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Three different types of two-variable expansions of three-body decay amplitudes and their
square moduli are reviewed and compared —a recently suggested expansion based on the
group O(4), the standard Dalitz-Fabri power series, and an SU(3) expansion suggested by
B. W. Lee. Each of these expansions is then applied to analyze the recently obtained ex-
perimental Dalitz plot for the g n n+x decay.

I. INTRODUCTION

In two recent articles" ' (to be referred to as I
and II) we have presented a general formalism for
treating Dalitz-plot distributions in decays of the

type

1-2+3+4

and have applied this formalism to analyze the re-
sults of recent experiments on the process K'

tt 7l 7T ~

The formalism of papers I and II applies to spin-
less particles and consists of a two-variable ex-
pansion of the decay amplitude for reaction (1) in
terms of the basis functions of the irreducible rep-
resentations of the rotation group O(4). Reaction
(1) is considered in a center-of-mass-like frame
of reference, in which the momenta satisfy

(and of course p, =p, +p, +p, ). Choosing the space
axes in such a manner that all momenta p, lie in
the 0„,plane and p, = -p~ is along the z axis, we can
express the scattering amplitude as a function of
the coordinates of momentum P, . Since all momen-
ta are on their mass shells, we can consider the
decay amplitude to be a function of a point on the
upper sheet of the hyperboloid p'= p, ' —p'=m' (we
put p=p, ). For scattering I+2-3+4 the point p
would indeed range over the entire sheet p'=m',
Po ~ m and our approach would lead to expansions
in terms of the homogeneous Lorentz group O(3, 1),
which is the group of motions of the corresponding
manifold. Such two-variable'expansions of scatter-
ing amplitudes have been investigated in a series
of previous publications (see, e.g. , Refs. 3-6).
For decays, however, the physically available en-

ergy region is restricted, so that the momentum

p only lies on a "cup" close to the vertex of the
hyperboloid. This finiteness of the physical re-
gion for decays was used in I to map the physically
accessible part of the hyperboloid onto a four-di-
mensional sphere. The group of motions of this
manifold is O(4), hence we obtain O(4) expansions
of decay amplitudes. For all details we refer to
I and II. Let us mention that the "spinless expan-
sions" of decay' ' and scattering amplitudes' '
have been generalized to O(4) and O(3, 1) expan-
sions of helicity amplitudes for processes involv-
ing particles with arbitrary spins. ' 8

The dominant feature of both the O(3, 1) and O(4)
expansions is that they are "maximal" expansions,
in that the entire dependence on the kinematic pa-
rameters (e.g. , the Mandelstam va, riables s, t,
and u) is exhibited explicitly in known functions
[basis functions of representations in the spin-zero
case, O(3, 1) or O(4) transformation matrices in
the nonzero-spin case]. The "dynamics" of the
reactions are represented by the expansion coef-
ficients. In previous articles' ' we have shown
that such a separation of "kinematics" and "dy-
namics" is meaningful, in that the special func-
tions provided by the O(3, 1) and O(4) groups have
reasonable "kinematic" behavior (e.g. , behavior
at thresholds and pseudothreshoMs, in asymptotic
limits, etc.).

The most standard way of treating scattering am-
plitudes is to write single-variable expansions for
them. Thus, in the usual partial-wave analysis
the squared energy s=(p, +p, )2 is fixed and the de-
pendence on the scattering angle is expanded in
terms of Legendre polynomials [or O(3) D func-
tions]. In Regge-pole theory the squared momen-
tum transfer f = (p, -p, )' is fixed and the energy
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dependence is expanded in terms of certain I.e-
gendre functions [or O(2, 1) D functions']. Decay
amplitudes, on the other hand, are customarily
treated by writing two-variable expansions. Among
them let us just mention the simple power expan-
se.on in terms of the Dalitz-Fabri variables, ""
an equivalent trigonometric expansion first (to our
knowledge) used by Weinberg" and an expansion in
terms of functions, orthonormal over the Dalitz
plot, suggested by I.ee."

In the future we plan to further develop the O(3, 1)
two-variable expansions for scattering so as to be
able to apply them to analyze data on two-body
scattering (different two-variable expansions of
scattering amplitudes also exist in the li'~rature,

see, e.g. , Refs. 14, 15). The O(4) expansions for
decays can however be applied immediately and
compared to other expansions, so we are concen-
trating on them first.

