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The formalism "partial differential equations with respect to coupling constants" is devel-
oped involving the total Lagrangian density. By means of this formalism the covariant per-
turbation theory is developed using the example of chiral Lagrangian for massless pions.
Because our formalism involves the total Lagrangian density, the covariant perturbation
theory easily follows by integrating the partial differential equation with respect to coupling
constant for the S matrix. Thus our approach is more direct and simpler than the other
approaches involving the interaction Hamiltonian density and which either use the functional
techniques or the generating functionals of the time-ordered Green's functions.

I. INTRODUCTION

There has been some confusion recently with the
formulation of the covariant perturbation theory for
Lagrangians which depend quadratically on deriva-
tives of field operators. Namely, it has been
known for quite some time that if g;„t contains one
derivative of a field operator, ' the covariant per-
turbation theory is achieved by simply replacing in
the Dyson expression for the S matrix, 3C;„t by
-J,'„"t and the T product by its invariant modifica-
tion, the T* product. [The T~ product will be de-
fined later in the text; its main feature is that in
the contractions of operators all the noncovariant
(normal-dependent) parts are omitted 2] When this
rule is extended also to g;„t, which depends quad-
ratically on derivative of field operators, some
anomalies were encountered. The particular case
where this happened was the chiral-invariant La-
grangian for zero-mass pions. ' The anomalies
soon disappeared after the correct Feynman rules
were implemented. These rules were established
essentially in two different ways: one which uses
the functional-derivative technique starting direct-
ly from the Dyson expression for the $ matrix, 4

and the other which employs the generating func-
tional of the time-ordered Green's functions. ' Let
us also point out that similar Feynman rules were
developed in the context of Yang-Mills theories. '

We wish to show in the example of a chiral-in-
variant Lagrangian for zero-mass pions, how one
can develop a covariant perturbation theory by
means of the formalism of "partial differential
equations with respect to coupling constants
(PDECC)".' Although we shall develop a covariant
perturbation theory in this particular example, the
method itself will be general enough as to be easily
generalized to any other example.

Since our formalism PDECC involves the total
Lagrangian density, our approach to the derivation

of a covariant perturbation theory is more direct
and simpler when compared to the other approach-
es which involve the interaction Hamiltonian densi-
ty and use either the functional techniques4 or the
generating functionals of the time-ordered Green's
functions. " The method itself may also be pos-
sible to develop for a case in which one has to
reckon with two or more independent interactions
(described with two or more independent coupling
constants). An example of this is the system of
particles interacting strongly and electromagneti-
cally. Thus we may even be able to approach the
question of seagull terms' from a new angle.

Section II is devoted to some preliminary re-
marks concerning the formalism of PDECC in
which the total Hamiltonian density operator ap-
pears. The observable masses of interacting par-
ticles are to be considered as input parameters.

In Sec. III the total Lagrangian density is intro-
duced into the formalism of PDECC. This will
prove to be important for the formulation of the co-
variant perturbation theory for the case of chiral
dynamics involving massless pions.

A simple "classical" model of derivative coupling
between neutral scalar mesons with fermions' is
considered in Sec. IV for the demonstration of the
formalism developed in Secs. II and III. This mod-
el is historically the first one for which the co-
variant perturbation rules were derived. However,
these rules generally are not true for other mod-
els. Besides deriving "classically" the covariant
perturbation theory for this model by means of our
formalism, we also introduce the T„product in
Sec. IV. The T„product is numerically equal to
the ordinary T product; however, the rules that go
with them are different.

In Sec. V, by means of our formalism, the co-
variant perturbation theory is developed for the
case of chiral-invariant Lagrangian for massless
pions. In our approach one starts with the partial
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differential equation with respect to coupling con-
stant for the S matrix which involves the total La-
grangian density. Since, in general, the Lagran-
gian densities are simpler than the Hamiltonian
densities, our approach is not only simple but also
rather direct. With such a covariant perturbation
theory, Adler theorems (vanishing of amplitudes in

the soft-pion limit), masslessness of the pion, and
the equivalence of all pion fields are maintained
beyond the tree approximation. "

Finally, in Sec. VI we summarize the results and
discuss the unitarity of the derived expression for
the 9 matrix.

