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(Received 20 November 1972)

The Lorentz-Dirac equation of motion for a particle moving in a uniform field is analyzed
in detail. The perturbation solution obtained is exact to sixth order in the interaction constant
A. =2e H/3m c . We study the convergence of this solution and show explicitly how the radiated
energy depends on the transverse energy and on the Schott energy.

I. INTRODUCTION

Recently there has been renewed interest in the
classical motion of a radiating particle in a uni-
form magnetic field. Though there has been some
disagreement as to the roles played by the trans-
verse and longitudinal motion in contributing to
the radiated energy, ' 4 the approximate solutions
of the Lorentz-Dirac' equation obtained have been
applied to the study of synchrotron emission from
pulsars. " From a more conceptual viewpoint, the
significance of the Schott' energy for the relativis-
tic and nonrelativistic motion of a particle in a
plane normal to a constant magnetic field has been
clarified. ' It is our purpose in this paper to pre-
sent a detailed analysis of the Lorentz-Dirac equa-
tion for general, as compared with planar, ~ motion
in a uniform magnetic field. The solution is given
to sixth order in the interaction parameter, A.

= 2e'H/sm'c'. We study the validity of this expan-
sion and consider the limiting cases when the ini-
tial energy of the particle is equal to, or very
much greater than, the longitudinal energy. Using
this solution we show explicitly the manner in
which the radiated energy depends on the trans-
verse energy and on the Schott energy.

II. EQUATIONS OF MOTION

The units are Gaussian, and we use a dot over a
variable to denote differentiation with respect to
the particle proper time v.. The four-velocity has
the components

v„(T) ={v, =i, (r), fey(r)), (2)

where the Latin subscript k takes on values 1 to 3.
For a uniform magnetic field, H, = (0, 0, H), the
nonvanishing components of the electromagnetic
field tensor are

E,~ = -E~~ = H.

When we introduce the complex four-velocity vari-
able, w =v, +iv„of the particle in a plane normal
to the direction of the magnetic field, Eq. (l) re-
duces to the three equations

WW ++ V~VS
rum -A. W+A, W —y2 =-iCO W,

C

~ ~ ~ ~

WW + VSV3 ~

4)v3 —Avs+Av~ 2
— —p =0

~

(4a.)

(4h)

ternally applied field, described by the antisym-
metric field tensor E„„, is

~ ~

82 vv v„
v„(T) —2, ff „(v)+2 ~ vq(T) 2

= F„„v„(T).3 mc» 3 mc3 u c2 ~c uv u

The Lorentz-Dirac equation for the motion of a
pai'ticle of charge e .".nd rest mass m in an ex-

WW*+ V3V3 ~ay —A.@+ay 2
- y =0,c (4c)
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(0( 7 (O) 7 (0) ()
yL, YJ

1/2
x exp [-n.(((((T)] (5a)

with the cyclotron frequency (d = eH/mc and the in-
teraction parameter X = 2e'H/3m'c~ W. e represent
the solution to these equations in terms of the ini-
tial values of the variables and two functions of the
proper time, p(T) and 8(r}, which vanish for 7 =0
Thus we write

isfy the coupled differential equations

2

eQ- 82- A. Q - A.2/2+2%.2/2 y
yL

and

~ ~ 2

+8- u2 —48+2%2/8, =0.
yL

(8)

%'hen we express these equations in terms of the
variables x= p/(d, y= 8/(v, and t'=y'/y~', we ob-
tain the pair of first-order differential equations

w(T) =w(0) exp[ A. (t(-(T) —i8(T)],r(T)
y(0)

v, (T) v, (0)

() (o)
"'

(5b)

(5c) and

x-y'+A. '(2&-1)x'+X'2)(t'-1)x —=0
dg

(9)

Here y(0) equals the initial total energy (in units of
mc'), and w(0) the initial transverse complex four-
velocity, while y~ is the energy associated with
the constant longitudinal velocity' u, (0), that is,

y —1+Z'2gxy+ X'2g(t- —1)x—= 0.
dg

(10)

In making g the independent variable in these last
equations, we have used the relationship

2= 1
l 1 u 2(Q)/ 2 ~ (6)

Corresponding to this assumed form of solution,
we find that the two functions, f3'} and 8, must sat-

derivable from Eq. (5a). At this point we treat a
as a small parameter and derive the expansions

and

x = 1+)P(l —6g) + X'2(40'' —20&+ 1) —A.'(1568&' —1368++234& —5) +

y = 1 —X'2&+ X~2)(10&—3}—X84&(881' —60g+5) + ~ ~ ~ .

