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Let a finite part of the scaling curve vQ'2(cu') at low co' be locally dual to a set of resonances
obeying a mass formula M„=a+ mo n. Then it is shown that a simple way of satisfying this
condition within the context of several Inodels is that the contributing resonances satisfy the
condition j- vs.

IN TRODI', TION

The study of deep-inelastic electron-nucleon
scattering' has spawned many new paradigms for
hadronic physics. Among these is the duality ob-
servation of Bloom and Gilman'. Let vw2(&u'), m'
= (s+q')/q', be the scaling curve constructed from
data with v s )2 GeV, q') 1 GeV'. Here Ws is the
c.m. energy of the virtual photon and nucleon, and
-q' is the (mass)' of the virtual photon. Let
W, (q', Ms') be the structure function for v s in the
region of the mass M„of one of the prominent
low-lying resonances, and q' not too large. Then
to a good approximation, the scaling curve vw, (&u')

for ~'= 1+Ms'/q' provides a reasonable average
to vw, (q', Ms'), as long as v'~4.

One way of implementing this property is to build
the scaling curve itself out of resonance contribu-
tions. This has been done by several authors. '
The present work addresses itself to the following
problem: If a finite piece of the scaling curve is
locally dual to a set of resonances, what is the
nature of the dominant intermediate states which
contribute? The result of this study suggests (but
does not prove) the answer: The angular momen-
tum of the states whose contributions are consis
tent with scaling obey the constraint j-Ws at
large s. This is just Harari's condition ' for the
peripheral nature of the nondiffractive amplitude
in reactions which are not exotic in the direct chan-
nel. Such a "surface dominance" may produce
some predictions for dips, whi. ch we shall deal
with elsewhere.

We have used a covariant normalization (p'l p)
= (2n)'(E~/m) 5'( p' —p), uu = 1, with m being the
nucleon mass.

For a discrete state of mass M„, spin j, and
normality v to the sum in (1) one makes the re-
placement

n splns

4=2M„," 5(P„'+M„') g . (2)
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So the ct ntribution of this state to W'„, is
W'"'"'=2M b(W'-M ')tfv n n
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where W' = -(p+q)', p' =p+ q.
Let e~ ~ @=0, q~ ~ c~ =1. %e also choose c~ P

= 0, so that we may write

~(n,j,v ) glf ~(n, 'jK) v~r

=2M„b(w'-M„')-,'g l(p~lz, , lp ~'&l'.

Define the Lorentz invariant

„(q') =g l(pxlJ' lp'x'&l'.

The decay width of the resonance (n, j, a) into a
proton and a veal transverse photon of polariza-
tion e~ is given by

ARGUMENTS FOR THE RESULT

First we write down the polarization tensor
t
with

g„ =Z„(0)]

w„„=(2m)'-,'p b'(p+q -I'„)&p&l~„l && nl~.nl»&
n, X

W, q, vqff @v
pv q

where

n = e'/4v,

(m, —q, ) m, +
s s

K*=&*(0,s) .
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Combining (4)-(6) we find
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where

( 2) +ni K(q } (9njK q =-
(I

Now impose local duality on W,"'=—g„,, Wi,""'.
That is, demand that for fixed q'

( sI}, i+sqyq 2

ds W,"'(s, q') = q' ( du&'W", (+'),
as@ X+S~gq 2

where 8'," is the nondiffractive piece of 5,. We
choose s, and s, to enclose a single tower of reso-
nances. For a mass formula

(10)

~ 1

2m W,
"

(&u ') = g 16m
m, 1-m yM

j ~ K
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for s =M„, (()' = 1+s/q'.
What is the ratio in the last bracket? As an ex-

ample we may consider the excitation of a heavy
spin- —,

' resonance [e.g. , the P»(1400) or the
S»(1535)j. For these the ratio is

Z"(q')+m ' G~(q')
E*(0)+m G,(0)

where E* is the energy of the proton in the rest
frame of the resonance, G~ is the magnetic-tran-
sition form factor, and the upper (lower} sign is
for P» (S»). In the scaling region (M„'»m', q'
»m'), we conjecture (along with others") that,
independent of j and v,

G „(q') 1 ' (u' —1

G (0) I+)(. '/M ' (u' —I+)(.'