II. PRELIMINARIES

For the sake of completeness, we shall. briefly
outline in this section the formalism of PDECC in
which the total Hamiltonian density operator ap-
pears. ' At least in principle we can assume that
the system of particles interact through many in-
dependent interactions. These independent inter-
actions we can characterize with the set of cou-
pling constants g, (i=1, 2, . . .}, which we can vary
independently between zero and their physical val-
ues.

Let the system nf interacting particles be de-
scribed by a set of independent Heisenberg field
operators (j)(x) and their canonical conjugates x(x).
For the corresponding "in" field operators 4) (x)
and their canonical conjugates w;„(x) we assume the
following macrocausality relations to hold:

(x) =0,

actions characterized with coupling constants
g; (i =1, 2, . . .), its mass is allowed to be consid-
ered as an input parameter. '

Next, we wish to introduce the "prime" partial
derivatives 8'/Bg; which by definition have the
property

af
y(x) =0,

Bgi

a'
w(x) =0.

88's

(2)

S = T exp id-'x X;„,(x) (4)

and that (j)(x}and v(x) are connected to (j). (x) and
x (x) by the relations

Otherwise, 8'/Bg, acts as the ordinary derivatives
8/Bg, on the coupling constants' dependent coef-
ficients that may multiply p's, n's, etc., as in this
example:

8 4 9

,—Is ( '(*))= —, r) ( '(*)= ( '(*) .

The total Hamiltonian density X(x} can be written
as X(x) = X~(x) + X;„,(x), where X~(x) is the free
part of the Hamiltonian density which we assume
contains the observable masses. Then according
to (1b) and (2) we have

Q I

Xi(x) =0. (3)

In view of the fact that the Dyson expression for the
S matrix is

w (x)=0.a (la) y(x) =S'3'(y;.(x)s),

s(x}= StT(x;„(x)s),

As a consequence of (1a) we have for the observa-
ble mass m associated with some "in" field opera-
tor (j);„(x) that

8
m=O. (lb)

Therefore, in our formalism the observable mass-
es are to be considered as input parameters. This
still allows us to treat a great variety of cases,
examples being quantum electrodynamics and the
theories which employ effective Lagrangians. ' Of
course, we can also have a composite particle in
our formalism as long as, with respect to inter-

we get, by the help of (la} and (5), the following
differential equations for the 8-matrix:

1 a ~, a'
S = -S d'x X(x) . (6)

~gs " ~gt

Let us point out now that we may even decompose
X(x) = Xf(x) + 3C', (x) where 3C&(x) contains the bare
masses m 's. However, now (8'/Bg;)3C~e0, since
in view of relation m= mo+4m, we have (8/Bg, )mo
= -(8/Bg,.)amv0, &m being the mass shift. In
other words, once having formulated the theory in
terms of the total Hamiltonian density, we have the
most general formulation. Now using (6) we get
from (5)

g/ al
((*)= d'v -»(*), ~(v) ~, )(())) ((*),

i 8 I al
(*)= f &'v -& (*)

~
~(v) +

~ &())) (*)
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(8)

Assuming that in general

8 8

8 8

after taking the time derivative of (8}and comparing with (9}, we get

Now let the operator F(x) be a functional of p(x)'s, x(x)'s, and their space derivatives. Also let F(x) de-

pend explicitly on the coupling constants g, . Then from (7) we have at once"

1 8 t 4
81 8 I 1 8'

F(x) = d'y -T E(x) K(y) + K(y} F(x} + —. E(x) .i 8gq

Equation (8) holds for any E(x); thus it should also hold for E(x):

1 8 ~
4

~ 8' 81 1
F(x) =

Il d4y -T F(x) K(y) + K(y) F(x) + —. F(x).
~ 8g& 8g] 8A 8gi

8 I

F(x) = -g' d'y 6(x' —y') E(x), K(y)i 8g; '8x" "g '8g&

i.e., 8'/Bg, do not generally commute with 8/Bx'. Let us point out that (10) is fully consistent with the
Heisenberg equations of motion.