In Sec. II of this article we reproduce the O(4)
expansions obtained in I both for amplitudes and
square moduli of amplitudes and compare them
with other expansions. We also obtain some rele-
vant formulas for the I ee expansions. " In Sec. III
we briefly discuss the data on q- 3m decays'~"
and our fitting procedures, using the O(4), Lee,
and Dalitz-Fabri expansions. We also present
and discuss the results of the various numerical
fits to the data. Finally, in Sec. IV we summarize
our conclusions and discuss the future outlook.

II. EXPANSION FORMULAS FOR DECAY AMPLITUDES

A. Expansions of Amplitudes

Let us consider the decay process (1) and introduce the Mandelstam variables

s=(P, -P.)', t=(P, -Ps)', a=(P, -P~)',

8+ t++ =&El +m2 +tPl3 +Pl4

where p, and m,. are the particle momenta and masses. Let us now consider three different types of two-
varlable expansions.

The O(4) variables of papers I and II are

Pl i+012 —8 Pl l —SZ2 —8
2ml2828

2s (t —m„' —m, ') + (s + m, ' —m2') (s+ m, ' —m4')
—8 + Sl + — + PPl —Pl 8 — tkl3 + tPl4 8 — SZ —Pl4

(3)

(4)

Sll + PE2 —Pls+ tFE4 Sl~ —Sl~ — 8'l3 + 'Pl4

4m, '(m, + m, )'

The O(4) expansion of the decay amplitude can be written as

I'(s, t) =-P Q a„, Q„,(o., 8),
n=O l =0

where a„, are the O(4) partial-wave amplitudes and

P„,(o., 8) = e""' ' (2l+1)- —,' (sinn)' C„'",(cosa)P, (cosa) .(n. l)(n- I)! '~2

27r n+ I+ I !

[C„'','(cosa. ) and P, (cos6) are Gegenbauer and Le-
gendre polynomials, respectively. ]

The Dalitz-Fabri variables are"

~ T3 —T4 3T2- @
9

where T2, T„and T4 are the kinetic energies of
the final particles in the rest frame of the decaying
particle 1. We have

Q = I ~+ T3+ T4 = m, —m 2
—m3 - nZ4

vSx= —— [(m, —m, )(m, +m, —2m, ) —t+u],
m

y
-- —— — —[3(m, —m, )' —2m, q —3s],

1

The corresponding "xy expansion" is simply

k, m

Finally we shall make use of the I,ee expansion"
in which the variables are a and P (a and P in Ref.
13). It is difficult to give an explicit expression
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for a and P, but they can be related to more usual
variables as follows. Let us put' '

tions, orthogonal over the Dalitz plot can be writ-
ten as

T, = —,Q [1+pcosQ], x= p sing,

Ts= g Q [1+pcos(Q —37))], g=pcosf,
T, = —,

'
Q [1+pcos(P+ -v)].

E(s, t) = g g A"„A."'(a, P),
K=kl m, n=o

with

(13)

In these variables the boundary of the decay re-
gion is

1 = (1+ «)p'+ «p' cosQ, (10)

where «=2QM(2M —Q) ', M is the mass of the de-
caying particle and the masses of the three final
particles are assumed to be equal. Finding the
real root of (10) we obtain the boundary of the
Dalitz plot as

1 21r

ada dtl «""(a, P)X" " (a, P) =6,5„„,5„„.
0 0

(14)

Following Frankel and Van Dyck, "we have sepa-
rated the decay amplitude into an even («=+I) and
odd («=-1) part with respect to P- —P, i.e., even
and odd with respect to the interchange of particles
3 and 4. In (13) we have

g""(g P) = [2(2n+m+ 1)] ~ g P &(2g 1)B"(P)
p~(P) =R(cos3y, «) .

The Lee variables then are

a=
B(co sf ~ K)

f dP'8'(cos3$', «)

f 't' dy'll'(cos3y', «)

and we have

(12)

where P„'"'(x) is a Jacobi polynomial and

B'(P) =N cosmP,

B '(P) = N sinmP,

with

I! ~, m)1
w

(15)

0 «(I, 0&P (2w.
The corresponding expansion in terms of func-

1 m=0.