For M„'=m', A.'= 1.4. For simplicity, we take
X'= 1 in general.

Also in the scaling region, the first factor in

(13) is =&u'/(u' —1), so that there evolves the an-
satz

The dynamics of the form factors presumably
suppress the longitudinal cross section. ' This re-
sults in the relation 2mW, ((o') =u'vW2(ru'). Equa-
tions (12) and (15) then give our working results,

M 2 —g+m

choose s, —s, = m, ', s, &M„' & g, . Then the substi-
tution of (8) into (10) gives

v s . , I nje-py(j+ —,') = const=0. 07.
mp 4wn

J,K

(18)

The number on the right-hand side of (18) is ob-
tained by normalizing vW," ((o') to 0.3 at &o' =3.
The condition expressed by Eq. (18) must be inde-
Pendent of s. We emphasize at this point that the
sum in (18) runs o ~er all the resonances in the
tower which actually contribute to the nondiffrac-
tive part of the structure function.

The reader may object to the I/(o' behavior of
implied by Eqs. (16) and (18), instead of the

conventional 1/&u'& implied by Regge theory. All
we can say at this point is that the model proposed
here is not at all meant to describe the Regge re-
gion of large co', there is absolutely no evidence
that Bloom-Gilman duality has any meaning in that
region of +'. If such evidence appears, the pro-
cedure of this paper would have to be modified.

As s gets large, we try to satisfy (18) within the
context of three models:

(1) Simple 4 point dual structu-re~ —resonances
with 0&j& n. This situation has been analyzed by
Shapiro' in the case of pz scattering. The reso-
nances with 0&j& v n have fairly equal partial
widths, while the ones with v n z j&n are highly
damped due to centrifugal effects. Such a spec-
trum, when compared with the condition (18),

As an example, to see if the expression makes
sense, we may evaluate it at its maximum (~' = 4),
and for v s in the region of the D»(1525) and

S»(1535) resonances. The sum may be obtained
from electroproduction data using the relation

I'(njK-Py) I"„,K* o '"
(q =0, (( s =M*)

(j+ 2) 4m' 4m 4ne
jK

(17)

where K* was defined in Eq. (7). From an extrap-
olation to q'= 0 of the analysis of Clegg, ' we find
the right-hand side of (17} to be =0.03, which when

inserted into Eq. (16) gives (vW2~) =0.22. This
is in qualitative agreement with experiment when

one considers that (a) these resonances are not in
the scaling region and (b) some fraction of the
scaling curve at co'=4 consists of a diffractive
component which is not dual to the resonances.

With this confidence in our formula (16), we now

argue as follows: Equation (16) tells us that agree-
ment with the observed behavior of vW, ((o') can be
obtained if
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would imply that

I'(nI»-ty)
(19)

I'(nj» 'P-y) 0.018m, 18 MeV
~

~

4we „n n
(20)

This is inconsistent with the energy behavior of
the elastic width I,&- s ' resulting" from the 4-
point function which gives rise to this spectrum in
the first place. So this spectrum is incompatible
with scaling.

(Z) N-point dual structure. Chiu, Hermann,
Schwimmer" have calculated the density of states
for given angular momentum l to be

p(l) -(~s 'e'+f2

for 0& I& u s, and decreasing exponentially there-
after. Agreement with the condition (18) then
would demand a partial-width behavior I"(nj» -py)
- (Ws)' 'e '+, which is prohibitively difficult to
check for consistency but is not far-fetched. " The
peaking of p(l) at l-Ws would then imply our re-
sult of a surface dominance. On the whole, we are
rather loath to invoke the complexity inherent in
the N-point dual structure to discuss the behavior
of pW, without a detailed knowledge of the elastic-
width behavior. In this way we come to the sim-
plest alternative.

