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~~It should be pointed out that Eqs. (A3) do not repre-
sent a units transformation (UT) [see R. H. Dicke, Phys.
Rev. 125, 2163 (1962)]. Moreover, although the quan-
tities appear to be dimensionless, only those involving
the differential dt (such as A/H, etc.) actually are

dimensionless in the sense of the UT. This circum-
stance arises because the UT is defined on the differ-
ential dt and not on t itself [see R. E. Morganstern,
Phys. Rev. D 4, 278 (1971), Sec. II and Ref. 4] .
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Previous results for the ground-state energies of systems of nucleons interacting with a
condensed running-wave mode of m' mesons are extended to the case of standing-wave modes.
The onset density of the condensation turns out to be the same as in the running-wave case;
at higher densities the standing-wave case has a somewhat lower energy, at least in the case
in which ordinary nuclear forces are not taken into account. There are reasons to believe
that the effects of these nuclear forces on the condensation will be much greater for the stand-
ing-wave case than for the running-wave case. The possibilities of 7i+ and ~ condensation are
discussed.

I. INTRODUCTION

Recently it has been suggested that the ground
state of neutron star matter at densities greater
than some critical density consists of neutrons,
protons, and I mesons, the latter condensed in a
single running-wave mode of momentum (per pion)
greater than m, c.' ' This condensed pion wave is
sustained by its interaction with a particular co-
herent state of protons and neutrons, as calculated
in the conventional theory of the interaction of
pions with nucleons. It was suggested that the mag-
netic energy problem associated with the immense
currents in this state be solved by a breakup of the
medium into filaments, with opposed currents in
neighboring filaments.

An alternative solution, suggested in Ref. 1,
could be to use a standing-wave mode for the g
field. However, the solution for the energy of the
medium for the standing-wave case is not as sim-
ple as that given for the running-wave case in
Refs. 2 and 3, and the variational estimate placed
on this energy in Ref. 1 is only an upper bound.

In the present work the problem of the standing
n mode is solved analytically for the case of
small X, where X= (number of s /number of nu-
cleons}, and numerically for the case of larger X.
We find that in some domains of the parameters
involved, the standing-mode solution is signifi-
cantly lower in energy than the running-mode solu-

tion. These results are obtained in the absence of
nucleon-nucleon forces. In the running-wave prob-
lems it was found that all isospin-independent nu-
cleon-nucleon forces can be neatly included with-
out changing the energy difference between the
ground states in the condensed-pion case and in
the normal case. In the standing-wave case, how-
ever, we shall see that more nuclear physics en-
ters the problem and that our results are there-
fore less conclusive.

In the present work we also investigate the pos-
sibility of w' waves, which we predict will develop
in addition to the z ones. Finally we consider the
case of m waves, which turns out to be harder to
evaluate because of a greater dependence on the
nuclear physics involved.

II. FORMULATION OF THE PROBLEM

As in Refs. 1-3, we begin with a Hamiltonian
describing the interaction of protons and neutrons
with a single mode of the p field as given in the
conventional theory for nonrelativistic nucleons.
We shall consider two cases, a running m wave
with wave vector &z and a standing wave in the g
direction. We denote the single-pion annihilation
and creation operators for the condensed mode by
a„and ag, respectively. In the running-wave case
we had'
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H=H, ~
)H I ex[-(Pe(x)e, (x)e-""

m, (p)p, v 'p Xp Hp+p d x p x p x (8)

+ ipIt(x)a, p(x}e'"a] .

For the standing-wave case we obtain instead

The solution to our problem will be the state
IC'0(p, )) which minimizes (X), with the relation be-
tween the (proton-neutron) chemical potential, p,
and the parameter X determined from

H= H, + „, d'p([ ip-t(x)o, n(x)(coskz)a*
mx &dk

+ in'(x)o, j)(x)(coskz)a],

(2)

where H, contains the rest and kinetic energies of
the nucleons and pions. The parameter f is equal
to 1.1. V is the volume; n and p are the neutron
and proton fields.

