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In most of the recent diffractive-model calculations for inclusive reactions, the diffractive-
ly excited cluster is assumed to decay isotropically and no correlation is assumed to exist
among the decay products. The importance of including at least the correlations due to en-
ergy-momentum conservation is emphasized, and the consequences for such an inclusion
are analyzed. Very definite predictions are obtained for the multiplicity and momentum dis-
tributions coming from such a decay, and these should be compared with experiments in

order to gain an understanding into the internal structure of excited hadrons.

I. INTRODUCTION

There are two main mechanisms in the diffrac-
tive model' for particle productions. One or both
of the incoming particles are assumed to be dif-
fractively excited into fireballs, before they sub-
sequently decay into a cluster of observed parti-
cles. Different authors' 4 assume different fire-
ball production cross sections, but all of them
assume that the fireballs decay in a spherically
symmetric manner with minimal amount of cor-
relations. In other words, if energy-momentum
conservation is ignored, then the particle de-
cay is described as a product of single-particle
decay distributions, each of which is spherically
symmetrical in the rest frame of the fireball. It is
the aim of this paper to analyze the consequences
of this hypothesis and how they can be tested ex-
perimentally.

Actually, in most of the previous calcula-
tions, ' ~ ~' technical difficulties prevented the
proper inclusion of energy-momentum conserva-
tion' so that the hypothesis above was not even
obeyed to the letter. Momentum conservation was
ignored altogether„and energy conservation was
taken into account only approximately by assum-
ing a relation between the fireball mass )If, and
the number of pions n it decays into. This muti-
lated hypothesis ignores one of nature's most fun-
damental conservation laws, and is certainly not
strictly correct. Various correlation effects due
to energy-momentum conservation are thus
washed out. For the single-particle inclusive
spectrum, interesting correlations between the
transverse and the longitudinal momenta' are
thereby lost. For a two-particle inclusive spec-
trum, this produces a peak in y, shifting towards
the right when y, is increased, ' where y, and y, are
the rapidities of the detected particles. Experi-

mentally the peak moves the other way, pre-
sumably du. e at least in part to energy-momentum
conservation. From a different point of view,
Bia@s et al. '0 have also pointed out the importance
of this conservation law. Moreover, energy con-
servation taken into account in. this approximate
manner makes n a continuous variable since;g,
is continuous. This has several immediate draw-
backs, the most obvious of which is that this pre-
vents us from calculating cross sections for ex-
clusive reactions, where the number of pions al-
ways appears as an integer. Even in inclusive re-
actions, where the number of pions is summed
and in this approximation the sum is replaced by
an integral, it is not clear whether the lower
limit of the integral should be taken to be 1, or
0.5 according to the trapezoidal rule, or to cor-
respond to the threshold mass M, of the fireball.
Since the single-particle spectrum is known~'
to be very sensitive to this lower limit, this mat-
ter clearly has to be decided. When the two-par-
ticle spectrum is calculated, this dilemma be-
comes much more serious because there a factor
n(n -t) a.ppears. If n is between 0 and 1, as is
possible if the last two alternatives of choosing
its lower limit are adopted, then this factor, as
well as the cross section, can actually become
negative. One application of our analysis of the
unmutilated hypothesis, with energy-momentum
conservation properly taken into account, is to
provide a method and explicit formulas by which
the drawbacks mentioned in this paragraph may be
avoided.

In Sec. II and in the Appendix, this decay hy-
pothesis is formulated mathematically, and an
approximate method is developed whereby con-
sequences of this hypothesis may be obtained.
These consequences in explicit mathematical for-
mulas are discussed in Sec. III together with their
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qualitative physical implications. Finally, how
these consequences may be tested experimentally
are discussed in Sec. IV.

II. CONSEQUENCE OF THE DECAY HYPOTHESIS

Let M, be the mass of a diffractively excited
cluster, decaying subsequently into n particles
with momenta k,. (1 &i&n). We assume, in the
spirit of Refs. 1-4 and 9, that the decay distribu-
tion is given by a product of n single-particle func-
tions g,.(k,.) (k,. —= )t'k, 2), if energy-momentum con-
servation is ignored. Energy-momentum conserva-
tion then comes in to determine n and al.l observed
correlations.

In other words, we assume that the joint proba-
bility density for finding n particles with momenta

and

ku ((k,.'+m ')' -, k,.)