(10)

III. FORMULATION OF THE THEORY IN TERMS

OF THE TOTAL LAGRANGIAN DENSITY

In order to proceed any further we have to intro-
duce yet another partial derivative with respect to
coupling constants g„a "star" partial derivative
8*/Bg, with the property

y(x}=0,
gc

8' 8* 8+ 8'ft)F= F+
8ga g

8fIt) 8gi

Since Bg/By = w, from (13) we get at once

(14)

where, in the sum, z is canonically conjugate to fII}.

We can evaluate (8'/Bg, )g easily if we note that for
c-number fields we have generally for any E

8+ 8

8gg 8+
=0

K(x) = — g(x) . (15}

x(x}x0.
88'

(12)

The "star" partial derivative otherwise acts as the
ordinary derivative on the coupling constants' de-
pendent coefficients that may multiply p(x), B„p(x),
etc. As we know, any quantity E(x) can be ex-
pressed in terms of p's, 8„(t)'s, and m's. However,
since in general we assume that the Lagrangian
density depends on first-order derivatives of field
operators, we see that the m's, and consequently
any E(x), can be expressed in terms of P's, B,P's,
and p's. Therefore, when some m is expressed in
terms of (II)'s, 8„$'s, and p's, an explicit depen-
dence on coupling constants g, (i = 1, 2, . . . ) may al-
so develop. So generally we shall have

We accept, of course, relation (15) also for the
case of quantized field theory, and it can be veri-
fied on specific models. Relation (15) resembles
greatly the case of no derivative coupling when

K, = -g~, . Of course, (15} is valid for cases of
derivative and nonderivative couplings. Relation
(15) tells us that although K may be dependent on a
normal of the spacelike surface, (8'/Bg, ) K ceases
to be so. This is due to the property (10) of 8'/
Bg, . Incidentally, from (6) and (15) we see that the
S matrix is a Lorentz-invariant quantity, which is
due to the fact that if g(x) is a Lorentz scalar, then
because of (11), (8*/Bg;)g(x) is a Lorentz scalar
too.

Taking into account (15), we now rewrite Eq. (6),
the first equation of (V), Eq. (8), and Eq. (10) as

The next thing that we would like to do is to ex-
press (8'/Bg;)X(x) in terms of g(x). Let us for the
moment ignore the fact that we have quantized
fields, so that we do not have to worry about the
ordering of the operators. Then using the relation
K= Q&w(f( —g, we get

(13)

1 8 4
8+

S = S d'x g(x),
gs ga

((~) = j( &'(' &(((*l ~ ('((()

Sy Px

(6')
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8 8*
("(~)=„"&'(»(~) r(r))

2 Bgg J

gy Fx

X,(x) = g-rir(x)yg(x)Vo(x) - g(j(x)yQ(x)rr, (x)

+ 2g'(7(x)r'()(x)) ', (2o)

and it clearly is normal-dependent. v, (x) is can-
onically conjugate to o(x):

1 8
+ —. F(x),

2 Bgt
(8')

v, (x) = . =6( x) +grir(x)y4$(x). (21)
8'

F(x) = g' lt d'y 6(x' -y')
Bg & BxP

x F(x), g(y) . (10')

1
+S —. F(x) . (16)

ft is not difficult to generalize (16) for the time-
ordered product T(F(x)G(y) ~ ~ Q(x)):

F(x) is now to be considered as being expressed in
terms of (jr's and a„(jr's. A canonical conjugate rr,

on the other hand, is simply a special case of F
with the conditions (a'/ag, )v=0 (i=1, 2, . . .). Com-
bining (6') and (8') we also get

1 8 s~(*(= sqsr ((x) (:(())
Bgg

Let us first verify relation (15) in this example.
First of all it is clear that X t w -Si„t. Secondly,
since we are ignoring the mass renormalization,