B. Expansions of Square Moduh of Amplitudes

N

IF(, t)l'= Z Z &,.e..(, 8),
N=O L=O

with
1

(N+ I)'i2
b„i = — g [(n+ 1)(n'+ l)(2l+ 1)(2l '+ 1)]"'(lOl'0!10) ,' n'—

nln'l' 2iv

l

8 +nl +n'l' P

L

2n
gl1

2

2N1

where (lOl'0!I.O) is an O(3) group Clebsch-Gordan coefficient and the curly brackets represent an O(3) BJ
symbol.

For the xy expansion we have

!F(s,t)!'= P S,„x"y", (20)
E, N=O

with

Using the above expansions it is a simple matter to calculate the square modulus of the decay amplitude
E(s, t) and thus the density of points on the Dalitz plot.

For the O(4) expansion (5) this has been done in paper I and the result is

E N

~re= Q
y=o m=O

(21)

Finally, let us calculate the square of the amplitude in terms of the Lee expansion coefficients. Squaring
(13) and making use of reality of A.""(a,P), we have

+1
IF(s, t)l'= Z Z B:.~"."(u, V), (22)

E=-1 N, N= O
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where

B„„=Q Q (mnv, m'n'z'~M, N, K].a'„a'*„
K, K mmnn

(23)

The "addition coefficients" [mnz, m'n' K'~MNK) were introduced using somewhat different notations, by
I rankel and Van Dyck" who also studied some of their properties. Since the functions A."„"(a,P) are related
to certain SU(3) harmonic functions, " the "addition coefficients" can be obviously related to the SU(3)
Clebsch-Gordan coefficients. In this article we shall however simply calculate these coefficients directly,
using only the O(3) group properties of the functions X""(a,P).

Indeed, from (13), (14), (22), and (23) we have

1 . 2r
fmne, m'n'a'~M, N, Kf= ada

dpi'.

"'(a, p)X" "(a, p)X"„"(a,p).
0 0

Let us use (15)-(17)and calculate the two integrals separately. Put

2 7t'

I"' "' = B'(P)B" (P)B" (P)dP
0

It can readily be checked that the only nonzero coefficients of the type (25) are

(24)

(25)

i( K'- '-Z) /4 ~ 0 ~ 0m, m', m+m'

1
K, K', KK' ~ KK ~ i4(K -K'-KK'+ 1) 7f/4 n i~nI v~gm gm gv~

4VF
)
M+ KK Pl

1ll 111 111 111 1
mmo mom omm I ooo

(26)

Immo Iomm I mom vs'I

The integration over a in (24) can also be performed and we have:

1y""'" —= [6(2n+m+ )I( n2' +m' 1+)(2N+M+ 1)]'" a"' '"''Z ' (2a' —l)d' (2&' —I)I '" (2a' —I)da.

(27)
Let us now make the substitution

2a' —1 = cosx

in (27) and express the Jacobi polynomials in terms of the Wigner d functions" for the group O(3)
P„'" (cosx)=(cos-'x) "d"'" ' (x)

The resulting integral can be calculated using standard angular momentum theory and we obtain

I"~~"m,~1 =[2(2n+m+1)(2n' '+m1)+(2N +amm'+I)]' (28)

where the last entry is a VA'gner 3j symbol.
Finally, the nonzero addition coefficients can be written as

[mnx, m'n'z'~
~
m+ m'~, N, zx'j=I"' ' I'"" (29)

In particular, if we are only interested in expanding functions that are symmetric under the interchange
of particles 3 and 4, then we have K= K =K= 1 and

1(mnl, mn'1
~
m+ m', N, l)f=R ' — [2(2n+ m+ l)(2n'+ m'+1)(2N+ ma m'+ I)]"'

n +-'m m'+-', I' N+ —', (mam'))'
1 1 1
~ m +-, m' --,(m~ m') (30)
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with

1 for 0+mom'W0
v2 for m, m', or mam'=0.

C. Comments on the Expansion Formulas

Formulas (5), (8), and (13) [or (18), (20), and

(22}] thus represent O(4), xy, and Lee expansions
of the decay amplitude &or the square modulus of
the decay amplitude) for a three-body decay in-
volving spinless particles. The O(4) and xy ex-
pansions are written for arbitrary final-state
masses, the Lee expansions are written only for
the case of equal masses.

