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Bandyopadhyay's work concerns the annihilation

process e + e'- v, + v, and also allows the process
+ V,

'- v„+ v„. Correspondingly, from his pre-
diction for the coupling strength we would find g„'
=g, '(m„/m, )' =2x10 "which is a factor of hundred

larger than our result.
We mention that the photon-neutrino-antineutri-

no coupling has some interesting features and in
the future maybe the decay p - v„v„ is possible to
be observed since it is more likely to occur than
p'- v, v, although the branching ratio for this
process would be very small due to the very weak
coupling strength.
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We extend the bootstrap model of inclusive reactions proposed by Finkelstein and Peccei
and by Krzywicki and Petersson to include quantum numbers. In this extended model we
obtain matrix integral equations for the inclusive distribution functions in terms of leading-
particle distribution functions. The single-particle inclusive distributions in the central
region are found, in the model, to be independent of the process. Furthermore, if the target
(projectile) leading-particle distributions are independent of the projectile (target), then all
inclusive distributions in the target (projectile) fragmentation region are independent of the
projectile (target), and multiparticle inclusive distributions exhibit factorization properties
among particles traveling in opposite directions. An example involving the scattering of
mesons and baryons is discussed.

Recently a bootstrap model of inclusive reac-
tions was proposed' in which one envisaged parti-
cle production processes as occurring via the
formation of a leading particle and a fireball. The
bootstrap hypothesis entered in assuming that the
fireball decay distribution, in its own rest system,
was the same as the over-all distribution in the
c.m. system save for the fact that what played the
role of s, the square of the c.m. energy, for the
fireball decay was the fireball invariant mass
squared, M'. In the scaling limit, this bootstrap
hypothesis leads to integral equations for the in-
clusive distribution functions in terms of an (un-
known) leading-particle distribution. Knowledge
of the single-particle inclusive distribution, how-
ever, permits in principle the elimination of the
leading-particle distribution from the multiparti-
cle distribution equations, thus effectively deter-

mining these functions in terms of the single-par-
ticle spectrum.

We should comment briefly on the physical mo-
tivation for the bootstrap hypothesis. The as-
sumption made is that the distribution of produced
particles is so chaotic that if one subtracts out the
leading-particle contribution, what remains - the
fireball -has a distribution which, apart from a
scaling down in energy, is just like the over-all
distribution. We should also note that the leading-
particle distribution extends down to g = 0, al-
though it vanishes there, and thus what we call the
leading particle may not be in actuality "leading"
in all events. This precludes an experimental
definition of this quantity, but a precise meaning
for this distribution can be given in models. ~

For simplicity, in Ref. 1 a world of only one
kind of particle was considered. This, of course,
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permitted only a qualitative comparison of the
model with experiment. In this paper we would

like to partly remedy this situation by extending
the model to a more realistic case in which parti-
cles of different quantum numbers are present.
This extension not only makes the model more
amenable to direct experimental test, but also
yields several interesting predictions which could
not be abstracted from the simple model of Ref. i.

Let us consider an initial process in the c.m.
system which is determined by s and the (additive)
quantum number of the initial particles. We shall
use Qz, (Q„) as a shorthand notation for the collec-
tion of quantum numbers belonging to the particle
which is incident on the left (right}, and shall find
it convenient to denote the process itself by
[ Qz, Q„],. All events are taken to proceed via the
formation of a leading particle and a fireball, with

the leading particle carrying quantum numbers q,
to the left (or, alternatively, q„ to the right).
Again here q, (q„) are to be understood as short-
hand for the collection of quantum numbers of the
left (right) leading particles. The most natural
way to extend the bootstrap hypothesis is to con-
sider that the fireball decay distribution, in its
rest system, is the same as the over-all distribu-
tion in the c.m. system of a process, at energy
squared M', in which the quantum numbers of the

left and right impinging particles are respectively
Q~ —q, and Qs (or alternatively Qz, and Qs —q„).
Thus we may write, symbolically,

[ QI, i QR] s 2 (ql +[ QL

qadi

Qz]zm)

+ Z([ Q. , Qz - q, l .+q, ).
r

Generally speaking, it will be necessary to im-
pose certain restrictions on what kind of leading
particles are allowed to be produced in a given
process so that the problem remains manageable.
An example of this will be illustrated with a sim-
ple model below.