BI—X' =0, —g' =0
Bg f & Bg f

(Kz and 2z by definition depend on coupling-con-
stant-dependent bare masses, in contrast to Xf
and pf, which by definition depend on observable
masses), "and a,ll we have to show is that

8'&mt+int
Bg Bg

The proof is simple. From (20) we have

I

—, 56.( = 4H ~-o 4r'4v—.+ g(4r'0)'

1 8 »(F( )G(y) e( ))
2 g

Tr R&o -Tr r'r)-(v. g4y—'&)

= -gy„g8&o, (22)

dmST FxGy ~ ~ Qz Sso
Bgs

1 8'
+S-. r(F(x)G(y) q(z)), (17)

g Bg ~

where (21) was taken into account. On the other
hand, from (19) we have trivially

8*

where the last term is to be evaluated as

1 8'
T(F(x)G(y) e(.))

2 Bgg

and the proof is completed. We can also illustrate
relation (10) or (10') by choosing F=(r [(a '/ag)o
= (a*/ag)o =0]:

a'
F(x) G(y) Q(x) I

)i agr

( 1 l
+T~F(x) — G(y) g(x) ~+i ag, )

1 8+T FxGy - — Qz . 18
A

IV. A SIMPLE "CLASSICAL" MODEL

1 8 ~
—. —o(x) = ll d'y 6(i, i,)-
2 Bg

x[o(x), |t((y)y (i'(y)rr(r(y)]

= + i7(x)r'0(x) .

On the other hand, from (21) we have

1 8'
—. —rr, (x) =0
2 Bg

(23)

It may be worthwhile to illustrate the formalism
from the preceding sections on a simple model of
a neutral scalar field (r(x) interacting with a spinor
field r)(x). The interaction Lagrangian density is'

& r(x) = g|t(x)r„4(x)a"o(x) .
The interaction Hamiltonian density is easy to ob-
tain:

1 8'. 1—=- —rf(x) + 4(x) r'0(x), -
2 Bg 2

from which we obtain the same thing.
In order to derive the covariant perturbation the-

ory for this model, let us first note what is the
difference between T and T~ products for "in"
fields. According to Ref. 2, we have, for example,
that
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8 8)'*» (*) ——»;.()) )lll

8 8
— ~ ~ T{y;.(x)4;.(y)

8&„ By

(24)

id'-(x —y), (25a)

8 8
,„.~.(*)'~.())'= 0 &,„.~;.(*)~.(v) 0)

8ih-„(x-y)X" y (25b)

8
„o;„(x) „o;„(y)

T p o»x v aln(y 0

i — — hr(x —y) + g» g» 6 &»)(» —y)8~P 8yu p v

(25c)

T* contractions of the same operators, according
to (23), are

[o.(x) o;.(y)']*=(01T*{o;.(x}c (y)) I0&

This definition makes T and T~ contractions be-
tween "in" field operators different, for while T
contractions may not be covariant objects in gen-
eral, the T* contractions always will be. In par-
ticular for this model, here are some examples of
T contractions:

& (x)' o.(y)' =
& o I T(o;„(x)o (y))l o &

With these definitions we see that we can formally
write the T product as

T = T*+T*(T„—1), (28)

where the T„product has the following meaning:
When T„acts on a product of "in" operators, one
sums up over all possible pure noncovariant con-
tractions according to (27}. (-1}in (28} subtracts
the zeroth pure noncovariant contraction, and the
T* which is in front of (T„—1) means that one still
has to sum up over all possible pure covariant
contractions, according to (26), of what is left
over. The proof of (28} is straightforward by no-
ticing that a T product means summing up over all
possible contractions according to (25). Obviously,
the result will contain pure covariant contractions
defined by (26) and pure noncovariant contractions
as defined by (2V). It is clear that the result can
be expanded in terms of pieces containing pure non-
covariant contractions. The zeroth term in the ex-
pansion represents the sum over all possible co-
variant contractions, a,nd the rest is represented
by T*(T„—1). We know that the T and the T* prod-
ucts of *'in" operators are reduced to a sum of
normal products by means of corresponding con-
tractions. As we see from (28), because T* is in
front of T„—1, the T„product of in operators is
reduced to a sum of ordinary products of in opera-
tors by means of pure noncovariant contractions.
However, we would like to have similar rules for
the T„product as we have for the T (or the T*)
product. " Thus, consistent with (28), we define
the following rules (where 1, 2, . . . , is a shorthand
notation for "in" field operators):

