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We quantize a model with spontaneously broken symmetry in the asymmetrical gauge 9,A H

= (2
= (°/m)®, where A ,

is the vector meson with mass m and & is the gauge excitation field. We

show that k2 can be identified as the mass parameter of the & field, in addition to the numerical
parameter ¢ defined in the text. This implies that ¢ is not a Goldstone boson. A renormali-
zation gauge corresponds to any gauge with «? finite. One can formally go over to the unitarity
gauge by the limit k2—«. However, this limit should be taken with extreme care, so as not to
interfere with the limits of internal-loop integration. Several examples, including the anoma-
lous magnetic moment of an electron, are given to illustrate that (a) physical quantities are
gauge-invariant, (b) the gauge with ¢ =1 and «% = »n#? is particularly convenient for finite calcu-
lations, (c) ambiguities may arise if the k%= is taken haphazardly, and (d) renormalization
constants are gauge-dependent and in some cases can be defined only for certain values of 2.

INTRODUCTION

Interest in renormalizable-weak-interaction
theories has recently been rekindled. The further
impetus was provided by Weinberg'™ in a model
where there exists pointwise gauge symmetry,
which is subsequently spontaneously broken by the
vacuum. The conjecture was that this breaking
mechanism may be mild enough that the system
remembers its past renormalizability.

Such conjectures have been formally substanti-
ated by the extensive work of ’t Hooft® and Lee
and Zinn-Justin,® in particular. Low-order direct
verifications have been performed.””® It is fair
to conclude that all indications tend to point to-
wards a finite renormalizable theory.

One must now build models to encompass had-
rons such that they can meet all the experimental
constraints. This is not our concern in this pa-
per.

What we intend to investigate here has been part-
ly solved by the authors in Refs. 5 and 6. This
has to do with gauge freedom. Since this model
possesses pointwise gauge invariance, one has the
freedom to pick a convenient gauge, depending on
what problems one chooses to tackle. However,
at some point one must prove that the physical am-
plitudes obtained are identical up to normalization.

There are two popular gauges considered so far.
One is the renormalization gauge 9,A"=0,° where
A, is the vector meson(s) in the theory. In this
gauge, the free boson propagators behave like
1/¢* for large ¢°. Thus, simple power counting
can be carried out to show that the theory is re-
normalizable. There are unwelcome features ac-
companying this gauge. They all stem from the
fact that the gauge excitation (i.e., one of the sca-
lar bosons in the theory which eventually cancels

T

out the scalar ghost mode in the vector field) is
massless. One must show that this singularity
does not appear in the physical amplitudes. This
has been done.® Even so, in practical calculation,
this nonphysical infrared pole can still be a source
of complication, as any reader who has experience
in calculations in quantum electrodynamics (QED)
may bear witness to this criticism.

The other commonly used gauge is the unitarity
gauge. It is obtained if one makes a cylindrical
transformation'’! to make the gauge excitation dis-
appear completely. Therefore, there is no spuri-
ous pole ab initio. The disadvantage here is that
the “apparent” order of primitive divergence of
the theory is quartic. Even if the theory is renor-
malizable, due to profuse miraculous cancellation,
one should still worry if such singular behavior
may cause ambiguities due to different assign-
ments of momenta in a diagram.® One can track
down the origin of this problem. It has to do with
the fact that the quantization of the vector particle
here is not manifestly Lorentz-covariant, i.e.,
the spatial components and the temporal compo-
nents are treated differently.

Inasmuch as the transformation from rectangu-
lar coordinates to cylindrical coordinates is not a
linear one, the connection between the physical
amplitudes in those two gauges must be compli-
cated. In fact, they are rather remote.

There is a different choice of gauge which is,
in our opinion, a happy compromise between
these two extremes. It is the purpose of this pa-
per to show this.

One can understand why the gauge excitation
(denoted by the field & from now on) is massless.
This is in part due to the choice 3,A" =0. Now,
in a theory where we have complete symmetry be-
tween y and &, where x is the other component of
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the scalar field in a model defined below, this is
a reasonable choice. We will, therefore, call this
gauge the symmetrical gauge.

In a theory where the symmetry is eventually
broken, albeit spontaneously, there is less com-
pelling reason to make a symmetrical choice. In
fact, a better alternative as we will show, is the
asymmetrical gauge 8,A"=(x*/m)®,'? where m is
the mass of the vector particle A, and «* has the
dimension of (mass)?. It will be further shown that
k% is in fact the mass parameter of the gauge ex-
citation. As a corollary, we therefore state that
the gauge excitation has nothing whatsoever to do
with the Goldstone boson.

