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New Class of Solutions of the Einstein-Maxwell Fields
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Maxwell fields in static axially symmetric space-time are discussed. A new method for
generating the Weyl class as well as a more general class of electromagnetic fields is out-
lined. It has been shown that by the same procedure a new class of Maxwell fields can be
generated which are not of Weyl type. A particular solution of this class is derived which
represents an asymptotically Qat gravitational field of a body possessing an electric or mag-
netic dipole moment. At large distances and in the case of a vanishing dipole parameter, the
gravitational field goes over to the Schwarzschild field.

I. INTRODUCTION

We consider solutions of the combined Einstein-
Maxwell fields which depend on at most two spa-
tial variables, the metric for which may be taken
as

d52 —e2" df2 e2~-2" [(tfx~)2 y (dy) ]

where u(x', x'} and k(x', x') are functions to be de-
termined. h is a harmonic function and its choice
determines the coordinate system. In particular,
we choose A = x'= p and x'= z, the coordinates p, z
being known as Weyl canonical coordinates. ' The
Einstein-Maxwell equations are'
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The electromagnetic potential vector has only two
nonvanishing components for this problem. There
are various ways to define the electromagnetic
field in terms of the components of the four-poten-
tial, the most common being F&, =A&, -A, &. How-
ever, another definition' ' given below has the ad-
vantage of reducing the nontrivial Maxwell equa-
tions as well as the components of the stress-ten-
sor (4) in a symmetrical form with respect to the
components of the potential vector. Thus, we de-
fine

the above stipulation, the Einstein-Maxwell field
equations are

u»+u»+u, /p = —e '"(A,'+A, '+B,'+B,'),
(6)

k,/p = (u, ' —u, ') + e '"(A,' -A, '+ B,' —B,'),
(7a)

k, /p = 2u,u, + 2 e '"(A, A, + B,B,),
A „+A „+A,/p —2(u, A, +u, A, ) = 0

B „+B „+B,/p —2(u,B,+ u ~B,) = 0
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The symmetrical occurrence of the potentials A
and B in Eqs. (6)-(9) as well as Eq. (10}suggests
a duality rotation, 'A=CcosP, B=C sinP, where
C is a new potential and P is a constant.

One thus obtains

u»+u»+u, /p=-e '"(C,'+C, '),
k,/p=(u, ' —u, ')+e '"(C,' —C,'),
k,/p=2u, u, +2e '"C,C „
C „+C „+C,/p = 2 (C,u, + C,u, ) .

(12a)

(12b)

(13)

II. DERIVATION OF THE NEÃ FIELDS

Let us now introduce a new complex function E
in the following manner:

As suggested by Bonnor' Eqs. (11}-(13)constitute
a completely determinate system of differential
equations.

F01=B. 1 F02= B 2,
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(5b)

E=e"+ jC. (14}

Equations (11) and (13}are satisfied identically if
E satisfies

where obviously A(p, z) and B(p, z) are the mag-
netic and electric potentials, respectively. With

E»+E»+E,/p =e "(E,'+E,') .
Introduction of another complex function X as
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X —1
X+1

tr nsforms (15) into

X, 2X
p XX-1

(16)

(17)

It is easy to see that

X= -e' coth-,'g (16)

is a solution of Eq. (17) with n an arbitrary real
constant and g given by

«+4, »+0. ,/p=, o

Further, one obtains from Eq. (12)

k 2/p = 2$ 1/C' 2.

(19)

(20)

(21)

e" = sech/,

C = tanh(I) .
(22)

Equations (19)-(21)are the field equations of the
vacuum Weyl fields.

Now if a solution of Eq. (19}is given, we may
construct the functions X and F.' with the help of
Eqs. (16) and (16), respectively, and thus a class
of solutions of the combined Einstein-Maxwell
field equations may be obtained with a nontrivial
Maxwell field. In particular, we have the follow-

ing cases:
(a) If a =0, the electromagnetic field vanishes

and one obtains the class of vacuum Weyl fields.
(b) If o/=2&, one easily obtains

one to construct electromagnetic fields from vac-
uum fields. ' '

(c) If o. is arbitrary one obtains a new class of
fields which is more general than the Weyl class.

Thus we have now the following interesting re-
sults: Given a solution (P, k) of the vacuum Weyl
fields, one can generate a solution of the combined
Einstein-Maxwell fields by a method discussed in
this note.