In either case we shall consider a system of N
nucleons, with NX protons, NX w mesons, and
N(1 -X) neutrons. The actual state of the meson
field will be taken as a superposition of states,
each containing a number of pions approximately
equal to NX such that in the limit of infinite volume
we can make the c-number replacement,

a, a*-VNX = VXpV,

where p is the average density of nucleons. We
make a redefinition of the proton field j)(x)—io, p(x)
in (1) and (2) and perform the substitution (3), ob-
taining for the running-wave case

III. SMALL-X SOLUTION

From (4) and (5) we see that the case of small
fractional proton occupancy (small X) is effectively
that of weak coupling. We now solve the standing-
wave problem, and for comparison the running-
wave problem, in perturbation theory, retaining
terms in the energy per baryon to order X'. The
unperturbed state of the nucleons will be taken as
that of the free Fermi gas,

(10)

The vacuum state, )0), in this case denotes a state
with no nucleons present but with a number XN of
condensed pions. Thus we have

X i4"') =H )4'"')

H=Hp+42XM~ dx p~x nx +ntx Px coskz,

where

M =kfm 'p (()

(5)

(6)

Now we want to find the state, [ 4,), which mini-
mizes (+,[ H [ 4, ) subject to the constraint of elec-
trical neutrality. To incorporate the constraint we
construct an K defined by

X =Xp+H (7)

where H, is the same interaction term as in (4) or
(5}and

H =H + vX M d x p~ x n x e-'"+ n x p x e"'

(4)
and for the standing-wave case

Although this unperturbed state is not electrically
neutral, we shall achieve neutrality for the per-
turbed state by fixing the proton-neutron chemical
potential difference, p. , at that value which leads
to XV protons in the perturbed eigenstate of 3C.

Since the operators X given by (7), (4), and (5)
are quadratic in the nucleon fields, the perturbed
ground-state wave function +p will be given by

Py

Ix.) = II p'(e) ()), (12)

where bt(q} is the creation operator of that linear
combination of single-proton and single-neutron
states which arises from the perturbation of the
single-neutron state of momentum q. To determine
this combination and the associated energy shift
we begin with the matrix elements of Xp and Xl,
in which spin has been suppressed entirely.

Running &eave:

( proton, p [ K, [ neutron, IT) = 6
~ q g )(X M„

Standing &eave:

(proton, p)XI)neutron, (l) =5- -
g vX M~2 "2+6- - g PX M))2 '",

(13)

(14)
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~2
(neutron, p)X, [neutron, q& = 5~ ~, (15)

~2
(p oto, pie, iproton, q)= +g) 5;;, (16)

where m stands for the nucleon mass.
Applying Brillouin-Wigner perturbation theory to second order, we obtain for the single-particle states,

I q'(q) & =5 "(q) I o&,

iC(q)& =51(i neutron, q)+s, )proton, q+k&+a, (proton, q -k) +a, i neutron, q+2k&+a, [neutron, q —2k)),

(17)
where in the standing-wave case we find

a»» =M»vX 2 "'[E—(2m) '(q+k)'-l»] ',
= M 'X2-'[E —(2m)-'(j+ 2k)']-'[E —(2m)-'(q+ k)' —p ]-'.

In the running-wave case we find

aj =62 =a 2 =0

a, =M»))X [E —(2m) '(q —k)' —l»] '.
We define the term "single-particle energy, " E(q), from the relation

(18)

(19)

(20)[f) t(q), X J
= -E(q) f) ~(q),

where bt(q) is that of (12}and K is related to the real Hamiltonian by (f). We calculate the single-particle
energies in fourth-order Brillouin-Wigner perturbation theory and obtain the following.

Standing wave:

E( }=j (2m) '+2 'M» X[E(q) —(2m) '(q+k) —p] '+2 'M» X[E(q) —(2»n) '(q-k)' —g] '

+4 'M»4X'[E(q) —(2m) '(j+k)'-p. ] '[E(q) —(2m) '(@+2k)'] '

+4 'M»~X»[E(q) —(2m) '(g -k) —g] [E(q) —(2m) '(q —2k) ] ', (21)
Running wave:

E(q) =q»(2m) '+M»»X[E(q) —(2m) '(q-k} —g] ', (22)

(23)

where we note the absence of fourth-order terms in the running-wave case.
We want to solve (21) for the energies to order X, and determine the expansion coefficients, a, of (18)

well enough to solve for the parameter y, to order X from the neutralization condition, (9}.
First we determine the zeroth order value-of g. From (18) and (9) we find

X=(M„'2 'X([E(q}-(2m) '(j+k)'-l»] '+[E(q) —(2m) '(q -k)'-g] ')&+O(X'),

where ( ) means the average over a Fermi sphere
in the variable j. Now we expand the (g ~ k) de-
pendence of the denominator functions, to obtain

X=(M,'X[E(q) —(2m) 'q' —(2m) 'k'-p] ')
+ 3M»'Xm g ((q ~ k) ) + 0 ((g ~ k)'), (24)

where in the ((Q k)'& term we have already sub-
stituted E(q) = (2m) 'q' and used k'(2m) ' «p. The
((Q ~ k)») term will contribute less than 10% to the
value of g determined from (24}, and for simplicity
we neglect it. The higher-order terms in (g k)
will give negligible contributions.