All the expansions can be directly applied to
analyze Dalitz plots, i.e., we can keep a finite
number of terms in the corresponding expansion
and obtain values of the expansion coefficients
from best fits to the data. The most natural cutoff
procedures that we apply in fitting q- 3n data,
using the expansions for amplitudes (or square-
moduli) are the following:

(a) O(4) expansions. Fix no and take 0 & n ~ n„
0 «l &n.

(b) xy expansions. Fix n, and take all k ~ 0,
m ~ 0 such that 0+m «8, .

(c) Lee expansions. Fix n, and take all m~ 0,
n& 0 such that 2n+m-n, . Sum over v=+1.

Various selection rules may of course restrict
the allowed values of some of the above summation
indices. Thus, if particles 3 and 4 are identical
or if they are antiparticles of each other and C
invariance holds, then l must be even in (5) [1.
even in (18)), k must be even in (8) [K even in (20)]
and we must have a =1 only in (13) [K= 1 in (22)].

Let us mention several features of the above
expansions.

The O(4) expansions are written in terms of
variables a and 9 that have a simple physical
meaning, they are written for arbitrary masses
and have been generalized to arbitrary spins.
The boundary of the physical region is given by
the equation cos6I =+1, the presence of the factor
(sino. }' in (6) ensures the correct behavior of the
amplitude at the physical threshold s =(m, +m, )'
and pseudothreshold s = (m, -m, )'. The angular
momentum l of particles 3 and 4 in the center-of-
mass-like frame of reference (see papers I and
II) is displayed explicitly and indeed the 6 depen-
dence in (5) [see (6)] is given by a standard O(3)
partial-wave expansion. The "four -dimensional
angular momentum" n also has a physical meaning,
which however only becomes meaningful when the
particles have spin. ' The O(4) expansion is in

terms of functions, orthogonal over the Dalitz
plot. However, the expression for an element of

phase space is rather complicated (see paper II).
Most important, the O(4} expansions are a modifi-
cation of O(3, 1) expansions for scattering ampli-
tudes, so that similar two-variable techniques
should be applicable for analyzing scattering.

The xy power-series expansion (8) has the
advantage of extreme simplicity and for any
reasonably smooth distribution it will provide a
good fit with a few parameters simply because
it is an expansion around the point x=y=0, i.e.,
T, = T, = T~ =Q/3 (the center of the Dalitz plot).
The functions are not orthogonal, the expansion
has no helpful group-theoretical interpretation,
none of the standard kinematical features (bound-
ary of physical region, thresholds, etc )ar.e in-
corporated. The expression for an element of
phase space is extremely simple, namely, dxdy.

The Lee expansion (13) uses the rather com-
plicated variables a and P of (11}and (12), the
boundary of the physical region is simply a =1.
A major advantage is that the functions (15) are
orthogonal over the Dalitz plot with a. measure,
proportional to an element of phase space adadP.
Assuming that the decay matrix element were
uniform over the Dalitz plot, then this orthogo-
nality would ensure the statistical independence
of the coefficients in (13) and thus the stability of
this expansion with respect to truncation" (see
also paper II). The expansion has a group theoret-
ical interpretation in terms of an SU(3) group,
relevant to the classification of three-particle
states. " No generalizations to arbitrary masses
and spins or to the treatment of scattering have
been presented as yet.

III. ANALYSIS OF THE q ~ 3m DALITZ PLOT

We apply the three types of expansions, dis-
cussed in the previous section, to analyze the
data on q- m'm'n decays, obtained at the Prince-
ton-Pennsylvania Accelerator by the Columbia
University group. "'" Our main purpose is to test
and discuss the relative merits of the different
expansions, when applied to this problem. The
analyzed Dalitz plot was reconstructed from the
data consisting of over 220000 q- m m'm events
and is divided into 54 bins. The square of the
matrix element j F, ~

', corresponding to each bin
(i =1, . . . , 54}, as well as its statistical uncer-
tainty 6, are obtained as

where N, is the number of experimental events in
each bin and F., is the experimental efficiency.

The absence of a C-violating asymmetry was
established directly from the raw experimental
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data and was then assumed in the reconstruction
of the Dalitz plot, corrected for the efficiency.
The data available to us were thus essentially
half of a Dalitz plot, in which events with T,) T,
were plotted on top of those with T,& T, (where,
e.g. , T, = T'„and T~ =T„) Th. e distribution must
thus automatically be symmetric under the inter-
change of the two charged pions and we have no
w'ay at all of considering a possible C violation.

