserved
currents in the Thirring model is well known and
that this theorem still holds when the model is
dualized. A further elaboration of the theory of
the conformal spinor field is useful beginning with
an analysis of two inportant conserved currents in
the fermion system 2.5). They are

jY=:%o¥:, i=1,2 (6.8)
and
Jjf=:%0,0,0:
=i, iy, i=1,2 6.9)

where the o; are the Pauli matrices and the co-
variant fields
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(i)

and ¥=@,/VZ*,¥,/VZ) are given by (2.14) and

(0 +1
€= -1 0 .
The subscripts i =1, 2 can label the timelike () and
spacelike (9) components of the currents on the

strip.
The conservation laws

8,1 4=0 (6.10)

then follow from the equations of motion (2.12).
An elegant and useful representation of j}'4 is
achieved if using (6.8), (6.9), and (2.14) we write

i = =ist
=[i@)+jE*)], (6.11)
iy =ijt
=i[j @) -jz*)], (6.12)
where
]'(Z)=+_f) ii zm"1:ala,:,
iEN=li@r=E 5 2 tiaa,
(6.13)

are solely functions of Z and Z*, respectively.

Inspection of the Eq. (6.12) reveals a remarkable
feature of the currents, a consequence of the
boundary conditions (2.12). At the boundary of the
strip where Z =Z*,

J'; lo.n =iji4 |o,1r
=0. 6.14)

Therefore the vector current, which flows parallel
to the boundary at 6 =0, 7, does not leave the strip,
while the pseudovector current, which flows
across the boundary, is orthogonal to the vector
current at § =0, 7. Due to the isogonality of con-
formal transformations, the above property re-
mains invariant whether we select the strip, the
unit circle, or the upper-half plane as our domain.

In consequence of the infinite degrees of freedom
of the quantized conformal fermion system, the
normal-ordered spinor bilinears j(Z) and j (Z*)
can be expressed in a new Fock space of Bose-like
oscillators j, where

iz)= ) z2'j,,

1= =

ien= r z¢7,,

I= =

(6.15)

with

[jl’jm] =lbl,-ml
(6.16)

iml0)=0, m=0.

In terms of the old Fermi modes 4, and d, (2.16),
the j,’s have the form

-

=2 (bmb;ﬂ"dldmﬂ)“' A by omers
m=0

m=0

=

6.17)

Jo=

s

®lb,-dld,). (6.18)

m=0

We notice that j, is just the total charge operator
for the spinor field, and as such can be expressed
in the alternative form

"
j°=f dg:¥o¥:
o
=Q

6.19)

The representation (6.15) suggests that we define

a composite Bose field p such that
Ji=€udyp. (6.20)

We then find
1 1 1 -1 -1\qt
=) — -Z¥ )+ (Z* N =Z7Y)
P 'Z=)1 \fz_[(Z )P+ ( o]

+iQIn(Z*/2), 6.21)

where

[P;, P; ] =61,m
and
py=Vlj, . (6.22)

p can be interpreted as a charge density operator
since

Q= fdp.

More importantly, if the ¥’s are also quarklike
representations of the isospin or unitary spin
group, in the currents

(6.23)

(6.24)

Ao i iva
Ji ==t€ydr

(6.25)

we have the possible models for the flow of internal
symmetry spin currents in the strip. In (6.24), A ¢
are the usual SU(2) [SU@3)] matrices and the labels
7, s run from 1 to 2 (1 to 3) corresponding to the
SU(2) [SU(3)] quark representation for ¥ and ¥.

In the case of SU(3), we obtain accordingly



| =3

ji%@)

[7%@*))*

> Z'e, (6.26)

1= =

n

with j satisfying current-algebraic commutation
relations

(55, i8)=2if *B7j), , +216°88, _, (6.27)

and
s -v)i%z),i%@")
=2 f*BY5 (@ —v')5 (0 —6’)%]’7(2)

-2iZ725%86( -v")9,6(0 - 0').
(6.28)

C. Conserved External Dual Vector
and “Axial-" Vector Currents

The introduction of an operator current density
jY from Sec. IIC allows a specific realization of
the Nambu model of a conserved dual vector cur-
rent:

J;(k)=fde:%,q/;a,.<1>u explk-®) . (6.29)
D

Apart from the operatorial factor exp(@k®,), the
integrand of (6.29) is the second interaction La-
grangian density (2.6) of the dual Thirring model.
Conformal invariance of (6.29) is therefore mani-
fest.