(3) SPectrum deduced from Performing a Partial
suave analysis of a finite number of ftegge amPli
tudes. Kugler" has found that this results in prom-
inent resonances obeying j Ws, -with elastic widths
I',

&
-s ', and total width I;„-v's . The lower j's

contribute a background; the higher j's are damped.
One can easily see that this behavior is entirely

compatible with the condition (18).
If we set j+ —,'= 2rv s, r = 0-.8 F in (18), and mul-

tiply by 2 to account for both normalities, we have
a condition

where n =M„'/mo', m, = 1 GeV/c'. This compares
to

40MeV
(I'(nj» -Pm') ),„=

n
(21)

CONCLUSION

To sum up, we have analyzed the condition that
a finite piece of the scaling curve at low co is lo-
cally dual to a set of resonances obeying the mass
formula (11). Examination of this condition with-
in the framework of several current models led to
the conclusion that the resonances which contri-
bute in the scaling region must obey the on-shell
peripheral condition j-Ws.

It should be stressed that this result is indepen-
dent of the presence of diffractive pieces in the
amplitude or of fixed poles. "" It depends only
on the assumption that a finite Piece of vW, (~') is
dual to resonances.

It is perhaps worthwhile to end by remarking
that the result of this paper cannot fail to raise the
following questions: %'hy should a highly virtual
photon see the proton as an absorbing annulus rath-
er than a disk, and what are the connections be-
tween the effect discussed here (as well as the
whole picture of duality} and partons? Answers
to these are certainly not yet at hand.

for the prominent wN resonances, like the N*(1688).
It should be kept in mind that the width in Eq. (18}
is for decay into a single polarization. If summed
over both, the agreement with Eq. (19) is even
closer.
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The vector-meson inclusive distribution is considered by making use of the eight-point
dual amplitude for which two of the external lines are regarded as the decay products of a
single vector meson. We find that the vector-meson vertex is factorizable both in the frag-
mentation and central regions only for large values of x =P~ + m . Nonfactorizability for
low values of ~ is due to the correlations between the beam-target system and the decay
products. Explicit and yet simple expressions for the vertex function as well as the vector-
meson production cross section are given to the leading order in w for the triple-Regge
and pionization limits. They show that the vector-meson decays, in either of the kine-
matic regions, along the preferred beam direction with a cos P dependence, in the rest
frame of the vector meson, provided that the intercept of the leading vacuum trajectory
takes the value unity. Furthermore, it is found that in the central region the states with
helicity +1 contribute dominantly to the decay correlations, while in the triple-Regge re-
gion the state with helicity zero is favored.

I. INTRODUCTION

In previous publications, "we have reported on
the two-particle inclusive distributions for a+ 5-1+2 +anything obtained from the eight-line dual
amplitudes. Particular emphasis was given to the
limiting behavior and factorization of the distri-
butions' in various kinematic regions as well as
the two-particle correlations' in the central (pion-
ization) region. As the observed particles l and 2

can take a wide range of momenta, the invariant
mass s» or the relative rapidity y can change from
a finite value to infinity. Accordingly, the central
distribution, for example, makes a transition
from a correlated form to an uncorrelated form
thus exhibiting factorization. Such a transition ef-
fect is particularly convenient for the study of the
two-particle correlation. '

Qn the other hand, it has been noted that' if one
restricts oneself to the region of finite s» or y
where the two particles can form a resonance, the
two-particle distributions can be used to examine
the distribution of a single outgoing resonance
which decays subsequently into the parti&cles 1 and
2. Namely, if the two particles are in the frag-.
mentation region of, say, the target b, one can
learn the single resonance distribution in the b

fragmentation, whereas if they are in the pioniza-
tion region, one can study the resonance distribu-
tion in the central region. In general, the results
obtained in this way contain the decay correlation
effects coming from the coupling between the reso-
nance and the decay products even in the narrow-
width approximation. To isolate the single-reso-
nance distribution, one thus needs to factor out
the vertex function.

In this paper, we would like to carry out the
study of the single-resonance distributions within
the context of the original dual eight-point ampli-
tude. Although the case of arbitrarily large spin
can be worked out, we will confine ourselves in
this paper to the case of vector mesons only,
which we will refer to as "p," since the vector-
meson production will be the most interesting pro-
cess next to the single stable particle production
in experiments now under way. Furthermore, the
dual-resonance model in its original context has
been shown4 to yield a consistent scheme for con-
structing the multiparticle amplitude with any num-
ber of spinning particles having various decay
modes and having explicit decay correlations. For
example, starting from an eight-line amplitude B,
in which all external lines have zero spin, one can
construct a six-point amplitude B, with two spin-