=-i&r(x-y), (26a) T„(12 ~ ~ ~ r)=T*(12 ~ . r)+[1'2 ]"T*(3 r)
8

~„, &;.(*)'~;.(v)' = o &* ~„, .(*) is)) o)
+[1'3']"T*(2 ~ ~ ~ r)
+ ~ ~ ~ + [1'2']"[3' 4']"T*(5 ~ ~ r) + ~ ~ ~

8 ~ 8
, „&;.(x)'6 „o;.(y)'

8iver-(x - y)8x" (26b)

Since the T* product is evaluated only by means of
pure covariant contractions, we obviously have

T„T*(12~ ~ s) = T*(12 ~ ~ ~ s) . (R2)
0 T+

~
0' x (T;„y 0

. 8 8i —„ar(x —y) . (26c)
8@~ 8y"

We see that only (26c) and (25c) differ by the non-
covariant (normal-dependent) term g»g»„6&»)(x —y).
Equations (25) and (26) suggest the definition of
pure noncovariant contractions as

[o;.(x)'o;„(y) ]"=0,

[S„o,.„(x)
'

&r;. (y)']" = 0, (27}

[s„o'"(x)'6„o'"(y)']"= ig» g» 6&»)(x —-y), etc.

Finally, from (Rl) and (R2), we see that we also
have

T„(123~ ~ ~ s) = T„(T„(123~ ~ ~ s) )
= T„(123T„(4~ ~ s)) = etc (R3)

As we see, formally the T„product denotes a re-
duction into the T* products by means of pure non-
covariant contractions. There is still one more
important rule that holds for the T„product:

T„(T'(12 ~ ~ r) T*(1'2' ~ ~ ~ s'))
= T*(12 ~ r 1'2 ' ~ ~ ~ s ')
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+[1 I'}"T*(2 ~ ~ ~ r ~ 2' ~ ~ ~ s'}

+[1'2']"T*(2 ~ ~ ~ rl '3' ~ ~ ~ s ') + etc.

(R4}

Clearly the T product and the T„product are nu-
merically equal; however, the rules that go with
them are different.

In order to deduce the covariant perturbation the-
ory for our model, let us write down the differen-
tial equation for the S matrix:

1 8 4
8'

—. —S=-S d'» —X,„,(x)
8g 8g

=3C',.„",(x),

where in view of (la) we used the fact that

o(x))~, =o (»),

x,(x) [, ,= w,'"(x), etc.

In (30b) the sum actually terminates with n = 2, be-
cause in view of (23)

=S dX —gfl, X. (29)

1 8'8*
—. ——2;„((x)= i[7))(»)y' g(x)]', (32)

Using (16) and (17), from (29) we can get the S ma-
trix as a power series in g (see Ref. 7). The re-
sult is given by two equivalent expressions:

N 8 In

S=Texp -i d'xg ~ „36,„,(x)lflt 7

and obviously

8 lr„—g;„,=0 for y-2.
8 Iht

In what follows we shall find relation (26) to be
more useful in this equivalent form:

(30a) T=T+Tn . (33)
n 8 in-1

s=) exp
' d'xT) „,—)l;., (*))

pg i 8g 8g + 0

(30b)

Equation (30b} also follows from (30a} by taking in-
to account (15) for our model [see the text after re-
lation (21)]. We can easily verify (30a) by noticing