We will show that by taking the formal limit of
k®—o, one can reach the unitarity gauge. How-
ever, this limit must be taken with extreme care,
since it may interfere with the high-momentum
limits of internal-loop integrations. It is precise-
ly for this reason that the effective Hamiltonian
in the unitarity gauge has quartic divergent com-
pensating terms. Besides, there can exist ambig-
uous quadratic and lower-order divergent terms,
if unheeded limiting procedure is taken. The sit-
uation here is quite like that discussed by Lee and
Yang'® in their £-limiting procedure.

The emphasis of this paper is more on using the
gauge freedom to perform a calculation. Thus,
the formal problems of gauge transformation prop-
erties of the Heisenberg fields, the connection of
Green’s functions in different gauges, etc. are not
given here. We hope to return to these problems
in the future. Instead, we will give several ex-
amples to show that (a) physical quantities are
gauge-independent, (b) the calculations simplify
drastically at the very beginning if a proper gauge
is chosen, and (c) renormalization constants de-
pend on gauge.

The plan of this paper is as follows: In Sec. I
we introduce a simplified Abelian-gauge model,
which was used by Appelquist and Quinn.® We
briefly discuss the spontaneous-symmetry-break-
ing mechanism,'*!®* There is nothing new here;

its inclusion merely serves to introduce our nota-
tions.

In Sec.II we will quantize the system in the
asymmetrical gauge. This will be done immedi-
ately in the interaction picture. We will not fol-
low the functional integration technique'® which is
thus far quite popular in this area. Instead, we
will employ the Lagrange-multiplier method,
which is perhaps more familiar. In a certain
sense our work here is an extension of some con-
sideration we gave before to a related problem.'?

In Sec. IIT we construct the energy tensor of the
free fields and show that the scalar-gauge excita-
tion and the scalar ghost of A, do not appear.
Plane-wave expansions are also given.

In Sec. IV we use the commutation relation de-
rived in Sec. II to construct the free propagators.
These quantities are all manifestly Lorentz-co-
variant and therefore the perturbation expansion
is immediate. We will discuss somewhat various
choices of gauge parameters.

In Sec. V the formal transition to the unitarity
gauge is given and discussed by taking the limit
K% = oo,

In Sec. VI examples are provided to illustrate
the cancellation of gauge-dependent terms in some
simple physical processes: (a) ¥ +¥ —¥ +¥,

(b) x +¥ ~A,+¥, and (c) the second-order anoma-
lous magnetic moment of the “electron” ¥. These
also help to demonstrate that a clever choice of
gauge simplifies the calculation right at the start.
We then give several examples to illustrate that
renormalization constants are gauge-dependent.
These examples also indicate that such renormal-
ization constants, for whatever they are worth,
can be defined only for certain sets of gauge pa-
rameters. We also show the pitfall one may en-
counter in the limit x%~ o,

A short conclusion and discussion is given in
Sec. VII.

In the Appendix, we will discuss the compen-
sating term due to ghost loops.

I. AMODEL

The model we consider here is an Abelian-gauge model used by Appelquist and Quinn.? We do not con-
sider the non-Abelian extension at this stage, since nothing we want to do is gained or lost from its com-

plexity. The Lagrangian is’

£=41G,, GM=3G" 0,4, 0,A,)+B 18" ~F (0" —ieA")T - (8" +ieA")T*T, - 12T *F

—h@*®) - [y, (1/i)o, g v, AP 2L +ivs) W = fE[3(1 = i) B + 3(1 +iv,) B*] ¥

which is invariant under the transformation
A‘j -A,+9 A,
P -cith P ,

U — git(riys)A/2y,
’

(n>0), 1)

(2a)
(2b)
(2¢)
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where A is an arbitrary continuous space-time-dependent gauge parameter. Clearly, independent varia-
tions of G,,and &, and stationary action yield

Guu= auAv— auAu, (3a)
$,=(8,—ieA,)d, (3b)
respectively.

We now turn to briefly discuss the spontaneous-symmetry-breaking mechanism.'*®* Let us imagine that
¥ and A, are temporarily turned off in Eq. (1). Thus, the Hamiltonian of this complex-scalar-field system
is

H=8"3+"3+8,5*9,8 +p28*3 +h(P*3) (r>0). (4)
In the extremely long-wavelength and low-frequency limit, i.e.,
3,3~0 and 330,

denoted as &,.,, the state with the lowest energy is &,.,=0 if u?>0. On the other hand if y2<0, then the
extremum solutions are &*$,2_,=0 or

&3, ,=-s0%/h. (5)
If nature chooses the second solution, then we have a symmetry which is spontaneously broken. We can

readjust the energy scale, so that the lowest energy again is zero. This state is the vacuum. Sandwiching
Eq. (5) between vacuum states and using translational invariance, we can see that