An alternative form for (6.29) in terms of the p
field (6.21) is

dew o 0) exp(zk 8. (6.30)

W= [ 2| @ -2/2z 1 8, e
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In this form, (6.29) is an explicit example of a vec-
tor current obtained from a Lagrangian density
Lem. in Nambu’s dual electrodynamics®:

" 3(p,®,)
Lem. —fo ———“—-a(y’ 8) Au @)dog, (6.31)
where A is the quantized electromagnetic field.
The current operator (6.30) 1s identified via com-
parison of the action Sem, =f dv £em. with the
usual fJ (x)A, (x)d*. Since it is essential for the
consistency of the model that the currents incor-
porate some internal symmetry, we take the fields
¥ and ¥ to be quarklike SU(3) representations. In

J“""‘(k)=j;dzzj}"’8‘d>cu exp(ik- ), (6.32)

we then have a model of unitary spin vector cur-
rents for the simple BH dual quark model.?

If in (6.2)-(6.5), instead of j} we insert j# (6.9),
the conserved pseudovector current, we have

Jik) = j; d’z :¥o,0.¥ :9,9,, explik-®,) ,
(6.33)
with

ke JAR) = fdsJ*“nexp(zk < d.). (6.34)

Though j4-1i|;=ij) (6.11) does not vanish on the
boundary, J;f(k) is nevertheless conserved as
exp(ik - &) vanishes at B (6.7). The singularity
structure of the current vertices (6.29) and (6.33)
is analyzed by the same method as that used for
scalar currents. We begin by rewriting them in
more usable forms. By virtue of (6.7), inserting
in the factor )*°, we find

(6.35)
Tpee) = [ d22|@ -20)/221F 45,2, e R
D
or
JY (k) = f d°Z |2 -2)/2Z |51 [ (0,8,,, e %)e™ et 9% Lo % 5.5 o #oit 5]
_ . (6.36)
Jf(k)= L dz ICZ -2)/22 Ikzji"a[(aiq)cu) ei»d:;)eik-ég PLAE LU a‘q;.cueik-d>geik- q>;] .
Using the identity
jYee,=j%Zz)8/0z+j*(z*)a/8z*,
(6.37)

48, =j%(2)8 /0Z = jX(Z*)8 /02,

after some algebra, we can express (6.35) in the revealing form
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| =3

Ju""‘(k)=fDdZZl(Z—Z*)/ZZ [ {ik, [(%@2)=7%@*) /@ -2*)] e % :
+:[1%@*PB, @)z +@)F, 2*)/Z*] e'* % :},

Te ()= [ 4Z|(Z - 29)/22PiR[GH2) + S ZN/NZ = 29)): e o

D

(6.38)

+:[j%2*)P,(2)/Z~j42)P,(2%)/Z*]e* %},

with

— 9
P,(z)=z* 52—;@”1

=ip, + f} Vn 0, Z*" -G, Z*™"),
n=1

5 (6.39)
P,_‘ z)=z ﬁ‘bcu

=ip,+ "2 vn (C,,Z2"-D} Z7").

That the vector current J; “(k) has an infinite se-
quence of poles at k2=-1, =2, =3, ... is seen by an
expansion about the real axis
© dX < Rk, X)
- X a@?) -n ’

a?)==k2.
The residual vertex at the first vector-meson pole
k% =-1 yields

Jra@) =i [

-0

TV (k) =
n=1

(6.40)

©° dX

S, e n:,  (6.41)

where we have made use of (3.16)-(3.18) and
M, (X)=2p, + ’.Z=)li\/2n X "=cp, X" . (6.42)

Equation (6.41)is recognized as the emission vertex
for the first on-shell vector particle of the BH model.
As for the vector current J#*(), the poles are
located at #2=0, -1, =2, ... . The £2=0 pole clear-

ly results from the fact that the first term in the
integrand of (6.38) does not vanish at the boundary.
In fact the residual vertex at k2=0 is given as

lim [sz;f“(k)]=z‘kuf X rcwetro
220 e X

(6.43)
which is the dual analog of PCAC (partially con-
served axial-vector current) since the integral on
the right-hand side of (6.43) is just the emission
vertex of the massless BH meson. This has there-
fore all the earmarks of doing what a dual axial-
vector current should do, though it clearly does
not transform as a space-time axial vector. Nev-
ertheless, it is of great interest to probe the com-
bined structure of J“,"’(k) (6.29) and J;}"‘(k) (6.33)
using the suggestive commutation relations [ (6.27),
(6.28)] as a possible realization of Gell-Mann’s

—

current algebra. An analysis of the algebra of
these currents and their light-cone properties is
currently under investigation.