Let us denote by Ã f (p, s) the single-particle
inclusive distribution of particle i in the ab pro-
cess:

Let L;"(p, s) and 8 (p, s) be, respectively, the
left and right leading-particle distributions of a
particle of type ~. Because there is only one lead-
ing particle per event we have

dp[L;~(p, s)+8; (p, s)] =1.
i 4

From Eq. (1) and the bootstrap hypothesis, it fol-
lows, just as in Ref. 1, that

&r'(pi s) = Lt'(pi s)+&['(pi s)+Z
i

dp' Ly" (p'i s)&i "(Ar piM*)
j 4

+Q l dp'Z; (A p~'. }R"(p',s). (4)

Here A~ is the Lorentz transformation that takes one from the c.m. frame to the fireball frame, and the
notation N;. '* signifies that this is the inclusive distribution for the production of particles of type i in a
reaction where the initial quantum numbers are those of a impinging on the left and those of b-k impinging
on the right.

Equation (4) simplifies considerably in the scaling limit and if we integrate over the (limited) transverse
momentum. Since particle masses are unimportant in this limit for the kinematics, one obtains precisely
the same kind of equation as in Ref. j. save for the quantum-number indices. Let us define

l;.'(«}= d'P, L", (P„x),

r'f (x) = d'p, A (p„«),

where by hypothesis l f'( «0) =r f'( &x0) =0. Then we can write Eq. (4) in the scaling limit and integrated
over transverse momentum as

d3 ob a- 'd
f/~(x}=lf (x)+rf'(x)+g lz'(y)ff ~'(z(x, y)}++ ~t f; (z(x, y})re~ (y), —

y
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where

x(x y)= x

if xy&0

if xy &0. (7)

Equation (6) provides the desired generalization
of the bootstrap model to the case in which quan-
tum numbers are included. As can be seen the net
effect of the introduction of quantum numbers has
been to give a set of coupled integral equations
for the inclusive distributions f (~ (x) without al-
tering the analytic structure of the model.

An immediate consequence of Eq. (6) can be ob-
tained when x= 0. In this case the integral equa-
tions reduce to algebraic ones for the f('(0):

( p

y 5( 0)
(( y Iab( ) ya-j (((0)

sumption for the leading-particle distribution func-
tions. If I; (x) = I; (x) and «', ~ (x) = «~ (x) then it
follows that f; (x) is independent of b for x& 0 and
independent of a for x ~0. That is, provided that
the target (proj ectile) leading -particle distributions
are independent of the nature of the projectile (tar-
get), the inclusive distribution in the target (pro-
jectile) fragmentation region will also be indepen-
dent of the nature of the projectile (target). To
prove this assertion it is convenient to recast Eq.
(6) into a set of algebraic equations by introducing
the transform4

Defining

)
x«', (1 —x)

1-x
' dy+ ob-A

~

y &ab y)
y

or in matrix notation

A(l, «)f( (0) = 0 .

(6)
we have

The matrix A(l, «} has determinant zero since the
sum of each of its rows vanishes due to the nor-
malization condition

Since

(14)

Furthermore, if A(l, «} is an nxn matrix, in gen-
eral its rank will be n-1. Hence Eq. (9) has a
unique solution in terms of an arbitrary parameter.
Because the sum of the rows of A(l, «) vanishes it
follows that this solution is just

f (0)=c, .

Thus the value of the single-particle distributions
at x=0 is independent of the process in this model.
Such a result is typical of an analysis of inclusive
reactions along the lines of Mueller with a factor-
izable Pomeranchuk singularity. '

A related factorization property of ft'(x) can be
proven provided one makes a very plausible as-

is independent of a, it is clear that a solution of
the above equations is

(15)

However, since the above equations have a unique
solution, Eq. (15) is the onl& solution proving the
desired factorization property.

Multiparticle equations can be obtained in an
analogous way as in Ref. 1, the introduction of
quantum numbers merely making these equations
matrix equations. As an example we write below
the equation satisfied by the two-particle distribu-
tion function f;,'(x„x() in the case where x, & 0,
x) &0:

f,(x(, x,) = I('(x()f (x,) +f (x,)«,"(x,)+Q —. I (y) y((" ', x,
-1

(16)

If one assumes that the leading-particle distributions factorize, then f;('(x„x() does also:

f„(x(,x, ) =f'((x()f,'(x() (x, &0, x, &0). (17)

To prove Eq. (17) it is again convenient to go to the transform space where Eq. (16) reads, in matrix nota-
tion,
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A;,'"(h„X,)f;~(X„A,) .= l;(A.,)fdb(h, ) +f;(h;) r&(X&),

with

Ached(, l g ) 8cc8bd g ha (y )gc kc-8bd g hb (~ }pa 5cb-md

=A-(~ ) 8bd+ 8-Abd(X, ) . (19)

Here the matrices A (A., ) and Abd(X, ) are precisely the ones that enter into the equations for the single-
particle distributions;

A (~,)f', (~,}= i;(~,),

Abd(X, ) f('(X, ) =rb(X, ) .
(2o)

From the above it follows immediately that

(21)

which, on transforming back to x space, proves the stated factorization property, Eq. (17). Similar fac-
torization properties can be established for multiparticle inclusive distributions among particles traveling
in opposite directions.