(6),2:05(0'6,::0'0)#0, (6)
if we assume that |0) is the only state with vanishing energy.'® We choose as our convention that it is the
real (Hermitian) part in & which has nonvanishing vacuum expectation value (1/V2) v and write

$=¢1—§(u+x +i®). (7)

From this definition, we have implicitly imposed the requirements
(x)=(2)=0
and
v¥==u?/h. (8)

We now assume that the same situation persists with the presence of ¥ and A,. Then we reexpress the
Lagrangian of Eq. (1) as

£= ’cfree + £int ’ (9)
where

Liee=+5G ,CH = 3G 9,A,- 8, A,) = ImPA A" - &, 0% + 1 & &F

+m A¥B, & —x, X + 3 x X" = sulxx = ¥[y, (1/i)8" +m, ] ¥ (10)
and
Lint gAY (X8,@ —29,X) —g mA A Y = 38%°A, A% (X% +8%) — L(GR)V2x (x2 + ®7) - $h(X2 + B2
+8 Wy, 5(L+iy ) YA = (m,/m)g ¥ ¥y - (m,/m)g¥ v,¥d, (11)
where
m=gv, (123.)
w=v2h v, (12b)
m,=fv/V2. (12¢)

It is seen that the vacuon v/V2 = (®) gives masses to ¥ and A,. It may also appear from the free La-
grangian that  is massless. However, this need not be the case, as we will show in the next section.
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II. QUANTIZATION OF A4 y and @
The parts which describe x and ¥ in the free Lagrangian Eq. (10) are familiar ones. We need not con-
sider them any further. Let us look at those parts which describe A, and &:
L£'=+5G"G - 3G*0,A,- 8, A,) - s m*A A - 3,048 +38, " +mA¥ D, B . (13)
This is invariant under the transformation
GH=GH, (14a)
A¥ — AF 4 0¥, (14b)
d-d+mAr, (14¢)
b, =3, +ma . (14d)

Note that the last term in Eq. (13) is a derivative bilinear coupling between A, and &. Because of it, we
cannot quantize it in the usual fashion, otherwise the canonical relations will be inconsistent with the equa-
tions of motion. This has been pointed out in our previous work.!? The reason is that in the canonical
scheme of quantization, —8°% +mA° is at the same time both the momentum conjugate to  and a dependent
variable, expressible in terms of the momentum-conjugate variables of A, (i.e., G,,). It fails to play these
two roles simultaneously. Thus, the proper way to quantize Eq. (13) is to introduce a Lagrange multiplier
G. We modify Eq. (13) to read

£o=-2G"(3,4,- 8, A,)+iG" G~ s m*A A" — 34 8,8 + 384D, +mA, 048 - G[9,A* - (k¥/m)®]+3£7'G?,

(15)
where, relying on our experience in electrodynam- lations at equal time:
ics, we demand that G be an operator which will 1 , S
help to generate the gauge transformations given {[Ao(x)’ GxN]=0x-x", (212)
by Eqs. (14a)-(14d). It follows that G must anni- 1 , -
hilate all right physical states,'® since they are -;[A,,(x), 8,G(x")]=-8,0(x - X, (21b)
gauge-invariant. That is, 1 .- .
—[®(x), 8,G(x")]==mb(x - X"), (21¢)
G|¥) =aG|¥) =0, (18) 11
Now, under an infinitesimal gauge transforma- i—[tbo(x ), G(x")]=mb (X - X'). (21d)
tion 52 Since the transformation is Abelian, we must
G-G am have
and we have (Gor Gor,1=0
Lo~ Lo = G(F - B or
Al ' ’ = a ’
By the action principle, the generator which ef- [6(0), G(x]=[G (), 3G ()] (22)
fects the transformation (14a)-(14d) is =[9,G(x), 3,G(x")]=0.
Fi 4 : _
G- f P (G20N - 610,G) 18) ti;rrllaslly, the usual equal-time commutation rela

and the stationary requirement gives

(& -« il[@(x), 8,2 (x")]=6(% - %)
-k*)G=0. 19)

The Heisenberg equations and
_1_ Ok N - > o/
%[Ay, Gal=0,061, 7 [G*(x), A;(x")]=6%6(x -~ X'). (23)
1 (20) are true. Note that
g‘[‘i’:ba)\]"‘mb)\: [A°,G%]=[A°, A%]
etc. =[A% @]

give the following nonvanishing commutation re- =[A° #°]=0 (24)
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which means that A° is an independent dynamical 8A,: -8,G"—m?A* +md*d + ¥ G=0, (25b)
. ) ith
variable. We have elevatked it ?o equal staFus wi 68, ®,=0,8, (25¢)
the spatial components A®. This, as we will see, H
makes the propagators for A, manifestly Lorentz- 5d a”cb“ - ma“A“ +(k®/m)G =0, (25d)
covariant.
. 6G : G=¢E[9,A* - $]. 25e
We now obtain the Euler’s equations by indepen- _G ] .‘E[ H (¢/m)e] ) (25e)
dent variations of £, in Eq. (15) with respect to It is not difficult to show that the equations of
motion are now consistent with the commutation
5GHY: G‘_[y: BpAy- ay Au ’ (258.) relations.