Since two of the final pions are charged, long-
range final-state electromagnetic interactions
will definitely be present (besides the final-state
strong interactions). In order to estimate the in-
fluence of these electromagnetic final-state inter-
actions we expanded decay amplitudes representing
three different sets of data. The first set was
simply the actual data, corrected for the experi-
mental efficiencies. "'" The second and third
sets were obtained from the first by dividing out
a Coulomb correction factor.

I Fg I couL carr.

C(x, y}dxdy
& bin

(32)

where n is the fine-structure constant and v is
the relative velocity of the two charged pions.
A somewhat more sophisticated calculation of the
radiative corrections to q- m'm m' can be ob-
tained from an article by Neveu and Scherk. "
The corrections are calculated to first order in
the fine-structure constant, the influence of strong
interactions (and of uncalculable diagrams) is
neglected. %'e shall not reproduce the expression"

The integral in the denominator of (32) is over the
area of the ith bin and C(x, y) is a Coulomb correc-
tion factor. The simplest form of C(x, y} corre-
sponds to a, nonrelativistic Coulomb term"

2m@ 1
Dalitz v I —e -2ma/Ij &

where P, ~ were successively taken to be O(4) func-
tions as in (18), the xy powers as in (20) or the
X„"'(a, P) functions of (22), evaluated at the center
of each bin.

Pits to the matrix element itself, rather than to
the square modulus, were obtained by minimizing

I F, I* —IZc;,0;, I'

) (34)

PC;„P,~ represents the O(4) expansion (5) or the
Lee expansion (13).

Note that the coefficients C,~ in (33) are real,
whereas c,.„ in (34) are complex. As mentioned
above, the amplitude is by assumption symmetric

for Cps here.
For Il,'- m*m'm' decays, in which all three final

pions are charged. The inclusion of the (Dalitz)
Coulomb corrections in paper II improved the
fits to data noticeably. For g- 3m decays on the
other hand the modification of the data by formula
(32}, using Cn„,.„and CN~ turned out to be com-
pletely insignificant, in that it did not change the
best-fit values of any of the expansion coefficients,
nor the values of the corresponding y' functions.
The reason for this difference between K' and q
decays seems to be that the Coulomb correction
function C (in both its versions) varies smoothly
over the Dalitz plot when only two of the final
pions are charged, but has a more complicated
behavior when all three of them are.

Having the above comments on Coulomb correc-
tions in mind we shall only present a treatment
of the uncorrected data.

The squared matrix elements
~
F(s, t)

~

' obtained
from the Dalitz plot were fitted in the usual man-
ner by minimizing the y' function. Fits directly
to

~ F(s, t) ~

' were obtained by minimizing

TABLE I, Best-fit parameter values (and statistical errors) for the expansions of g —vox+a decay amplitudes.
are 54 bins. The number of degrees of freedom (NDF) is the number of bins less the number of free parameters.

The coefficients in the O(4) expansion were multiplied by the normalization constant
¹

O(4) expansion (5) Lee expansion (13)

NDF
y2/NDF

X

aoo
H,ea, o

Ima(o
a,ea, o
Im a2o
H,ea22
Ima22

51
1.265
64.49

2.57 + 0,02
0.88 ~ 0.03
0.95+0.07

47
1.128
53.03

2.50 + 0.03
0.91+ 0.04
1.02 + 0.03

-0.13+ 0.03
+0.25+ 0.06
+0.02 + 0.02
+0.02 + 0.08

NDF
g2/NDF

X

Aoo
H,eA'„
ImA (~o

IteAI,
ImA. pg

ReA2~o

ImA)~o

51
1.373

70.00
1.00

-0.254 + 0.004
0.00 + 0.033

47
1.136

53.41
1.00

-0.268 ~ 0.006
0.016+0.107

-0.012 + 0.007
-0.083 + 0.065
-0.012+0.005

0.008 + 0.059
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TABLE II. Best-fit parameter values (and statistical
errors) for expansions of the square moduli of g x x+n

decay amplitudes. Data and notations are the same as in
Table I. The coefficients in the O(4) and xy expansions
frere multiplied by the normalization constant N.