To find the zeroth-order value of p from (24) we
insert the zeroth-order energy E(q) =(2m) 'q', ob-
taining

x = M,'x[l» + (2m)-'k']-'

or

k
p, =M, — +O(X).2m (25)

E(q)-(2m)- 9 =-M,x —,x((.k)'
Mqm

+O((f ~ k)'X) +O(X') . (26)

The term k»/2m will be a small correction to p,
for those values of M, at which a condensation will
occur.

Next we determine the energies to order X from
(25) and (21).
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pnce again we shall simplify by dropping the (g k)'

term, which, on the average, will not change the
coefficient of X by more than 10%. With this sim-
plification the standing- and running-mode solu-
tions for E(q) are identical to order X. [The ex-
pressions for the total energy of the system would

be the same in the two cases even if the (if ~ k)'
terms had been retained. ] From the energy to
first order we can now obtain the chemical poten-
tial p. to first order by adding terms of order X~

to the right-hand side of the neutralization condi-
tion (23), which becomes [after dropping the (k f)'
terms as usual and using (26}]

k
i =M,(1--,'x) — +o(x'), (28)

which is valid for both the running-wave and
standing-wave cases. Now we return to (21) for
the computation of the terms of order X' in E(q)
[neglecting the (g ~ k)' terms except in the fourth-
order part, in which we make no expansion], ob-
taining

need only to order X.
Since nothing in (27) depends on q we can remove

the bracket and solve for p, :

kX= M~ X M~X+ +p, 1+X (27)
E(q) =(2m) q -XMq —&M~X

-2 'M, 'X'm[(k'-q k) '+(k'+j k) ']

X =3t'(a, '+a, ') (28)

they enter only in the computation of X, which we

Here we have used the expression (18) for a» and
computed the normalization 3f of (17) to first or-
der in X. Note that to obtain p, to order X the co-
efficients a» of (18) are not needed, since in the
equation

(30)

for the standing-wave case, and the same result
without the last term on the right in the running-
wave case.

The lowest eigenvalue of X is now found by in-
tegrating E(q} over the entire Fermi sphere and

adding the free-meson energy,

2 P~ 3

(K) = ', N +XN—&u~—XNM, —gX'NM, —mM, 'X'Np ', [(k'+j k) '+(k' —j k} '). (31)

The energy per nucleon of the system is given by4

E &X& -p. X
N N

+ &Xo, - 2MX~ X+'M~
2
+X -(4s'p) 'mM, 'X' (Pr' k')k 'ln -+2P~

PF
(32)

In the running-wave case we obtain IV. SOLUTION FOR LARGE X

+X(op —2XMp + X~Mq + X (33)

Q2
M~ = g(g)~+ 4m (34)

which agrees with the result of Ref. 2, Eq. (15),
when it is expanded in powers of X.

From (32) and (33) we see that in the present
models the onset of the condensation (small X) can
occur at a density for which

b~= n~x x+ ptxgx . (35)

Then the equations obeyed by f and g follow from
(7) and (8):

Let a single-particle state which is an eigenstate
of X in the running-wave case be created by the
operator b~,

for either the standing-wave or the running-wave
case. As in Refs. 1 and 2, the lowest-density on-
set will. be for a value of 4 =1.2m„. Since the sign
of the fourth-order term in (32) is negative, the
standing wave would seem to give lower energies
at densities significantly above the onset density.
However, we shall comment at the end of the next
section on how the nuclear forces may disrupt this
result.

0 W2M coskz f f

Because of the periodicity of the potential a band
structure will arise in this case. In the perturba-
tion solution of the last section the evidence for the
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E/N =N
occupied states

E;(q) -px+u), x, (38)

where p. has been determined in terms of X by the
process just described. In (38) q specifies the
position of the state within the reduced zone and i
specifies the energy band.