1. ENERGY-MOMENTUM TENSOR DENSITIES AND PLANE-WAVE EXPANSION OF 4, and ¢

By standard procedure one can deduce the energy-momentum tensor densities from the Lagrangian of
Eq. (15). They are

0=T7T%_Al9,G - A%5,G% + m?A® = m 8°®) - (k¥/m)Gd ~ 5£71G? (26a)
and
% = T _ A°0%G — A¥(0,G + m®A, — m 8°B), (26b)
where
T%=3(G* VP + 3(G%) + 1 m?(A% — &% /m)? + s m*(A° - °/m)? (27a)
and
T = GO'G*, + (8° - mA®)(8*® — mAF). (270)
When acting on physical states, we have
0% Ty = 7% ¥) (28a)
and
O W) = T ¥) . (28b)

©°% are the extended energy-momentum tensor densities, derivable directly from the Lagrangian, where-
as T% are true energy-momentum tensor densities as measured by the physical states. 7° are gauge-
invariant.

We now want to write down plane-wave expansions for A, and ®. Since creation and annihilation opera-
tors have meaning only when acting on states, in the remaining of this section all equations are to be un-
derstood with | ¥) standing to the right.!* Thus, Eq. (21e) becomes

8, A" =(k?/m)® . (29)
Together with Eqs. (25¢) and (25d), we have
P =P . (30)

This suggests that k is the “mass” of the gauge excitation. We see that it has no connection with the bo-
son in the Goldstone mechanism at all.

Similarly, Eq. (29) and Eqgs. (25a) and (25b) lead to

FAY —mPA* +

¥a,AY=0. (31)
These last three equations define the plane-wave solutions uniquely. They are

Z 1 \2 toe e iex Cienn0d
A 1(2n> (2q°) [(“ée T a e N +(aret T alTei ’fm]
Lt
1 3/2< ; )1/2 Selatx st,-ia.x .§.
+ (2ﬂ> 247 (@l "+ a2e )

0. Z[(}_)sm( 1 )1/2(a’e“ altente x)l | 4 . (—1_ 3/2( )”2(as'eia’--x+as'g'iv"")q—lo] (32b)
— Py 2q0 (4 2 2 10 03 q m ’
aQ

’ (323)
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and
1 \32/( 1 1/2 » v i
a
where

q°=(ﬁz+m2)”2, (I'°=(62+K2)”2, and qm =(q/o’ a)

=3

(32¢)

€! (¢=1,2) are the transverse polarization vectors, and together with the unit vector 9=4/|q| they form

a right-handed orthonormal triad.

It is easy to verify that the gauge-invariant combinations A‘, - ayé/m and G do not contain the scalar

st
o

modes a;. and a

. It follows from Eqs. (27a) and (27b) that we need to concern ourselves with the trans-

verse and the (3-dimensional) longitudinal modes only. The Fock space so constructed is identical to the

usual one for a neutral massive vector meson. The gauge excitation never appears in the asymptotic

states.

IV. PROPAGATORS

We derive in the following the propagators which result from Eqs. (25a)-(25e).

We define
Gufx =) =((A,(WA,)).),
G, (=)= (24, B)).) ,
and
Glx-y)=((2(x)2).) .
From Eqgs. (252)-(25c) we have the equation
PA* —mPAF — (1~ £)0"8, A%+ m[1 - £(k®/m?)]3*® =0,
Likewise Eqs. (25¢)-(25e) give
[ = £ /m) ] + (1/m)(E K = )3, AF =0.

Now, it is not difficult to use the commutation relations of Egs. (21)-(23) to obtain

BOZG“,,(x-y)= q aozAu (DAL, + (i/§)guog,,06(x-y) _i(guu_gpogvo)é(x_ y)

and

8,0%G \ fx = ¥) = ((3,8,AMX)A()),) = (i/)g,02,00(x =)
which will lead to the equation

(=P +m*)Gfx - y)==(1 - £)8, 397G, (x = y) +m[1 - E(k*/m®)]0,G (x - y) —ig,,b(x - y).