O(4) expansion (18)

NDF

X'/NDF

X

boo

b(o

b2o

bso

b32

52

5.9
308.7

14.4+ 0.2
11.8 + 0,2

50

1.280

64.01

16.0+ 0.2
8.7+ 0.3
3.2 + 0.2

-0.2+ 0.2

1.142

54.82

15.6*0.3
9.3 + 0.3
2.4+ 0.3

-0.2 + 0,3
0.7 + 0.2
0.0 ~ 0.2

xy expansion (20)

under the interchange of particles 3 and 4.
The minimization of X' was performed in exactly

the same manner as in paper II for K'- 3n decays,
using the MINUIT computer program, "starting
from random points. The results of the numerical
fits that me have performed are presented in
Tables I and II. The statistical errors in the pa-
rameters correspond to an increase of one unit
in the value of X'. The fits presented in the tables
are essentially unique and thus correspond to a
global minimum X,'. All the expansions were writ-
ten in the form N(1+a, g, +a,g, + ). The coeffi-
cients a& were minimized numerically, the nor-
malization constant (N) 0}was simultaneously

fitted analytically. We also tried to apply different
cutoff procedures, but the results were always
worse than the ones presented in the tables. An
incorporation of still higher-order terms in the
expansions was not justified, since it leads to an
increase in y'/NDF and also the solutions were no
longer unique (NDF =number of degrees of free-
dom}.

When comparing the different expansions, rep-
resenting the same data, important questions are
the following: Which gives the best fit (lowest X'}
for the least number of parameters? What is the
stability with respect to truncation of the series?
How unique are the solutions? How sensitive are
the expansion coefficients to interesting dynamical
features?

We have already mentioned that all presented
solutions are essentially unique. As far as sta-
bility and the X' value goes, Table I indicates that
the O(4) expansion seems to be somewhat better
than the Lee expansion for the amplitude itself.
For the square modulus of the amplitude, however,
the Lee expansion gives the best g' fit, the xy ex-
pansion is second, the O(4) one the worst. All
three expansions are essentially stable within
statistical errors. The results, however, are so
close that we do not attach any deep significance
to the difference and only conclude that all the fits
with three or more parameters are perfectly
adequate. No definite conclusions can as yet be
drawn as to the relative merits of the individual
expansions.

NDF

X /NDF

X'

Soo

~o~

So2

S2o

&o3

NDF
X2/NDF

X2

&oo

10

~oi

&co

i

~so

1.122

58.32

50

1.119
55.95

1.118

53.68

48.91+0.3 48.06 ~ 0.7 47.9+0.7
-52.2 + 0.8 -51.8 + 0.8 -53.3+2.2

2.3+ 1.8
2.5 + 2.1

3.7+ 2.1
2.3+ 2.1
4.8 + 4.2

-3.5+ 6.6

Lee expansion (22)

52 50
1.340 1.071

48
1.090

52.32

1.00 1.00 1.00

-0.5+ 0.008 -0.494 + 0.009 -0.493 + 0.01

0.014+0.008 0.014 + 0.008

0.029 + 0.008 0.032+ 0.009

0.004 + 0.008

0.009 + 0.010

IV. CONCLUSIONS

In this article we have written out three different
expansions of a. three-body decay amplitude E(s, t)—
the O(4) expansion, the "xy expansion, " and the
"Lee expansion. " We also gave expressions for
the square of the decay matrix element in terms
of the coefficients in each of the above expansions.

The expansions were then applied to analyze the
recently obtained q - v'm'm Dalitz plot"'" and the
results are presented in Tables I and II. The
numerical results do not indicate that any one of
the expansions has any particular advantages over
the other ones for this specific analysis.

No attempt at any consideration of the actual
physics (or "dynamics" ) of the q- Sw decay was
made in this paper. The presently available data
(or rather the available experimental efficiencies)
do not allow us to consider the question of a mani-
festation of a possible C violation, which mould
lead to the presence of additional terms in all of
the expansions (a,ntisymmetric under the exchange
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of the m' and m mesons). It is quite possible that
one of the expansions would be more sensitive than
the others to such an asymmetry. Indeed, we
have mentioned in paper II that one of the coeffi-
cients in the O(4) expansion (18), namely b»,
turned out to be sensitive to a difference between
the K'- 3m and K —37t Dalitz plots. A further
question of obvious dynamic importance is the
extraction of information on final-state interac-
tions between the pions, i.e., information on the
m7t scattering amplitude, various vertices, the
presence of resonances, etc. We plan to return
to all these important physical problems, speci-

fically in the context of the O(4) two-variable
expansions, in a future publication.
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