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Assuming that the scalar [or vectorl K)3 form factor D(t) for f+ (t)] is either univalent or
a function satisfying at most a once-subtracted dispersion relation with a definite sign for its
imaginary part, we can derive several exact bounds for these form factors without introduc-
ing any arbitrary parameters.

0.008 ( X (0.019 . (2)

This must be compared with the world-averaged
experimental value' of

Ao = -0.11+0.03.

However, in view of mutually contradicting exper-
imental data, "this discrepancy should not be re-
garded as final. The main assumptions needed in
deriving the bound in Eq. (2) are the following: (i}
the chiral SW(3) Hamiltonian' of Gell-Mann,
Oakes, and Renner and of Glashow and Weinberg,
(ii) the K» soft-pion theorem, " (iii) a weak form"
of the Ademollo-Gatto theorem, i.e., f, (0) & l,
and finally (iv) some technical assumptions" con-

There are many theoretical calculations on K, 3

decay parameters. However, most of these calcu-
lations are based upon varieties of approximations
whose validity is not obvious at all. Recently, ex-
act inequalities which are relatively free of theo-
retical uncertainties were derived by several au-
thors. ' ' In particular, the exact bound for the
scalar slope parameter A, defined by

2m„Ao=~++
mg m

was found" to be very small and positive, with

cerning two-point Green's functions for diver-
gences of weak currents.

In this note, we shall present an entirely differ-
ent approach with fewer assumptions and show
that we can derive similar exact bounds for K, 3

decay parameters. With this objective, we shall
consider two different classes of analytic func-
tions. Hereafter, f(t}will always represent a real
analytic function of t [i.e., f*(t~) = f (t)] with a
right-hand cut on the real axis at t, - t&~. With-
out loss of generality, we can assume that the
threshold t, is positive. First, a univalent function
is a function f(t) which never assumes the same
value twice, i.e., it satisfies f(t, }&f(t, ) in the en-
tire cut plane whenever t, w t2. Second, let us in-
troduce another class of analytic functions, which
we shall call semimonotonic for lack of a better
terminology. This is a real analytic function f(t)
which satisfies (i) a standard dispersion relation
with a finite number of subtractions, and (ii) a
condition that Imf(t +i&) does not change its sign
on the entire cut at ~ & t ~ t, Then, the main con-
clusions of this paper are as follows: We assume
either that f(t) is a univalent function of t in the cut
plane or that f (t) is semimonotonic and satisfies an
at most once-subtracted dispersion relation. Un-
der either of these conditions, we can prove the
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following inequalities: theorem"

f(t) —f(0), 0 f(t) —f(o)

for to&t&0, (4) 5=m~ —m„2 2
(13}

t, —t f(t)-f(o) f,(0}
f(t)-f(o)

t0 t t

If we assume this extra information, then Eq. (4)
with t=5=m~'- m„' leads to

for Oot, (5) 0»0 ( IA. I
&0.023. (14)

t.f "(o)
f '(o)

In addition, if we assume that f(t) satisfies the un-
subtracted dispersion relation or that f(t) is uni-

valent with no zero point in the entire cut plane,
then we have

(7)

as well as

t -t f(t) t,
t, f(0) t, —t

(4&t-o). (8)

t, =(mr+ m, )2. (9)

Next, let us identify f(t) first with the K12 scalar
form factor D(t) defined by

D(t}= (mz' —m „')f, (t)+tf (t), (10)

where f, (t) are the standard form factors. " Then
the inequality (7) immediately gives us

Actually, we can derive a few other inequalities,
but these are sufficient for the moment.

Before proving these bounds, we remark that
for the K» decay problem we are mainly concerned
with we have

PS = 0.046,
0

(15)

which is consistent with the experimental value' of
X, =0.012*0.005. Also, the inequality (6) leads to

Again, this contradicts the present world-averaged
value. Therefore, we conclude (i) that D(t) cannot
be a univalent function of t, and (ii) that imD(t+ te}
must assume both positive and negative values on
the cut, if D(t) satisfies an at most once-subtract-
ed dispersion relation. In particular, this last
statement explains the reason why the so-called
z-dominance model does not work. Of course, we
must keep in mind the fact that the present experi-
mental situation on the K» decay is very confused
and far from being final. Hence, it is still possi-
ble that our bounds may turn out to be still com-
patible with the experiment. Then our results will
be of some interest since our theory does not con-
tain any adjustable free parameters at all. How-

ever, on the other hand, it must be emphasized
that there is a Priori no theoretical basis for be-
lieving in the validity of our assumptions, apart
from their simplicity.

Next, we can apply our theorems to the vector
form factor f,(t). In that case, Eq. (7}gives us

m '
(A, i

- ' =0 046,
t0

rn, f, "(0) ( 2m„=o 092f, '(0) t2
(16)

m „'D"(0) 2m, 2

D '(0) t,
(12)

So far the accurate experimental value for
m „'D"(0)/D'(0) is not available. However, if we
assume that the slope of f (t) is negligible, then
the present data appear to indicate' a relatively
large and negative value for m „'D"(0)/D'(0), thus
contradicting our bound Eq. (12).