Similarly, since & and A, are independent, we have
3G fx =)= ((8,28(x)A (), ) ,
which yields
[-8+ E(*/mP) G fx = y) = (1/m)(Ex® = m?)37G, fx — y).
We can solve the coupled Egs. (35) and (36), which give us
8,8, (mM®-#Y \ 1

Guulx =) =~ (g“"— m’ (—62+;<2—i€)2/—a"’+m2—ieé(x_y) _i(

and

PR AP S N S
G;.l(x y) Em(EK m)(_az+Kz_i€)28u5(X—y).
In like fashion, we use

3G (x = )= (322 (x)®(¥)), ) = i6*(x = v)

£-1

1

£

)

(= + 4% —ie) aﬂaua(x"y)

(33a)
(33b)

(33¢)

(34a)

(34b)

(35)

(36)

37

(38)
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to arrive at

(=8 + £(k3/m?) )G (x = v) = (1 /m)(Ex® = m*) (3, A ()@ (), ) =8 (x =)

==(1/m) (e = m*)H G (x = y) = i6*(x = ) (39)
or
= +m?/t
G(x—y)=—zm6(x—y). (40)

( Note added in proof. The propagators of Eqs. (37), (38), and (40) were also considered by Y. Fujii, Phys.
Rev. 138, B423 1965). See also the references therein.)
For completeness, we also write down the propagators tor x and ¥. They are

(KON, = =i =gy 86 =) (a1)
and
(EEEGI.) =i TRl 0= ). (42)

We notice that all these propagators are manifestly Lorentz-covariant.?® The perturbation series can be
generated by taking

f dx 3, = f dx(-£. ) +0H, (43a)
where £, is given by Eq. (11) and
. K g )
5H—1Trln(1+_82+K2mX , (43b)

the origin of which will be explained in the Appendix. (I would like to thank Professor H. Quinn for point-
ing out to me the necessity of this piece when loops with external x’s are present.) We hold m, pn, and
m, fixed and expand in powers of e and V.

The high-momentum behavior of all boson propagators Eqgs. (37), (38), (40), and (41) goes like 1/-#&,
and so a power counting argument shows that the theory is renormalizable.?!

If we set k¥’ =0, we obtain the results by other authors, where functional-integration techniques were
used. However, it is our opinion that to avoid infrared problem in some of the diagrams, although they
must cancel out at the end, other values are preferred. As we shall show by examples, there are two
gauges which are particularly attractive.

The first gauge is to set £=1 and «*=m?2.5 Then (£ =1, m?=x?)

. 1
Gulx=y)=—igy — ;. 0¥ =), (44a)
Gulx-)=0, (44b)
and
. 1
G(X—y)=—lm 5(x—-y). (44c)

In this gauge, all the poles are simple. At the same time, we do not have &, A, transition [Eq. (44b)],
which simplifies the number of diagrams drastically.

The other gauge is to take the limit «* —~ which we discuss in the next section.

V. TRANSITION TO THE UNITARITY GAUGE

In the limit x* -~, we have

8,8, 1
Guu(x‘y)"_i<gyv- ,::12 >—82+m2—ie G(X—y), (45a)

Gu(x-y)-0, (45b)
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and
G(x-y)-0. (45¢)
The interaction Lagrangian of Eq. (11) becomes
Lo~ —gmAAYY = 57 A AP — LGR)2 X = shx* + gy, 5 (1 +iyWA* = (m,/m)gT¥y, (46)
6H ~145%(0) In[1 + (g/m)x]. 47

The propagator (45a) and the interaction above are what one has in the unitarity gauge. However, we
must feel somewhat uneasy about the way this formal limit is taken. There are many internal loops in a
general diagram. If the integration and the limit are finite, then the limiting procedure is justified. How-
ever, in other cases, there will be ambiguities.

For large -9, the vector propagator of Eq. (45a) behaves like a constant. This gives rise to quartic
leading divergences in some amplitudes, which are canceled out by the quartic divergence of Eq. (47).

On the other hand, for any finite value of x¥* we have the high-momentum behavior

Gufx=y)~1/-8 (48)

instead of constant as given by Eq. (45a). In order to avoid the difficulty which may result because of dif-
ferent assignments of momenta in a diagram when high-degree divergences occur, it seems to us that the
proper way to do the unitarity gauge is to first find a convenient value for £, regularize the diagrams suf-
ficiently, and then take x* —~. This is similar to the spirit of Lee and Yang*® in their formulation of a
complex vector field coupled to an electromagnetic field.??

V1. EXAMPLES

We will present some simple examples here to show a proper choice of gauge at the start saves a lot
of unnecessary cancellation. We see also that all physical quantities do not depend on £ and «2, the gauge
parameters. In other words, they are gauge-invariant. Finally, we calculate some renormalization con-
stants and show that they are gauge-dependent and at the same time illustrate that the formal limit of
k%~ must be taken with great care.