For this particular model we wish to derive the
covariant perturbation theory as "classically" as
possible; i.e., showing how the noncovariant terms
arising from X,'„") [compare (31) and (30)] and the
noncovariant terms arising from the pure nonco-
variant contractions cancel each other. Thus
taking into account (33), we rewrite (30b) as

2 P 81 t 8+S=T* exp ie- )) d4x ——I'.;„((x) T„exp ig I
d'x —2 ((x)2 g sg Bg '"',

()
" sg ~=p. ]'

where, in view of (32}, the term

(34)

obviously does not contribute to pure noncovariant contractions and has been pulled to the left of T„. Notic-
ing that

=Par"0 8„&
g=0

we wish to evaluate

S.=T„exp ig~r d'xg ( )yx" )I)(x)a„o (x)
J

With the notation

~ .( y) =g„'g'.-6"'( y), -
(35) can be also written as"

S„=T*exp jg
~

d ~g& ~ y&yf& ~) 8 g& ~ —q Ii d4yg
5s„o (y)

from which we deduce the differential equation
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—. —S„=T* d'x(I (x)y"g;„(x) 8„v~(x) —i, d'y 6„,(x —y), , S„

= T*
Jt d'xg (x)y"p (x)[8„e (x)+g„g„gg, (x)y" g (x)]S„,

which has the solution

2

S„=T*exp igjt d~xg (x)y„ii' (x)8"c (x)+i
2

d x[))) (x)y g (x)]'

We see that in view of (32), the last term in (36)
cancels completely the first term in (34), and the
result is

*
v)

' I '*(:4(*)~„((*)" (*) . (Ã)

In other words, in this model. the noncovariant
terms resulting from the partial derivative 8'/8g
cancel comp1etely the contribution from pure non-
covariant contractions. However, let us note that
the contributions from pure noncovariant contrac-
tions give a pure noncovariant result in this model,
and it must be canceled somehow. Furthermore,
there is no a priori rea on in general why pure
noncovariant contractions should not, besides non-
covariant, also give covariant contributions, which
need not be canceled from the contributions from
the partial prime derivatives 8'/8g, 8 "/8g', . . . ,
etc. We shall see that the model in the next sec-
tion has, in fact, this property.

Let us point out that the model in the present
section serves here only as an example of the for-
malism since, with a suitable canonical transfor-
mation of fermion fields, g, can be made to van-
ish.

V. CHIRAL-INVARIANT LAGRANGIAN DENSITY
FOR MASSLESS PIONS

The result from the preceding section suggests
indeed that in general all that one should do in or-
der to get the covariant perturbation theory is to
change 1' by T* and X-, by -g.

& in the Dyson ex-
pression for the 3 matrix. If these kind of rules
are applied to calculations with chiral-invariant
pion Lagrangians, 3 it will be found that the worst
divergences in such a perturbation theory violate
the Adler condition for g-g scattering and that the
pion acquires a mass. Since these anomalies dis-
appear for a particular definition of a pion field, it
also means that within the framework of such a
perturbation theory, the 5' matrix is not invariant
under the canonical transformations of Heisenberg
fields. '" Of course, as mentioned already, '" after
applying the correct covariant perturbation theory,
the masslessness of the pion, the Adler zeros. and

the general current-algebra theorems were estab-
lished.

Let us now show in this example of a chiral-in-
variant Lagrangian for massless pions how our
formalism of PDECC yields in a rather natural way
the correct covariant perturbation theory. Denot-
ing with (t), the pion field, the Lagrangian density
can be written as

4 p, e=~p4ey (38)

where the dependence of C„on the pion field is de-
termined by the requirement that Q be SU(2)
x SU(2)-invariant. " Different SU(2) x SU(2)-non-
linear-representation assignments for (1), require
different G~'s. We shall write G„(p) as

G (e)=6 -gG, (@),

where g is a "mathematical" coupling constant
which we shall vary between 0 and 1. The physical
coupling constant is "'frozen" in t"„. This is done
in order to simplify the derivation, and since the
final result will be written in a closed form, it
will be independent of whether we vary the physi-
cal coupling constant or the above defined "mathe-
matical" one. The canonical momentum w, con-
jugate to the pion field p, is