Up to now, we did not make use of the soft-pion

which contradicts the present experimental value
Eq. (3). This may imply that the extra assumption
of either an unsubtracted dispersion relation or a
no-zero-point hypothesis for the univalent case
may be experimentally ruled out for D(t), and
hence we shall not assume this extra ansatz for a
while.

The inequality (6} leads to

which should be compared with the experimental
value' of

4 g II(P
= 0.0104 + 0.0026,f, (o)

(t t)1/2 (t )1/2 1-z
and set

f(t) = F(z) . -

(17)

(18)

=0.012 %0.005.f, (o)

Now, let us proceed to prove our inequalities.
First, let us consider the case when f(t) is uni-
valent in the cut t plane. It is then convenient to
map our cut t plane inside the interior of the unit
disk uz i

&1 by the conformal mapping
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Then, F(z) is a real univalent function in
~
z

~

& l.
Moreover, if we define

g(z) = F, 0 (F(z) -F(0)1, (19)

a Ig(z) I I ! !
a ( I

z
I

then g(z} is also a univalent function and satisfies
the constraints

g(0) =0, g'(0) =1, g (z")=g(z). (20)

It is well known" that such a function must satisfy

We can also prove

f(6) —f(0) f(i}—f(6)
5 t-5

f(6) —f(0)
5

for to&6&t &0. Identifying f(t)=D(t) with 6 = mr~
—m, ' provides a bound for physical values of D(t)
in terms of D(0) and D(6). This relation is analo-
gous to that discussed by Bourrely. ' Just as in
that case, the present inequality (25) appears to be
badly violated by the experimental data. Also, as
we shall observe shortly, we can prove

(n=2, 3, 4, . . . ). (22) (26}

Rewriting these inequalities in terms of f(t), we
find Eqs. (4)-(6) immediately.

If f(t) satisfies an unsubtracted dispersion rela-
tion, then we must impose an additional constraint

If a semimonotonic function f (t} satisfies an un-
subtracted dispersion relation, then we can derive
better bounds, since we now have

(27)

1- Iz I

' F z 1+ Izl
(23)

In particular, letting t- -~ in Eq. (5), this repro-
duces Eq. (7). Alternatively we can also prove
Eq. (7), or more generally Eq. (8), if we instead
assume that f(t) has no zero point at all in the en-
tire cut plane. In that case, the inverse function
I/F(z) is a real univalent analytic function, and
this fact leads to an inequality similar to Eq. (21).
From these, we can easily find that E(z) must
then satisfy

Then it is easy to derive

(28)

which improves Eq. (8). Moreover, Eq. (27) to-
gether with the semimonotonicity of f(t) implies

(29)

for all t ~ t, and for all n =0, 1, 2, . . . . Any real
function satisfying such a condition is known as an
absolutely monotonic function, " and must auto-
matically obey an inequality"

which is rewritten as Eq. (8), while Eq. (7) is ob-
tained from Eq. (8) by letting t- 0.

Next, let us discuss the case where f(t) is now
semimonotonic and satisfies a once-subtracted
dispersion relation:

i.e., ln( f(t) ( is a convex function of t below the
threshold. First, the inequality (30}gives us

(31)

By assumption of semimonotonicity, we have
either Imf(t' i )+& z0 or Imf(f'+is) &0 on the en-
tire cut so that Eq. (24) gives us

which improves the lower bound in Eq. (6}. Also,
the convexity of ln

~f(t) ( demands that we have

Xln(f(i, ))+(I —&)»)f(~,))-»If(i)I,

f(t}—f(0) 1 "",!Imf(t'+it)I
0

1 f()( )
1 "d&, llmf(t'+ie}l

( I)n! v (t')""to

Then it is an easy matter to check the validity of
Eqs. (4)-(6) from these equations.

(32}

where t, and t, are two arbitrary real points less
than t,. This inequality may be tested for the vec-
tor form factor f,(t), if the experimental data be-
come more accurate. Also, we can apply all of
our inequalities to electromagnetic form factors
of pions and nucleons. However, in view of the
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smallness of t, =4m, ' for this case, our bounds
are not strong enough to be of special interest,
except possibly for the convex inequality (22).

If f(t) satisfies the once-subtracted dispersion
relation instead of the unsubtracted form, then a
similar method proves Eq. (26). Moreover, if f(t)
requires two subtractions, we can prove only a
weaker relation:

for 0 &t &t,.
Finally, it may be worthwhile to observe a pos-

sible connection between semimonotonicity and
univalency. If f(t) satisfies a once-subtracted dis-
persion relation and if it is semimonotonic, then a
function g(t) defined by

is an univalent function in the cut t plane where

the integral path is to be taken as a straight line.
The proof for this statement is essentially the
same as that given by Khuri and Kinoshita" for a
different problem. However, this fact does not
appear to give any better inequality in our case.

Last, any univalent function E(z) which is ana-
lytic in the unit disk lz l& 1 [see Eq. (18)] is known"
to belong automatically to the H~ class for all p
with 0 & p&-,'. Moreover, its singular part of its
standard factorization" is an identity. In particu-
lar, these imply that the finite boundary function
f (t+fe) exists almost everywhere for t ~ t„adn
that f (t) satisfies an at most once-subtracted or-
dinary dispersion relation, if the possible singu-
larity of f (t) on the cut is to be found only at infin-
ity as is usually assumed.
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