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The effects of possible CPT violation on the KI 2p, amplitude are found to be concentrated
at the right place to suppress the experimentally violated "conventional" unitarity bound,

irrespective of Ks 2p. OPT nonconservationmay, therefore, resolve theKL 2p, puzzle,
even if CP violation or the recently proposed new interactions will fail to do this. The pos-
sible breaking of CPT invariance is studied systematically and bounds are given on the vio-
lating part of the related amplitudes. Only nonconservation of CPT in the absorptive part
of the KI 2p amplitude (e.g., in Kl 2y) may be accessible to experiment in the near
future. Superweak theory is inconsistent with experiment, under the "conventional" assump-
tions, even in its CPT-violating version.

=-,'+To„Te~. (2)

The new experimental result'

B(K~-2p) = ~ ~1.9x10 oF(K~-2p, )

z all exp

is in contradiction with the conventional unitarity
lower bound, derived under the following assump-
tions:

(i) validity of quantum electrodynamics for lep-
tons;

(ii) CPT and CP invariance;
(iii) that the absorptive part of the K~ - 2g ampli-

tude is given entirely by the contribution of the on-
mass-shell 2y intermediate state, while the ab-
sorptive part of K~ -2y is zero; and

(iv) unitarity, i.e.,

Abs&2v ITlKg& =-'Z&2i IT ls)*&sl TIKI') (3)

=~&2r ITIK,&,

where explicit calculations ' give

y'= l&2g lTl2y)l'=1. 2x10-',
p'&' = 1&2i .IT l2»l' = o.sx ~o.

Taking into account'

B(K~ —2y) = (5.6 + 0.5) x 10-',

(3) and (4) yield

(4)

(5)

(6)B(K~-2g)j ...„-X'p(K~-2y)= 6x10-',

in obvious contradiction with (1).
One way to look for a resolution of this puzzle

is to relax the requirement of CI' invariance. In
this case Christ and Lee derived the following
inequalities:

We take the T-matrix elements to contain the
appropriate phase-space factors, so that the
squares of their magnitude give the partial widths.
We use also the conventions:

CPTlK ) —= lK& = lK ),
CPT l2y, CP =+1)-=l2r, ) =* l2y, ),
CPTlg' p, , CP =+1& —= l2P, ,&

=z l2g, &

for free states, and

1
K = {Ko*Ko)—1,2

Using these assumptions, we have

Abs&2/, lTlK, &
= o g &2 p, lTl s&*&slT lK~&

= ~P&2y+ITIKg&

ReeF'~'(K~-2g) ~AF' o(K~-2y)+F' (K'~ —2g),

where c = 2X10 'e™4.These inequalities imply,
using (1), (4), and (5) (see Ref. 5),

5x10 'sB(K~-2p)l «th&e1x10 ',
while conventional, CP-conserving estimates '
would give

B(K~- 2p) -10 'o - 10

The present experimental upper bound is '

B(K~- 2p) l,„p ~ 7 x10-',
and more sensitive experiments are now in prog-
ress. '
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This means that the breakdown of the conven-
tional unitarity bound is due to Cp violation only
if F(KB -2p) is largely enhanced (probably by a
big CP-violating mechanism). If one disregards
such an enhancement while neglecting terms pro-
portional to e, the unitarity bound cannot be
lowered by more than 18%%u&.

' In particular, the
superweak theory' of CP violation (which assumes
that the decay amplitudes are CP-invariant) is in
contradiction with experiment, under the assump-
tions referred to above. '"

A possible way out, without requiring a big CP
violation, is to relax assumption (iii) . Practically,
this requires that Abs(KB-2g) receives an unex-
pected large contribution from the 3m intermediate
state, '" "or intermediate states involving yet
undetected particles. " ' " The number of such
possibilities is quite limited as they have to satis-
fy severe restrictions, and this may be tested ex-
perimentally.

We study here the effect of possible CPT viola-
tion." This may be of special interest if big en-
hancements of (KB —2p) or the above-mentioned
contributions to Abs(KB- 2 p) are found to con-
tradict experiment.

If CPT is conserved,

Tas Tsa e

In the general case we denote therefore

AbsTaB = (AbsTaB)crr —Bi Ta8

( aB)cpr EaBi

where

(AbsT„B)c» = ,'i (T-a 8 -T aB)

=@-8)crr &--8

@aB)Car =~BE T aaTi 3

8„-T„-

EaB &ZTanT 8

=r ETB.T.*a~

and

1
Rae -Zas - alT a

Similarly,

PTaB = (DiSPTaB)crr ,'T,*B-, —

(DiSPT aB)c~r =z (Ta 8+ T aB) ~

In particular, (3) gives

(AbsT, B)crr = xPF'~ (Kz -2y, ) R8-,

(AbsT 8)c~r =PI'~2(KB.-2y ) —R 8,
where

(10)

(12)

(13)

(16)

Tas TBa+Tasy

where

T -8+T~ ———0.