2= ib„,G, (P()$,=$. , (4l)

Let us now write down the definitions of various
contractions between "in" pion field operators.
The T-contractions are

y'."!x)Po (y) =('0I T(@.(x)yi (y))I0&

= -i&„„.,(x —y),

AI)(x) '(8
() (y) =

, & o I T(P )~),.(x) 4'() (y) ) I o &

= -i8„(x)&~ „(x-y),

(42a)

(42b)

G (4)e. =[6" gG-(~)] -~ (40).8g
4,a

Since we shall need the differential equation with
respect to coupling constant g for the S matrix
[see (6')], we need (8*/8g)Z. From (38) we have
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.(,x) p'„(,y) ='&0I T(p',",.(»)A. ,a(y})Io&

= -i[s„(x)s„(y)n „(x—y}

+6„...(x —y}[,
where

5„„.,(x —y) = g„'g', 6„6"'(x —y) .

(42c)

(42d)

S=T*e~ i JI d'x[g-', y„.(x)G.,(y (x))g"(x)

+c(y ('))][, (46a}

from which we get

tity [(45) is consistent with this requirement];
therefore, we can seek its solution for any g in the
form

The T*, or what we call pure covariant, contrac-
tions are

[4.(x)'0;(y)']* =
& 0 I T*(y; (x)y. (y)) I0&

(43a)i&~-.,(x —y),

[4,.(x}' 4 (y)']*=&0IT*(@„,.(x)4 (y))lo&

is„-(x)n ~ „(x—y), (43b)

[4 ,.( }4., (y}']*= &o I T*(0„,.( )4 .', (y))l o&

is„(x)B-,(y)f)~ „(x-y).
(43c)

Therefore, for what we call the pure noncovariant
contractions, we shall have

[4.'( )'0'(y)']" =0,

[4 ..( } C(y}']"=0

[4.,(x}'e.;(y) ]"= i5',...~-(» y)—

(44a)

(44b)

(44c)

S =S d'x ,y „.(»)C.—,(4 (x))y~(x) .1 8 4 (45)

The S matrix must be a relativistic invariant quan-

We could now try to solve "classically" (as in the
preceding section) the question of covariant per-
turbation theory starting with (30a) or (30b). Al-
though this task can be accomplished in this way,
it is quite involved and lengthy. Instead we start
directly with the differential equation for the $
matrix (6 ) which, in view of (41), is

S=T*:d'x[-, 4„,(x)G.,(y (x})g"(x)
a—„«a (*))[aI . (46b)

C in (46a) and (46b) does not depend on 4) „,. In
fact, it is not difficult to see that (46a) is the most
general form for the S matrix in our case. From
(45) we have

——S=Z d'g-,' y„, x C y x) &II}~ x S,

where we acknowledged the fact that the asymptot-
ic limit of a time derivative of an operator is gen-
erally different from the time derivative of the as-
ymptotic limit of the same operator. However,
utilizing (40) we get

via 4
ia G (gin) [y ]

I (48)

Since 4), ,=[/„,], we can writs in general

[A„,.l =4„.6~-gi g[![G '(4')-I].1].4'.
(49)

Taking into account that T = T*T„[see(33)] and
that the pure noncovariant contractions (44c) can
be achieved by the following functional method
(see also the preceding section),

& [ (' (*) I=&' a (*)- a'v~ (*-)) — —

)pp 7
we find that (4V) can be rewritten as

—. —S=T'a
Il d x — p, '(x) —i [ day6","(y-x)

x[g„„—g4g„'(g-'(y (x)) —I)]..O~(y (x))
I ~\"[a"'-a"a"(a '(a (*))-»l.. a, .(*)- f '('*&„,.i(*-*) (50)

Inserting the ansatz (46a} for S in (50), after carrying out straightforwardly the indicated functional deriv-
atives, we obtain

—,. —, a=r"
J a[la„,.( )a (a ( ))a, "( ) ~ l'&"'(a)T [a (a ( l)aia ( ))[)a') .'