Before we carry on any calculation, we summarize our notations for diagrams in Fig. 1.
A V+V¥ > ¥+ V¥
The lowest-order diagrams are shown in Fig. 2. Let us define the invariant transition amplitude by
S=1+4(2m)*6( p, + p, — p, — p5INM , (49)
where N is the usual normalization factor, and

M@ =gu(pv* (L +iy)u(p)a( py)y” 5(1+iyvshu( p,)

kyk, (m?-x?)? 1 £E-1 1
—_v
X{[guu'*' mz (k2+K2)2 ] k2+m2 - E (k2+K2)2 kuku}, (503.)
———————— ® X P2
A A
\M)f\/\fl\. ------- -
A k=p;-P
P P; 1" pz
(a) (0) (c)
ZZIITTIT ) @ - Ay TRANSITION
X NN + (Se>u)

FIG. 2. Lowest-order diagrams for the process ¥ +¥
FIG. 1. Notations for lines. — ¥+,
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2 2
M(b)=g2<) > u(p1)75u( 1W(P;)75u(pz)%:_nx—z/)?€, (50b)
1 . —( . 1 2
M€ =-ig? "—;‘) (p{)7u§(1+zys)u(P,)u(Pz)Ysu(Pz)E—r; (Ex* - )( 2)2 k", (50c)
219 i Y oy R0, S o) g (60 =) s B (504)
w2 2() D p)H P ) (50e)

Using the identities, which are due to Dirac’s equations
#(p))y + kz(1+dyshu( p,) =mga( py)ivsu( py)
and (51)
#( pa)y * kz(L+dyshu( py) = =mga( p)ivsu(py) 5

we have, after some algebra,

M(d)+M(b)+M(c)+M(d)+M(e)
=2 )y, AL v DB 31+ i ) s
= 4 —( ./ 1
+g2( ) pl)Ysu(Pl)u(pz)Ysu(pz) 2+ mz +g2( ) u(P;)“(P;W(Pz)u(Pz)m . (52)

Clearly, had we used the gauge k*=m? and £ =1,° Eqs. (44a)-(44c), we would have obtained this result right
away. Note that (52) is gauge-independent.

B. x+¥->4,+V¥
The lowest-order diagrams are depicted in Fig. 3. Again, using Eq. (51) and the transversality condition
pirei=

where €] is the polarization vector of A, in the final state, we have

M@ + M@+ M+ MP = -282mu(pl)y - €, (1+zy5)u(p2) — +2:g2( )Pl 6'—2—'5*—'”(22):;(1)) (53)

k= p1—p; a i ————
Py P2 P-279 P*z°4
a) b

(a) (b) (c) ( (o)

>| ><I (c) (d)
d e () i
(d) (e) (e)
FIG. 3. Lowest-order diagrams for the process yx +¥ FIG. 4. Second-order nonelectromagnetic contribution

—A, +T to the electron anomalous magnetic moment.
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Again, this result can be directly written down if we use the gauge £=1 and k*=m?.

C. Second - Order Anomalous Magnetic Moment of ¥

Let us assume that only the ¥ field carries electric charge. Upon the introduction of an electromagnetic
field [A ,(¥)], an extra term appears in the interaction Lagrangian of Eq. (11):

eby YA(y)" . (64

The second-order nonelectromagnetic corrections are shown in Fig. 4. The corresponding proper vertex
functions can be written down

1 1
Moty (Pam@) Pty (pr-q)  *

wpn P utp) =4 f oo [

1
+wme-y-(p2—q)y“me—r(pl-q)“]
A K 2 K
Xu(Pl)i[quZ (mz__,(z)] 1 i-1 ¢'q } » o)

m® (F+k® J@¢+m® & (@ +K)

Now, we write,

u( o)A u( py) = @(p,)ay , + bio, B W p,), (56)
then it can be shown easily that to order linear in &,2°
16 bm k> = Tr(m, — v py)A ,(mg = v * p)oi= 3R /m,) Tr(m, = v+ p)A (mo =y - p )y *. (57)

After some tedious trace calculation, one finds that Figs. (4a)-(4d) give

166@ i 2" =4

‘ng d'q 64mS kY +96m, p- gk’ —16m k- qq” + 16 m g*k” +48[(p * 9)*/m, |k’

(2m)% [m2+(p—qPFm®+q)
mg\ 2 da‘q 8m, gk’ +24[(p- q)*/m k" —8mq - kq" Y
- <ﬁ> ng (2m)* [m2+(p = qFF(m®+ ¢°) +RY, (58)

where R” is a gauge-dependent term:

NU
__E - 2
a0 )f @D% [(p = aF +m (@ + M) @ + 2)’ (59)
with
NY=-32m,(p-q)’k’ +16m, p - qq°k’ +32m3q- kq" . (60)

The first term in Eq. (58) is due to the g, part of the vector-meson propagator in Eq. (55). The second
term together with R” is due to the rest of Figs. 4(a)-4(d). In fact, the second term is the same object as
we would obtain from Fig. 4(b) alone if we set £ =1 and «*=m?.