(12)

(13)

We now expand & =y'/y~', as given by Eq. (Sa), into a Taylor series in the variable (XP). The result is

r/&0 = 1 —2(&0 —1)X4(+2(&0 —1)(2go —1)(X4()2 ~ (&0 —1)(6&02 —6&0+ 1)(A 4()~

+-,'(t.,—1)(24'.,' —36t.,'+14', —l)(z4)'+ ~ ~ ~ (14)

y(v) = (d7'+ Am(1 —

6go)(dr�+�

)P6go(go —l)(((~T ~+ g42(40 go~ —20go+ 1)(v7 —g~4to(go —1)(2go - l)(d~r

—X'2&0(4 —1)(98&0—23)(v~T~+ X52g~(&0 —1)(6)02 —6&0+ 1)(d4T4 —)P(1568&0~ —1368&02+234lo- 5)(vT

+)8 t,(t, —1)(165t0' —133(~+ 13)uPr ' —ze-', to(go —l)(24&0' —36&0'+ 14(,—1)(d'7'+ (15)

wherein t'O=y'(0)/y~'. Inserting this expansion into Eqs. (12) and (13) yields, after integration, the desired
(II} and 8 functions:

8(T) = (v r )22&0(vs +x'2—&0(g, —1)(v2r '+ A~2 &0(10&0—3)(d r —A'-,' (('0(&0 —1)(2&0—1)(d'T '
—X~4&~(t'0 —l)(13&0

—2)uP r 2+ A.
' —', &0(to -1)(6&02 —6 t'0+ 1}(((~7'~ —A ~4 go(88/02 —60/0+ 5}(vT

+)8,' g,(g, —l)(90go' 68go+5—)(d'7'-—)P —' f (g, —1)(24ga' —36'' '+ 144 —1)(v'~ '+ ~ . (16)

It is clear that the solution presented in this sec-
tion is exact to sixth order in the interaction con-
stant and can without fundamental difficulty be ex-
tended to higher order. It is to be compared with
previous solutions. '6' "

III. LIMITS OF VALIDITY

Bhabha, "some years ago, put forth the idea that
the physical solutions of the I.orentz-Dirac equa-
tion should be continuous functions of the interac-
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tion constant at the point where the value of this
constant is zero. Insofar as the solution given in
the previous section satisfies this criterion as A.

tends toward zero, it is a physical solution. "
However, the Taylor series for g/go, Eq. (14),
used to obtain the expansions for the functions P
and 6 in terms of the proper time will be valid only
within the circle of convergence. If we write Eq.
(5a) as

&/&, =[&,—(K, —1)e- ] ',

For a succession of intervals defined by the proper
times (r, —r,), (r, -r, ), . . . , these last relation-
ships can be expressed as

~L
2 2

1—,exp(21(dr, ) = 1—,exp(2X(dr, ) = ~
yg,

y(r, )' y(r, '
(24)

and

w(r, ) w(r, )

y(r, )
' exp[-(Z+ f)&ur, ] = exp[-(Z+f)(or, ] =

y(r, )
we find that this radius is

I p I
= »k./(C. —I)]

and corresponds to a limitation on the variable

I@I 2 ~, ~

»[~./(~. —1)].

(18)

(ae)

(25)

It consequently follows that Eqs. (22) and (23) de-
scribe the motion over all the intervals with r as
the total elapsed proper time.

When the initial total energy is very much greater
than the longitudinal energy, that is, y(0)» y~,
this allowable range of the variable P is approxi-
mately (~ A

~
=10 "H for an electron) given by

~
y~& 5x10'Sy '/Hy'(0)

In contrast, when y(0)=y~, we have

~ Q~ & 2.5 x10 /H([y(0)/y~] —1}.