Also,

Kl, = K2 + &I,K, , K~ =K~ + & ~K2

(8) A,.-=(2i,lAIK„) .
Hence,

~'P'F(K -2y)- I(AbsT ) +z, IB

+ I(AbsT 8)c~r+&, I'

(Z'F(K, —2y) (16)

and we neglect consistently terms proportional to
I 8« I'. Experimentally, "

0.35x10-'s Rm~ s 8x10-'.

Using (2) with (8), we get

&'p'F(A -2y) &, - IAbs-T, Blcrr+IA»T, I'crr

(A.BF(K8 -2y) -RB, (17)

where

RB = IR I'++BIft J'+2Re[(AbsT, B)cr+~+(AbsT 8)c rfta ]

=-I&.&I'-IR &I'+2VF(K, -2y+)Re(R,8)+2AF(KB-2y )Re(R 8)
Following Christ and Lee's 4 derivation of the inequalities (7) (in the version of Oakes ' ), we get

(AbsT, B)c»+i Re(T,B)=i ReBBT„,
(AbsT 8)crr —Im(T 8) = iReeBT, -.

The corresponding triangle inequalities give

I (K, -2g) -lReB, IT„I—IAbsT„ lc»l'+ IReBBIT, I
—IAbsT 8 Ic»I'

- [IAbsT+8 lcrr+ IAbsT 8l c~r -ReeBF"B(KB-2P )]',

(18)

(19a)

(1gb)

(20a)
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and in the very same way

I'(Ks. - 2V) - [1» spT„I,» +l»spT, I,» l-m~. i'"'(K, -2y )]' (20b)

(21a}

(21b)

X P I'(K~ —2y) —1.9xlo &R~&X P I'(K~ —2y),

z.e.,

Taking now (17) into account, we get

Res~i'"(Kz -2g) ~ [X'p'I'(K~- 2y) -R~]'"- I'12 (K~ -2g),
Ree~l'"(K~-2p) & p.'I'(K~-2y) R-~]"'+ r"'(K~-2 p, ) .

When R~ = 0 and e~ = e, one obtains the inequalities for the CPT-invariant case, i.e., Eqs. (7), but then
(Kz-2p} must be big. If we do not allow a big enhancement of (Kz-2g}, we obtain

3.5x10 '&R~ ~ 5.4x10-'. (22 }

(23)

There are two possible sources of contribution to R~: (A) T«and (B) Z, ~.
Class p. If CPT is violated solely in a direct coupling of K~ to p. 'p. (References 18 and 19 give explicit

Hamiltonian models which belong to this class. ), Z, ~ =0 and

RI (Z ~ =0)=-[,'(f „)'+.—'[T,~'+-~Pr'"(rC, —2y,)lm(T„)+~r'"(K, —2y )Im(T, )].

Taking into account the limits on R~, Eq. (22),
we expect

2xlo-'s (T,~('+ (T ~('s 8x10-' (24}

The absolute magnitude of such violation is so
small that one cannot expect it to be observed
elsewhere in the near future (if the corresponding
CPT-nonconserving interaction does not manifest
itself explicitly in other places).

Class B. A nonzero value for Z, ~ means a
breaking of CPT invariance in one of the inter-
mediate states contributing to the absorptive part
of th Ks 2p ampli

This case is more promising than the previous
one, as long as possible detection of the CPT-
nonconservation effect is concerned. Also, Z«
will induce an effective CPT violation in the K~- 2p. amplitude itself. This will show CPT viola-
tion in the absorptive part only, while CPT viola-
tion due to the "direct" interaction is limited to
the dispersive part. An explicit calculation of the
induced CPT-violating part of K~- 2p, gives

ccT ss ccTg ps

aL La

=i(AbsT& , -AbsT«)-

originate in any intermediate state contributing to
the unitarity sum. However, in view of assump-
tion (iii) (2y dominance), it is most natural to
generate Z» by a breaking of CPT invariance in
K~-2y. In this case

Z~~ =X pT2

Z ~ =XT2

and using (26),

(28)

2x 10-'& 0.8(T,„~['+ [T,„~('s 1x10-'. (29}

The first thing to observe here is that one does
not expect the CPT-violating amplitude to contri-
bute to the K', K ' mass difference, more than the
upper bound set by the mass difference of K~, K~ .
This is due to the fact that we deal here with a
second-order weak-electromagnetic (AS =1) effect
[(GM'sinen/s)'=10 "]

Is it possible to detect such a CPT violation
elsewhere'P In the K', K' complex, CPT violation
requires in general unequal e~ and e~. A rough
estimate gives "'

Hence,

=iZ, ~ . (26)

while experimentally ""
(30)

' cs g ppR ~1,
= Z ~1,

- a& "T
~J.

3= pZq~. (26)

(27)

Therefore, using (22) we estimate

2xlo-"s (Z, )'+ [Z ~('s 1x10-'

In principle, the induced CPT violation may

]~, (
= lo-',

JRe6(&10 '

/im6/ ~1O-'.