We proceed to show that R” actually gives a vanishing contribution. This is done by writing

K2 =m?=(q*+ k%) - (¢* + m?),

to split Eq. (59) into two terms:

RY=3g%m,/m)*(R}>-R}>), (61)

where

v diq NV

2= J @D% [(p- P +m (@ +60) (62)
and R}, is obtained from RY» by the substitution x2- m2.

We introduce Feynman’s parameters and make a shift of origin in ¢ integration which results in
d'q¢ (1-3a)q?-m20,%2-a,)
v v 3
x2=32k"m, f o daydagd(l - a, - az)f (2m)% (261’21+ a12m32e+ t;zxz)s L (@'=q-ap). (63)

This integral is logarithmically divergent. We regularize it by a cutoff (A) after the Euclidean rotation.
Then
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R =%ﬂz 32 k”m,_,3f a,da,da,d(l - a, - a,)
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L2 200
x[(l —24,)InA - (1= Ja,) In(aim? + agd) s 20 @) s %al)] . (84

Now, we write the part with logarithmic integrand as

1
—f a,da,da,d(1 - o, - a,)(1 - 3a,) In(a,’m 2+ a,k?) = —j [Aza,? - 3a,
]

a,’m2?+ a,K®

3)]In[a,®m 2+ (1 — a,)k?]

1 1
f da, z0,%(1 - 0))2a,m,? - k?) (65)
0

a’mp2+(1-a)k?

in which the last term is obtained by an integration by parts.

All in all, R}, can be cast into
1
V,= 32k”m3fda T
K 16,”2 e A 1[ 2%

which is independent of «2.

a,(1-3a,)+a,(1-3a,)InA%], (66)

Similarly, RY, is independent of m? and consequently R” =0.

Elementary integration yields the gyromagnetic ratio 3(g, — 2) due to Figs. 4(a)-4(e) as

g == (41r>{f do la,® +((11 aa3§2m/c:ri))2+ 7'1‘)2[(10: +(1- (Z:)(m/m )2
() [ mam sty (®7)

where the first term is due to the vector meson in the gauge £ =1 and k®*=m?. The second term is due to

$ in the same gauge and the third term is due to y.

D. x to Vacuum Transition

The last three examples demonstrated that the
gauge £ =1 and «?=m? simplified the calculations
considerably. Here we want to use the y to vacuum
transition to illustrate the transition to the unitar-
ity gauge by taking «%- and point out the possible
ambiguity.

The part of the Hamiltonian relevant to us now
is

fd4x3(j=fd“x[—gA“(xauQ—Qaux)+g‘mA“A“x]

K g
-3%+Kk2m

+iTr =y (68)

and the diagrams are shown in Fig. 5. The ampli-
tudes are, respectively,

a) _ _ 2 1
Al tm f 21r)“(€K )(q2+x2)2 7,

(a) (b)

FIG. 5. x to vacuum transition.

dq q° )(m2 -k3)? 1
®) - _ Lq 4 \\= =) =
A gmf (2n)“[(4+ m?) (@ +k%)? ¢ +m?®
£-1 1 ]
£ (@+e) <]
and
sn_ &
A f @n)? q2+x : (69)
Some simple algebra allows us to write
3
@, A®), ASH_ _
A@LA® L A5H - gmf 21r)4q2+m . (70)

The corresponding expressions in the unitarity
gauge are

fd“x.}C,,:fd“xgmA“Aux +i6%0)gx/m , (1)
A®=0,

A= _& dlqg 3
‘]-(211)‘1 gmf 2mt F+m?’ (72)
AéH g d4g

m) (2m)?*°

and

A@ L A® L ASH - f 3
+AV)+ A gm @n)t q2+m (73)
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Although the end results are the same in the two
calculations, we notice that the degrees of diver-
gence in Eq. (69) and Eq. (72) are different. In
fact, Eq. (69) is quadratically divergent, which is
less difficult to regularize than Eq. (72).

E. Radiative Correction to x = ¢' + ¢~
Due to x®2 Coupling

As the last example, we want to illustrate that
the vertex correction of y - e* + ¢~ makes sense
only if k2>3u2. This is easily understood, since if
©w?>4x? then y can decay into two &’s as a real
process. The unfortunate circumstance here is
that the @’s are not physical particles, and there-
fore we really cannot claim that we understand
this unphysical singularity.

In the course of this calculation, we will also
prove that as a consistency requirement the y®2
vertex cannot give rise to an induced pseudoscalar
coupling of x to ¥, up to the order we consider.