In practice two facts which we have verified
computationally make the task easier:

(a) For a well-developed condensation (p &0.4
F ') the single-particle energies minus the trans-
verse kinetic energies, E(q) —(2m) '(q, '+q„'), are
almost constant as we go through the zone from
q, =-k to q, =k.

(b) The minimum-energy configuration will in-
volve occupancy only of the first two bands for
those values of k and p which we shall consider.

Thus to determine the minimal way of filling the

band structure was the vanishing denominator in
the integral in (31). However, to order X it was
correct to use the principal-part definition, rather
than using degenerate perturbation theory, for those
states satisfying q .k = -k .

To solve for the eigenstates and eigenvalues it is
convenient to return to momentum space. We find
an infinite, discrete matrix, A(q), to be diagonal-
ized, the rows and columns of which we label with
the positive and negative integers, n =0, +l, +2, . . . ,

A(q),„,„=(2m) '(q+2nk)',

A(q)2„„2„„=2m. '[q+(2n+1)k]'+g,

A(q)„„„=(-.'x)"'M„
and all other A(q)„„,=0.

The equation to be solved is A(q) $(q) =E(q)((q),
where the even components of E, (,„, refer to neu-
trons, and the odd ones, g,„„,to protons. The z
component of q will be restricted to the domain
-k& q, &k in the reduced-zone scheme.

We truncated the eigenvalue problem at g,4, that
is, by approximating A by a 9x 9 matrix, and
numerically determined the eigenvalues and eigen-
vectors. By comparing with the 7x 7 case we have
verified that the truncation errors are negligible.

The task is now to pick a value of p. , to fill the
nucleon states up to the desired average density p
in the lowest-energy configuration, and then to use
the eigenfunctions ((q) of the filled states to de-
termine the fractional proton occupancy, X, of
the whole system. Since X is an input parameter
in the matrix (3V) this process must be made self-
consistent; that is, the output X must equal the in-
put X. In general, for any allowed chemical po-
tential difference, p, , this can happen for only one
value of X. After self-consistency is achieved we
calculate the energy from

states for particular values of p, and X we need to
know only the two lowest eigenvalues, E, and E„
of the matrix A. The Fermi surfaces are cylindri-
cal, bounded by (q +q„)b»q, &R, and (q, +q„)b,„d2
&R,', where R, and R, are set by the conditions

(2v')-'u(R, '+R,') =p,
(2m) 'R, +E, =(2m) 'R2'+E2.

(38)

In order to find the output value of X we need to
know the fractional proton occupancies, X, and X.,
for bands 1 and 2, respectively. These are de-
termined from the eigenvectors (,

-1
[

gl, 2)2 Q )
t1,2P

n odd all n

(40)

of a state in band 1 or band 2, respectively. Once
again the ]' are nearly independent of the posi-
tion q, in the reduced zone for the case of a well-
developed condensate. For the over-all proton
fraction we obtain

x = (R,'x, +R,'x, )(R,'+R,')-'.
In practice we pick a value of p. , guess an input

value of X (the known points are X = —,
' for p, = 0 and

the value of p. = I, for small X, as determined in
Sec. III), compute the numbers E„E„X„X„R„R„
and then recalculate X. This procedure is iterated
until consistency is achieved. The energy per
baryon is then calculated. For given values of p
and k this calculation is repeated for different X
(and g) until the minimum-energy state (and the
minimizing X) is determined.

The whole process has been repeated for various
values of p and k, and the results are shown in
Fig. 1, where they are compared with the results
of Ref. 3 for the running-wave case. As expected
from the small-X calculation, the energies for
the standing-wave condensation are considerably
lower than for the running-wave case.