(20)

(21)

IV. MOTION WITH LOW AND HIGH
TRANSVERSE ENERGY

When the motion of the particle is primarily in
the direction of the magnetic field, we see from
Eq. (21) that the range of the variable 4) is large,
at least for physically achievable magnitudes of
the magnetic field, and the motion can then be fol-
lowed for many revolutions (large values of 8). It
is interesting to point out that, in the special case
of y(0) = 1 and y~ =1, our solution corresponds to
the nonrelativistic solution given by Plass. '

In the alternative case of a particle having an ini-
tial energy very much larger than its longitudinal
energy, that is, a large transverse energy, the
situation is quite different. Equation (20) shows
that the range of /becomes small as y(0) increases
in magnitude. Under this condition the particle
motion can be followed by considering successive
intervals no larger than this limit. However, with-
in each of these intervals, the quantity (2Ag, Q} is
less than one. Therefore, since

~
X(«1, the val-

ues of both @ and 8 as given by Eqs. (15) and (16)
become very nearly equal to ~7. Under these cir-
cumstances, Eqs. (5a) and (5b) simplify to

V. ENERGY CONSERVATION
AND THE SCHOTT ENERGY

In this section we discuss briefly the conserva-
tion of energy characterizing the motion of a par-
ticle in a uniform magnetic field. To do this we
first integrate Eq. (4c) from the initial proper
time to a later time 7.. Thereby we obtain

W, (0, r}=y(0} y(r)—+W, ( )0—W, (r), (26)

(27)

while the acceleration or Schott energy at time 7.

is

g, ( )= ——y'( ). (28)

With the help of Eqs. (5a) and (12), this expression
for the acceleration energy can be written in the
form

)F,(.) =.*,(.) . —()
y'(r)
~L

~' 1-6 ', ~ ~

~L
(29)

It is evident that at any given time the Schott ener-
gy associated with a particle in a uniform field de-
pends only on the total and longitudinal energies of
the particle.

For the energy radiated over the entire motion,
that is, until the particle has lost all its trans-
verse energy, we write the relationship

where the radiated or Larmor energy is

A. KN*+ V, V, ~((.(o, )=- ~ ~(.) . '
~ )'-*

0

and

I /&o [&, —(1', —--1)exp(-2&&or)] '

exp[-(Z+ z)(dr].
w y(r)
w, y(0)

(22)

(23)
(30)

This expression is of interest since it shows that
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a general solution of the Lorentz-Dirac equation
requires that a particle moving in a uniform mag-
netic field radiate an energy equal to its trans-
verse kinetic energy, and in addition, the initial

Schott energy. Though for realistic magnetic fields
the additional energy is small, it is essential for
the conservation of energy. ' '"
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The flat-space Brans-Dicke (BD) Friedmann cosmologies previously found are analyzed
in more detail. . Further exact relations among the observable quantities p, H, A (fractional
time variation of G), t, and q (deceleration parameter) are found and subsequently used to
discuss the over-all consistency of the cosmological solution with the observed values of
these quantities and their associated uncertainties. It is found that consistency with ob-
servables is possible over almost the entire range of the solution parameter z from 1 to ~.
The greatest upper bound on Ao which is marginally consistent with the other observables
(t~, = 7.3 X10 yr and tz =19.5x10 yr) is found to be A=3.85X10 /yr (forz = 1.4) and
corresponds to a density of p= 1.95~ 10 g/cm . Since in the z 1 limit the curved- and
flat-space solutions are identical, the above bound on A is also a reasonable one for curved
space. In any case, the limiting values of A/H asz 1 give a greatest upper bound on A
for curved spaces, and one finds A~ = 9.7& 10 /yr for tH = 13&& 10 yr. The previous
"upper bound" A = 10 /yr (for flat space) found by using the z ~ solution is therefore
actually an upper bound in terms of e only. Finally the values for the deceleration para-
meter are found to range from q = 0.538, 1.0 (for c = 0, 3) to q = 2.0 (all e) as z goes from
~ to 1. For the case of marginal consistency with the other observables (z = 1.4) one finds
q = 1.42, 1.52 for e= 0, 3. This range of (flat-space) values for the deceleration parameter,
consistent with other observables, indicates the nonexistence of a unique relation between
the deceleration parameter and the sign of spatial curvature in the BD theory.

I. INTRODUCTION

In a previous paper' exact solutions to flat Fried-
mann-type Brans-Dicke' (BD) cosmologies were
found and an upper bound' on A p, the fractional
time variation of the gravitational constant at the
present epoch, was obtained. The bound consisted
merely in establishing a relation between A, and

to (or Ho) at the present epoch. The analysis of the
cosmological solution in Ref. 3 was incomplete in
several respects. We wish to present here a more
detailed analysis which will bring to light certain
features of the solution not apparent from the pre-
vious work.

First of all, we find some new exact relations
which exist among the observables pp Hp Ap,