The diagrams we have in mind are drawn in Fig. FIG. 6. Radiative corrections to y¥¥.
6. For example, the proper vertex function for
Fig. 6(a) is

7 —auCnyrg( ) [ L 1 (q+ 3k)* +nP/& (g = k) + m?/ ¢
B(p)Au(p,) =2u(zh)2g (;z‘) f @n)i o(p1)vs me+,y,(p+q)75u(1’2) [(q+%k)2+K2]2 [(q—%k)2+x2]2 .

(74)
Clearly, this quantity cannot give rise to a pseudoscalar quantity. Now in a gauge which satisfies &k*=m?,
we do not have Figs. 6(b)-6(d). Consistency thereupon demands that Figs. 6(b)-6(d) should not give an in-
duced pseudoscalar part in any gauge since it is a physical quantity. Indeed, if one does some algebra and

introduces Feynman parameters, one sees that they do not. The scalar vertex correction can now be cal-
culated, and we find that

N
B(P A scatar #(P2) ~ f da,da,dayd(l -~ o, —a, - aa)#"z._a ’
1,2,3
where
D= alzmez "'[(az - as)z +a,(l - aL)]%U‘Z +(a, +as)("2 - ‘_:.“2) (75)

and the N’s are explicitly gauge-dependent functions. One can absorb the over-all effect by a vertex re-
normalization.

The points we want to make are that (a) examining Eq. (75), we see that the integral is well defined only
if k> 4u?; (b) the renormalization constants are gauge-dependent, which is well known in QED.

T

CONCLUSION ticularly satisfying.
Clearly, nothing we discuss here cannot be ex-

We have quantized a theory with continuous gauge tended to a theory with non-Abelian symmetry 2
symmetry, which is subsequently broken by the We intend to return to this extension and the other
ground state, by the Lagrange-multiplier method. formal aspects, such as connection of Green’s
We have shown that the gauge excitation field & can functions in different gauges, etc., in the future.
have mass k, and therefore is not a Goldstone The reader may now, if not earlier, wonder
scalar. By direct examples, the gauge with pa- what the point is to give a canonical formulation of
rameters £=1 and x*=m? is shown to be particu- gauge theory since we have already the elegant
larly useful for finite calculation. The connection functional-integration approach. The canonical
of a renormalizable gauge (x? finite) to the unitar- quantization is a differential characterization of

ity gauge (k*—=) has been established and is par- the system. Because of the fundamental commu-
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tation relations, it allows us to study the local space to include the gauge parameter A. Let us
algebraic structure. For example, the current denote these states by the symbol | ¥),.
algebra can be constructed and subsequent sum The extended system, which is described by the
rules can be derived. After all, this has been a Lagrangian of Eqs. (9)—(11), is invariant under the
very fruitful approach in the past when electro- infinitesimal transformation
magnetic and weak interaction properties of had-
rons are investigated. A¥ — AF +8MBA,
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The physical states are projected out by restrict-

APPENDIX ing the gauge parameter A to

We discuss the origin of the extra piece 6H in

hysical
the canonical formulation. [a”Au(x) - (Kz/m)¢(x)]|\p>‘}\“' =0. (42)
In the Lagrange-multiplier method as presented, . s s
what we have done is to enlarge the right (or left) Thus, symbolically the solution is
hysical
1) = T1 82,44 (x) = (£2/m$(NIE ) pco
1
=TI 8(A(x)) 7 1) A co
allx M (2
dA(x) [auA (x) (K /m)¢(x)]
1
B me AL =8% + 1% + k(g /m)x| 1) 1s0. (43)

Now we turn to the interaction description of Eq. (15). The group of the gauge parameter is restricted
differently, since now the invariance is

Al = AL, +045A
and (A4)
Pine = Pine +MOA .
The realizable states here are projected out by the condition

[a#Ai‘:“(x) - (Kz/m)(i)m(x)“\lf),'\m =V, (A5)

As before, we write

)5 = TT oA 577 1 ¥) e

all x \"'

=32+ K2+ k¥ (g/m i
- H -y (5/ )X lw>xhynml
all x K

K ;
=det (1 + 57 e % X) l‘P)‘X‘yﬂm

=exp| Trin{1+ LS4 | ) s
—82+K2 m X A . (AG)

The S-matrix element of the process a - b is given by

. K2 g \physic-l
5exp[Trln<1+ Y ;Z-X)] Ib/A , (A7)

where S is of course generated by the Hamiltonian (-£,,). The effective Hamiltonian is then

(alslb>‘X'=<a
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f ATy = f A% (~8,,) +0H , (A8)
with
. K g
= _— 9
oH zTrln<1+_az+K2 mx). (A9)

We see that the compensating term 6H comes about because in going from the Heisenberg representation
to the interaction representation, we have changed the group of gauge parameter admitted by the physical

states.
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