However, these results have been derived in the
absence of nuclear forces. Some difficult nuclear
physics may stand in the way of realistic compari-
son of the two cases in the presence of nuclear
forces. In Ref. 3 it was shown for the running-
mode case that the results for the energy differ-
ence between the condensed pion state and the nor-
mal ground state are essentially maintained in the
presence of spin- and isospin-independent nuclear
forces. The origin of this result was the fact that
the nucleon wave function in the condensed-pion
case is identical to that in the normal pure-neutron
ground state, except that the neutrons are replaced
by quasiparticles which are coherent mixtures of.
proton and neutron. The expectation value of the
nucleon density operator, nn+ pp, and the density-
density correlation function are the same as in the
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V. m' CONDENSATION

We now consider a running wave of m in the +z
direction and one of w' in the -z direction, each
with the same wavelength. Defining XN as the
number of w minus the number of m+, and E'N as
the number of v', we obtain, in place of (4},

H H+[(X,=+ Y)"*+('"'(M, f d [p'~*(x)n( )e "'

+ nt(x) p(x}e'"],

(42)

where the meson kinetic energy in 0, is now given
as (X+2Y)N&o, . The neutrality constraint is

ol
0.5

l

0.6
I I

0.7 0.8

p (F ')

I

0.9 I.O

XN= ptx px d'x (44)

We solve for the energy exactly as in Refs. 2 and
3, obtaining

FIG. 1. The negative of the condensation energy versus
density, for standing-wave solutions (solid lines) and for
run~&~g-wave (RW) solutions (dashed line). In the run-
ning-wave case the value of k is chosen to minimize the
condensation energy at each density. The standing-wave
results are given for three different values of 4 (mea-
sured in units of m~c). One can, however, see the fact
that the value of k which gives the lowest energy in-
creases with density. At onset (p =0.21) according to
our analytic calculation the 4 =1.3 curve would pass
through zero; the others wiQ be below zero. However,
our numerical calculation is unreliable below a density
of about 0.5 F

normal ground state.
None of this will be true in the standing-mode

case. The pion density wave will induce a similar
wave in the nucleon density. We can calculate the
magnitude of this density wave from the eigen-
vectors, $. For example, for an average density
of 0.43 F ' and a pion momentum of 1.6m„, which
are values for which we predict a well-developed
condensation, we find a nucleon density wave,

(p t(x)p(x) + n t(x) n(x) ) = (1 +0.8 cos2kg) p . (42)

This will undoubtedly result in an increase in
the nuclear interaction energy. The pion density
wave inherent in the standing mode will itself lead
to greater energies from g p repulsions than in
the constant-density running-wave case (for which
the pion-pion effects were estimated in Ref. 2).

Near the onset density, when X is small, neither
of these effects should be important, since they
both give energies per baryon of order X . For
larger X it will require a theory with more nuclear
physics in it to decide which possibility gives the
lower energy.

TABLE I. The minimum condensation energy per nu-
cleon and the values of the parameters which minimize
the condensation energy for different values of the den-
sity, for the case of a running m wave superimposed on
a running x' wave (in the opposed direction). E, is given
by E/N (condensed pion phase) -E/N (pure neutron phase).
The condensation energies are more than 50% larger than
in the pure n case discussed in Ref. 3, even though the
fraction of w' mesons remains small. The parameter Y
is the ratio of the number of ~' to the number of neutrons;
X+Y is N„-/¹0* is the best value of pion momentum.

p{F ') E~ (m„c2) k* {m~c)

0.2
0.3
0.4
0.5
0 ' 6
0.7
0.8
0.9

-5.29 & 10
7.81x 10-2

~-0.184
-0.305
-0.430
-0.560
-0.687
-0.822

0.07
0.22
0.27
0.32
0.35
0.37
0.40
0.40

0.005
0.02
0.04
0.05
0.07
0.08
0.09
0.11

1.2
1.4
1.5
1.6
1.7
1.8
1.9
2.0

E 3 p k+X + ((p p,(X + 2 Y)
5 2m 2m

—2M [(X+Y)" + Y" ][X(1-X)]". (45)

Minimizing this expression with respect to X and
E' reveals that it will always be advantageous to add
a small number of n"s, with a corresponding in-
crease in the number of m 's. The onset is now
predicted to be at p =0.19 F ' instead of at 0.25
F-', with the v'/v ratio at onset equal to 0.071.
As the density is increased it is predicted that
somewhat higher fractions of r' are present, and
the energy is of course somewhat lower than in the
pure w case. Numerical results are shown in
Table I:. We can expect a similar admixture of w'
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mesons in the lowest-energy standing-wave c.on-
figuration.

E/N=5P~ (2m) '+(@~X

—zMg XmPz P~+k '(P~ —~k')in

VI. NEUTRAL-PION CONDENSATION

A Hamiltonian for a condensed m' mode in the
running-wave case is

H=H, +42XM, d'x P~ x,P x)

—nt(x)o, n(x)] coskz,

(46)

while in the standing-wave case it is

—n t(x)o, n(x) ]coskz,

(4'f}

where XV equals the number of x' mesons. Thus
in this case the only difference between the stand-
ing- and running-wave cases is in the effective
coupling constant, and we shall consider the stand-
ing-wave case only since it is the more strongly
coupled.