VII. DISCUSSION

Using two NS fields and the rubber-band field,
we have constructed a conformal-invariant spinor
extension of the VSM with unit intercept and a
Mbdbius -invariant currentlike model which provides
a eorrect continuation in k2 for the new amplitude.
This model stands as the first example of a non-
planar model with supergauges and may reduce to
a Yang-Mills theory of the graviton in a zero-
slope limit.*

Capitalizing on the full two-dimensional sym-
metry structure of a complex scalar field and the
conformal SG spinor fields, we have also con-
structed SU(1, 1)-invariant off-shell extensions of
a subclass of the conformal-invariant SG general-
ized dual models. For the particular case of the
BH simple dual quark model with unitary spin, we
have found two conformal-invariant conserved vector
currents. One of these is akin to an axial-vector
current as it leads to a dual equivalent of PCAC.

We have shown that the duality and factorization
of the new models are consequences of Mdbius in-
variance and have analyzed their general analytic
structure. However, we have not yet studied their
spectra of physical states in any detail. As spinor
generalizations of the Rebbi-Drummond model, the
new amplitudes share all its defects, including an
enlarged spectrum of states (resulting in an ex-
plosive degeneracy on the leading trajectory) and
the presence of ghosts.

We are faced with a novel situation in the cases
of the conformal-invariant scalar current (5.32)
and vector currents (6.35). Because the field is
complex, conformal invariance of the off-shell
amplitude does not preclude the presence of ghosts.
It would be beneficial to study the general gauge
problem associated with these currents.

Another area of concern is the problem of elim-
inating the Gaussian form factors inherent in our
models. If we were to interpret the conformal-
invariant vector -current vertex as the momentum
transform of a space-time current, then the ¢2 de-
pendence of the vertex would be highly nontrivial.
In fact, if the currents J;' *() and J;,‘"‘(k) were made
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to obey current-algebra commutation relations in
momentum space, the expedient modification of
the current vertices by a multiplicative F(g?) (an
entire function in ¢2) would be impossible. The
proper modification should be made in the two-
dimensional field(s) ¢, (x, y) of exp[ik - ® (x,y)] it-
self,?®

Finally, we note that when internal symmetries
are included, the nonplanar character of our cur-
rent models necessarily leads to amplitudes with
exotic resonances.3® Though the case against
exotic resonances remains essentially an experi-
mental one, it may be desirable to seek dual planar
models of currents, such as the one recently pro-
posed by Neveu and Scherk.3®

After the completion of this work, we learned of
a paper by Kikkawa and Sakita3” which provides the
functional counterpart of our work on the conserved
vector currents. Beside proving the generalized
Ward-Takahashi identities for these currents,
these authors also computed form factor, propa-
gator, and Compton amplitude, and checked the
Fubini-Dashen-Gell-Mann sum rule. We thank
Professor Y. Nambu for making the above paper
available to us.

With respect to our NS-like extension of the

VSM, we received a recent paper from Schwarz*®
proposing a model identical to ours in the case of
k%?=1. He conjectures that this pionic version of
the VSM is the scalar multi-Pomeranchukon ampli-
tude (in the critical dimension d =10) of the dual
pion model. We thank John Schwarz for discussing
this interpretation with us. Aldrovandi and Neveu
also treat the same on-shell model in their pa-
per.3°
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The known classical radiation spectrum of a high-energy charged particle in a homogen-
eous magnetic field is rederived. The method applies, and illuminates, an exact (to order
a) expression for the inverse propagation function of a spinless particle in a homogeneous

field. An erratum list for paper I is appended.

For a long time I have wanted to reexamine a
classic situation of classical electrodynamics, that
of high-energy charged particles radiating in a
homogeneous magnetic field, from the modern
quantum viewpoint that employs the machinery of
propagation (Green’s) functions. Since the electro-
magnetic and relativistic aspects of the problem
are quite transparent, the comparison should be
instructive in giving the more abstract quantum
procedure a concrete interpretation in a particular
instance. And, as an added bonus, the necessary
ability to treat motion in magnetic fields that goes
beyond the lowest orders in a perturbative expan-
sion should be helpful in answering questions about
very strong fields, to which recent astrophysical
speculations have directed attention. This paper
is devoted to describing one such procedure, and
applying it to rederive (for a spin-0 particle) the
known classical radiation result.! Another method
is indicated in a separate paper of Yildiz. A sub-

sequent joint paper will contain the analogous spin-
3 calculation, and a discussion of the anomalous
magnetic moment in strong fields.

The language and methodology of source theory?
will be used (which should not seriously impede
readers who are untutored in this art). The initial
action expression of spin-0 charged particles with
mass m,

f (@K p(x) = 3 pLUT? + m?)p(x)]

n=(1/id)a—eqA, (1)

is supplemented by the action contribution associ-
ated with the exchange of one virtual photon [cf.
Eq. (4-14.2) of PSF IIz] ,

-4 [ (@n(dx) () M (x, x)p(x) . (@)

Here, written in a symbolic notation, we have