Attention is also drawn to the exact similarity of
Eq. (17) with the gravitational field equations of
the stationary axially symmetric problem. " But
one defines the complex function F. in the station-
ary axially symmetric problem as E = e'"+if,
where /is the twist potential. Thus, there is an

interesting formal analogy between the roles of
the potential P of the stationary axially symmetric
problem and the electromagnetic potential C. How-

ever, the analogy ends there and the properties
of the two metrics will be altogether different.

III. AN EXAMPLE

Equation (17) is interesting in another way also.
This is due to the fact that with the help of this
equation we can obtain another class of electro-
magnetic fields which do not come under the cate-
gories discussed earlier. This class of fields is
interesting in the sense that such fields are pos-
sibly due to the bodies possessing an electric or
magnetic dipole moment or both. ' We give below
one such solution to illustrate our point.

If Eqs. (19) and (17) are expressed in spheroidal
coordinates (X, p, ) which are defined as'""

The above equations are the well-known transfor-
mation equations for generating the Weyl class of
electromagnetic fields. Thus, our investigations
lead to a new derivation of the theorem enabling

p (g2 1)1/2(1 p2)1/2

z =A/, »

one obtains

(23)

and
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BX B „BX 2X, BX ', BX '
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(24)

(25)

it is interesting to note that Eqs. (24) and (25) are symmetric with respect to the interchange of & and p.
Consequently if X(z, p, ) is a solution of (17), then so is X(p, &). The above remark is also true for Eq. (19).

Consider now the following solution of (24):

z-1
/=in (26)

in view of (16) the solution (26} is equivalent to X= A.. Hence, the above-mentioned symmetry leads to the
solution X= p. A linear combination of these two solutions will also be a solution of (24}. If this linear
combination of the above-mentioned solutions also satisfies (17), i.e., (25}, one has obviously obtained a
new solution which will be of a different class than that discussed earlier. Now, in the case of (26), the
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linear combination may clearly be taken as

X= A. cosx + i p sinx, (27 )

which is a solution of Eq. (25}. x is a real parameter which fixes the scale of length in transforming ca-
nonical coordinates to spheroidal coordinates.

We define

tanx = e, secx =-m, (26}

where m and e are constants and we are measuring the length in units of (m' —e')"'. When the entire
metric is constructed, one obtains

p2 + e2 cos2 g Pppg z 2
dt2r'+ e' cos'g

(r2 —2mr +a' cos'8)'(r'+ e' cos'8}
[r' —2mr + e' cos'8+m' sin'8]'

dr', (r'+ e' cos'8)'(r' —2mr + e'}
+d gr' —2mr+ e' (r' —2mr+ e' cos'8)'

where the coordinates r and 8 are defined as

r=X(m' —e')"'+m, cos8= p, . (30)

these singularities reminds one of the singularities
of the Kerr metric. " If the parameter e vanishes
the asymptotic form of the metric is given by

For canonical coordinates the transformation is
given by Eq. (23}as

p = (r'+ e* —2mr)"' sin 8,
z =(r -m) cos8 .

ds' = (1 —4m/r)dt'

d~
(1 —4m /r) (1 —2m /r)

(r — }, (35)
The electromagnetic potential is given by

2me cosg
r+e cos8 (32)

This represents the static field of an electric or
magnetic dipole; its asymptotic form is

2me cos8 r-~ (33)

S—=r'+ e' cos'8 = 0 (34)

which is a ring singularity. Besides, this metric
has nonessential singularities also. The form of

Thus, the constant 2me may be interpreted as the
electric or magnetic dipole moment of the system.
Similarly the metric given by (29) is the gravita-
tional field of a body possessing an electric or
magnetic dipole moment. It may be easily seen
that this metric is asymptotically Qat. This met-
ric has an essential singularity given by

which may be identified as the Schwarzschild met-
ric by a redefinition of the r coordinate. This en-
ables one to interpret the parameter m as the
mass of the source. This appears to us an inter-
esting result and the reason for this may be seen
in the choice of the solution (26}.

Note added in proof. After submitting this paper
for publication it was found that Bonnor had dis-
covered a solution for a magnetic dipole similar to
our Eq. (29) [W. B. Bonnor, Z. Physik 190, 444
(1966)]. But our solution is more general in the
sense that it refers to an electromagnetic field.
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