To conclude, we shall illustrate the model by considering meson-baryon scattering. We shall consider
a simplified problem where there is only one kind of meson, one kind of baryon, and one kind of antibary-
on; they are denoted by M, 8, and 3, respectively. It should be clear that this is not a necessary restric-
tion since in principle the model can handle an arbitrary number of particles. To make the problem tract-
able we shall impose as a reasonable physical constraint that no leading antibaryons (baryons) can be pro-
duced by an incident baryon (antibaryon). In this case the only nonvanishing right leading-particle distri-
butions are r„", r~, x~~; r„, x~; x„, r~@. These are not all independent, since by baryon-antibaryon conjuga-
tion one has

g ~ $.
+gy g &g &g =&@ ~ (22)

It should be clear that if we had more than one baryon, say p and n, we would have to consider leading-
particle distributions like r~~ and r~. These in general would not be the same and would lead to distinct
bootstrap equations. The relevant equations for the problem, written in the notation of Eq. (1), are

[8, 8],=(8+ [M, 8]&ca) +(M+ [8, 8]„a)+([8&M]&da+ 8) + ([8,B]sa+M) &

[8,M ],= (8+[M, M]b&a) + (M + [8,M ]&&a) + ([8, B]„a+8) + (f8, M]~a +M) + ([8,8 ]„a+ 8),

[8, 8],=(8+[M, B]sa)+(M+[8&E]„a)+([B,M]„a+8)+([8,E]„a+M),

[M, M ],= (8 + [8,M ]„a)+ (M + [M, M ]sa) + (8 + [8,M ]sa) + ([M, 8]„a+E) + ([M, M ]Na + M) + ([M, 8 ]sa + 8)

plus five other equations which can be obtained from the above by the substitution 8 Band/or —the inter-
change of the right and left incident particles.

It is straightforward to obtain a solution of Eqs. (23) in the transform space. One finds

f,"(X)=[M, (h)[—,
' —h, „(h)]+[8,(h) + (EA)] h„"s(A.))a '(X)

f; (X) =(Bb(X){[a—h,"~(h)][a —h, bd(X)] —h„s(X)h s(X)f

+M, (X)[a —h (h)3]h (X)ac+aB, (X)h (h)~he, (X))a6 (X)[a —h, „(X)]
(24)
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where

a(X) =([-,' —h,"„(X)][—,
' —h„„(X)]—2h„" (X}h„(A)j, (25)

and b. A straightforward calculation gives

fs(x= 0) = (2(ds(ds + (ds(de)R

and

r ', (X),

R, (~) = r'„(~),

i 0,

i =M

i=8,

fs(x=O) =fr(x=O)

=(2(us(us)R ',
where

'Ej
R = — &u s —[r"„(x)+ 2r s(x)] ln(1 —x)

0

(29)

0,

i;(i~),

r,"(X),

elf, (x) = r"„"(x),

, r,"(X),

Since at A, =0

i=B

i=E,
i=B
i =M

i=s.

(26)

(
M Q)~Q) ~+ 2(d~(d ~

N jp B
R B 240 gab g

(31)

+2uP~ —[r„(x)+re(x)]in(1—x) . (30)
0 X

The fact that fs(0) =fs(0) is not surprising since
it merely reflects baryon conservation. '

The ratio of meson production to baryon pro-
duction at x= 0 in the model is

h,'s(0) =rs(0) = ~N.
h„s(0) =js(0) =(us,

h",s(0}=&~(0) = ~s,
h",s(0}=js(0) =&us,

with the normalization condition, Etl. (10), im-
plying

(27)

Experimentally it is well known that this ratio is
large. This fact can be easily obtained in the mod-
el by requiring, rather naturally, that the proba-
bility of a baryon being a leading particle in a
meson-induced reaction and the probability of a
meson being a leading particle in a baryon-in-
duced reaction be small. ' In this case

(32)
B B(dg+ Q)g = 2 &

cL)g + 24) g =
p ~

(28)

it follows that all f (A)have a .pole at X = 0 since
d, (a) vanishes. As can be checked, the residue
of this pole is independent of the process, con-
firming that indeed f (x=0) is independent of a
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