We shall solve for the energy of a state consist-
ing of n' mesons and neutrons only and calculate to
order X only. The single-particle energy in sec-
ond-order perturbation theory becomes

E(q) =(2m) 'q'+XM, ([E(q) —(2m) '(q —k)'] '

+[E(q) —(2m) '(q+k) ] ').

(48)

The differences between this result and that for
the v standing wave, Eq. (20}, are the following:

(a) The coupling is larger by a factor W2 here.
(b) There is no parameter p, and no equation of

constraint in the g case.
(c) Since there is no y. in the denominators in

(48) they will vanish for some q even in the sec-
ond-order terms. The band splittings develop in
first order in this model.

(d) Were we to perform a complete calculation
for all X we should use a range of q, in each band
equal to one half that used in the z case; i.e.,1 1

2k & q, & ak. However, to obtain the first-order
result in X we can ignore the band structure and
integrate straight through the singularity in (48),
using the principal-value definition, when we cal-
culate the tota. l energy of the system.

In this way we obtain the result

(49)

The negative term here is embarrassingly large.
If we consider a pion momentum of g =1.2m, then
(49) would predict a w' condensation at nuclear
densities. If a higher g were chosen the situation
would be even worse.

However, we have reason to think that the re-
sult (49) will be altered much more by the nuclea. r
forces than the results for the m cases. One evi-
dence for this is the very different way the nucleon
mass enters the formulas for the condensation en-
ergy in the two cases. In the n case it came in
an insignificant correction term of magnitude k2/

2m per proton. In the 7t' case the entire negative
term was proportional to m. This reflects the dif-
ferent nature of the intermediate states in the two
cases. In the m' case the only intermediate states
which actually contributed consisted of neutrons
near the Fermi surface excited to outside of the
Fermi surface by addition of the momentum +kz.
In the m ca,se the intermediate states replaced a
neutron from anywhere in the sea. by a proton with
momentum differing by +kz.

The large second-order effect in the m' case
came from the fact that the kinetic energy differ-
ences between the unperturbed ground state and ex-
cited states were so small owing to the largeness
of the nucleon mass. However, in real nuclear
matter it is known that a large price in potential
energy must be paid also; the effective mass at
the Fermi surface is about one half of the free-nu-
cleon mass.

If, for example, we use an effective mass of
0.6m in (49) the situation changes dramatically.
Now the onset for m' condensation will be at densi-
ties above p =0.2 F ' for any pion momentum up to
&=2.4m„. at k =1.2m„ the onset would be raised to
0.490 F '. Thus our conclusion is that the v (and
x') condensation probably would have an onset at a
lower density than would a p' condensation. The
question of whether a m' mode could then be es-
tablished in the presence of the m mode is then a
very complicated one. Only one thing is clear:
We cannot superpose the theories of the separate
condensations. The demands made on the nucleon
wave functions are at least partially in conflict.

VII. DISCUSSION

We have found a multitude of possibilities for
pion condensation in superdense nuclear matter.
Unfortunately we have not been able to analyze any
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other case as thoroughly as that of the running w

wave, which was discussed previously. A more
complete discussion of the cases of a standing n

wave or of a n' wave would seem to involve some
hard nuclear physics. If any of the other possi-
bilities were realized the effects on the equation of
state could only be a further softening over that
predicted in the running m case. Thus perhaps the
most important immediate problem is the further
development of the running-wave m case, through
a more complete analysis of the effects of spin-
dependent nuclear forces, through a more complete
treatment of non-P -wave pion-nucleon forces,
perhaps through inclusion of the multipion effects

from chiral models, and especially through a care-
ful understanding of electromagnetic effects and
filament structure.

There is one further modification which would
almost certainly lower the energy in all cases but
which we have not yet examined. This is the addi-
tion of harmonics to the basic meson wave. The
choice of a simple sinusoidal wave was completely
arbitrary. For example, in the standing-wave
case, which already is a variety of a crystal since
translational invariance has been broken, it may
be advantageous to localize the pions even more
through addition of harmonics to the wave form.
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