In deriving (51) we used the fact that

(51)
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[g"' —g"'g"'(G '(p (x)) —1)l..[g..+ gg'. g'.G(0 (x)}]4.= g."5-

Tr[g„„—g4g4(G '(p (x)) —1)]G(p (x))g4g4 =-TrG '(&p(x))G(p (x}).

Identifying (51) with (46b), we get

—C(0 ( ))=-' 6"'(0)T [G '(0 ( ))G(0 ( ))].
Bg

Noticing that

(52)

Tr[G '(P (x))G(P (x))]=-—Tr in[1 —gG(P (x})],
Bg

we get

C(P (x)) = -Tr in[1 —gG(P (x))],
where we imposed C (, , =0. Therefore, the S matrix (for g= 1) is given as

S=T*exp i d x Z. , P x ) —&i6~4~ 0 Trln 1-6 P x )

(53)

(54)

where it is important to notice that T* is applied to
the whole expression.

Let us point out that applying the same procedure
to the "classical" model from Sec. IV, we would
arrive at result (37) for the S matrix in a few lines.

Now it can be shown that the disappearance of the
"anomalies" found in Ref. 3 [violation of Adler's
condition for w-w scattering (the nonvanishing of
amplitudes in the soft-pion limit), pion acquiring
the mass, dependence of amplitudes on the choice
of pion field] is due to the term

2 i 6~4 (0)Tr ln[ 1 —G(P (x))],

in the expression for the S matrix, (54). This term
was absent in Ref. 3 (for details of this analysis,
see Refs. 4 and 5). As noted in Ref. 4, the defini-
tion of the unique pion field by

Tr in[1 —G(P (x})]= 0,

although simplifying the expression for the S ma-
trix, makes the pion field itself quite complicated
in the sense that it obeys rather complicated non-
linear transformation properties under SU(2)
x SU(2}. Incidentally, because of identity Tr ln
=lndet, the above condition reduces to

det [1 —G(P (x))] = 1,
a condition found in Ref. 3 for the disappearance of
the "anomalies. " Of course, now we see why this
condition must be imposed if we do not have the
term

( 2i)6~ ~(0) Tr in[1 -G(P (x))]

in the S matrix.

VI. CONCLUSION AND DISCUSSION

One of the remarkable things from Sec. V is the
fact that using our formalism of PDECC, one can
formulate the covariant perturbation theory with-
out explicit use of the Hamiltonian density [see re-
lation (45)]. We feel that this is of considerable
advantage for, on one hand, the Hamiltonian den-
sities are usually more complicated objects than
the Lagrangian densities, and, on the other hand,
the symmetry requirements are usually expressed
through Lagrangians.

The other advantage of our formalism, we feel,
is the fact that we do not need to change the notion
of the Lagrangian density from g to g, with

Z=Z —2i5~'~(0) Indet[1-G(P)],
which as we see becomes non-Hermitian and which
is used in the method employing the generating
functional of the time-ordered Green's functions.

For these reasons, we believe that our approach
to the formulation of a covariant perturbation the-
ory is more direct and simpler than the ones in-
volving the interaction Hamiltonian density~ or the
generating functional of the time-ordered Green's
functions. "

The question which naturally arises with the ex-
pression for the S matrix (54) is whether the S ma-
trix is unitary, since an anti-Hermitian term is
added to the P, . It is, of course, unitary since
(54) is equivalent to

S=Texp -i d'xX-, x

for which the unitarity is easily proven. The other
way to see that expression (54) for the S matrix is
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unitary is to realize that it was derived from the

partial differential equation with respect to cou-
pling constant (45), which implies the unitarity of
the S matrix. To see this, let us denote with a the
following:

& +a(x)

~

~

Bg

Then, according to (45), we have at once that

1 8
—. —(ss') =sos'-sos'=0,
g Bg

which allows SS~=1. With this result one shows
also that S~S =1.
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