The same order of magnitude is expected for the
contributions of T,„~ to the Bell-Steinberger uni-
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tarity sum and this may affect the value of ~t),

the phase of g, . If we assume that the main de-
cay modes of K~ do not violate CP in their am-
plitudes (i.e., obey the superweak theory), then

2(M» -M» )
L stang, r, -r,

Our T» may violate this equality by an amount
of 10 2 —10 4.

Within several years we expect experiments to
reach the accuracy level needed to look for quan-
tities such as

/6/=10 '

or

tang, — (M» -M» ) =102

r, -r,
The decay K'- w'yy resembles the K~ - yy from

many points of view. If we assume that, in this
case also, CPT is violated by the same amount as
in K~-yy, a difference may be induced between
the total decay rates of K' and K ." This differ-
ence is expected to be at the same level as the
partial rates of K'- w'yy, i.e.,

s 10-'.
T (31)

Experiments are now on the level of 10 '.'
To conclude, we studied phenomenologically, in

a systematic way, possible effects of CPT viola-
tions in the K~- p, 'p decay. It is found that all
these effects are concentrated in one term. This
term may be blamed on the suppression of the uni-
tarity bound on the rate of K~ - 2 p, , irrespective
of the rate of Ks-2p. In the CPT-invariant CP-

violating case an unexpected big rate for Ks -2p
is needed, and this may contradict experiment.
The needed amount of counter contribution leads
to bounds on the CPT-noninvariant part of the am-
plitudes which may generate such a contribution.
We showed that in the class of possibilities where
the violation of CPT is due to a direct coupling of
K~ to p. 'p, , it is not possible to observe CPT
nonconservation elsewhere, while a little more
promising from this point of view is the case where
the breaking of CPT invariance is in the absorptive
part of K~-2p, (e.g., in K~-2y).

In any case, to resolve the K~-2p, puzzle, CPT
violation must show up in one amplitude at least.
Pure superweak theory does not allow such a pos-
sibility and hence it is inconsistent with experi-
ment, under assumptions (i), (iii), and (iv), even
in its CPT-violating version. The discussed CPT
violation may however play, in the case of K~ -2 p,,
a role similar to that played by the superweak

theory for K~ -2m, i.e., it may resolve the cor-
responding puzzle without leaving a trace else-
where.

%hat is the mechanism which might give rise to
CPT violation? One can show that the K~ s decays
are especially suitable for the construction of a
CPT -violating nonlocal theory. " One possibility
would be to couple K~ to neutral leptonic currents
in a nonlocal way. (This may "explain" the suppres-
sion of the effective coupling constant as well as
its imaginary part. )
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Assuming that the scalar [or vectorl K)3 form factor D(t) for f+ (t)] is either univalent or
a function satisfying at most a once-subtracted dispersion relation with a definite sign for its
imaginary part, we can derive several exact bounds for these form factors without introduc-
ing any arbitrary parameters.

0.008 ( X (0.019 . (2)

This must be compared with the world-averaged
experimental value' of

Ao = -0.11+0.03.

However, in view of mutually contradicting exper-
imental data, "this discrepancy should not be re-
garded as final. The main assumptions needed in
deriving the bound in Eq. (2) are the following: (i}
the chiral SW(3) Hamiltonian' of Gell-Mann,
Oakes, and Renner and of Glashow and Weinberg,
(ii) the K» soft-pion theorem, " (iii) a weak form"
of the Ademollo-Gatto theorem, i.e., f, (0) & l,
and finally (iv) some technical assumptions" con-

There are many theoretical calculations on K, 3

decay parameters. However, most of these calcu-
lations are based upon varieties of approximations
whose validity is not obvious at all. Recently, ex-
act inequalities which are relatively free of theo-
retical uncertainties were derived by several au-
thors. ' ' In particular, the exact bound for the
scalar slope parameter A, defined by

2m„Ao=~++
mg m

was found" to be very small and positive, with

cerning two-point Green's functions for diver-
gences of weak currents.

In this note, we shall present an entirely differ-
ent approach with fewer assumptions and show
that we can derive similar exact bounds for K, 3

decay parameters. With this objective, we shall
consider two different classes of analytic func-
tions. Hereafter, f(t}will always represent a real
analytic function of t [i.e., f*(t~) = f (t)] with a
right-hand cut on the real axis at t, - t&~. With-
out loss of generality, we can assume that the
threshold t, is positive. First, a univalent function
is a function f(t) which never assumes the same
value twice, i.e., it satisfies f(t, }&f(t, ) in the en-
tire cut plane whenever t, w t2. Second, let us in-
troduce another class of analytic functions, which
we shall call semimonotonic for lack of a better
terminology. This is a real analytic function f(t)
which satisfies (i) a standard dispersion relation
with a finite number of subtractions, and (ii) a
condition that Imf(t +i&) does not change its sign
on the entire cut at ~ & t ~ t, Then, the main con-
clusions of this paper are as follows: We assume
either that f(t) is a univalent function of t in the cut
plane or that f (t) is semimonotonic and satisfies an
at most once-subtracted dispersion relation. Un-
der either of these conditions, we can prove the