(2)

Here c is a constant independent of n and ki The
probability density for finding a total of n parti-
cles in the cluster, with the first m of them oc-
cupying momenta k„.. . , k and the remaining
n -m of them having any momentum, is obtained
by integrating (1) n —m times. This gives

k, (1 &i ~n) in the cluster is given by
n n

P(k„. . . , k„)= ng, .(k,.)5' Q k,". —fI ), (()
i =1 i =1

where

m n 8

P„ (k„. . . , k ) = n g,. (k,. ) d '5 „ d 'k„ r gf(k, . )5' Q 5," —K"
)

.
i=1 j= nt+ j. i =1

n n

P„nd'k;g;tk=;)5' g k" —K"),
i =1 i=1

(4)

from which c can be determined by the condition

P„=1. (6)

In particular, the probability for finding n parti-
cles with any momentum is

k, =((p }'+m, ' —m22)/2p,

k', = ((P'}'+m, ' —m, 2)/2p',

For ¹ 2, the integral in (6) usually cannot be
done analytically. The rest of this section is de-
voted to finding an approximate method whereby
such an integral may be carried out.

Equation (6) can be written as

The sum in (5) is carried out over all n consistent
with the conservation laws. For example, if the
cluster is an excited pion cluster, and n is the
number of pions, then n has to be an odd number
not less than 3.

The integral. s that have to be carried out are all
of the form

5„(P) J n d'If, .gtk)5 pk, .," —, 5"') .
i=I j=1

(6)

If N=1, the integral can easily be performed:

8,(P) =g,((p )'")6((p +m, ')'" f2') . -
If N=2, sometimes the integral can still be done.
For example, if g, (k) =(n/)t)"2. exp(-n, .k2), and
p =0, then

t)2( p) = 4~(n, n, /~')"' exp [- (n, + n, )k2]kk', k2/p',

(6)

where

I(tk/2((f)o)2 m 2 m 2)/2p()

&(a, b, c) =- (a + b —c)' —4ab

(10)

where

p ~ x=-p'x +p ~ x,

g,.(*l —J5"'g, tk)d'5 .

One method of treating (10) that has become rath-
er popular" is that of Khinchin. " This makes
use of the fact that g,.(x) is analytic in x, owing to
the damping of g,.(k) for large k. Therefore the
contour in x space in Eq. (10) can be pushed into
the complex x space. in',",g, (x) is then expanded
into a power series about a point x= -i$. The in-
tegral (10) can then be done term by term, and
the result is an expansion in N '. The point $ is
chosen so that this expansion in N ' converges
fastest in some sense. Unfortunately this elegant
method is unsuitable for the present analysis, for
two reasons. First, it is very difficult in actual
calculations because it involves the determination
of the four-vector (". Second, a large portion
of the physics is buried in this vector $" so that
even if a numerical determination of $" is feasible,
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(12)

Substituting (12) into (10), we obtain

((,((( (2 ( 'J =m(-( *-l*&'*'*'I(((*)~'*,

(13)

where

p p g(&) (14)

its physical content is far from being transparent.
Therefore, we will adopt an alternative method,

which results in an expansion in N ' not converg-

ing as fast as the Khinchin method. This simply

means that more terms have to be included. How-

ever, this method has several advantages: No

determination of (" is necessary, the physical
content of the final formula is transparent, and a
systematic graphical rule very similar to the

Feynman rules can be developed for this expansion
The present method consists of an expansion of

in+", ,g, (x) about x=0. This is possible because

g, (0) =1, owing to (2). Suppose the expansion is

where

B~x"'=O
8y

The expression in (16) resembles closely what
we would get in deriving the Feynman rules using
the external-sources technique. " In fact, similar
rules can be derived for (16). The expression
(2v)'(detA(")'~'9„(p) is given by a, sum of Feynman-
like diagrams, some of which are listed in Table
I. Each propagator ( ) takes a factor -B~,
each external source (x) takes a factor P, and each
l-prong vertex corresponds to a factor (-1)'A„",'. . . „,.
Instead of integrating over all internal momenta,
as in usual Feynman rules, we merely have to
sum over all indices. Thus each diagram can be
computed with only algebra. No integrations are
involved. Finally, just as in Feynman diagrams,
an extra symmetry factor S ' must be multiplied
into the whole expression, where S is the number
of ways the diagram may be permuted into itself
without breaking any of the lines. For an illustra-
tion of S, see Table I.

Just as in usual Feynman diagrams, there are
connected and disconnected diagrams, and the
sum of all diagrams is simply the exponential of
the sum of all connected diagrams.

We therefore obtain finally the expression

9„(p)=(2m) '(detA"') "'exp(Z, ), (18)

(15)

Expanding H in power series of x, the integral in

(13) can be evaluated term by term. The result is

where Z, is the sum of all connected diagrams.
The expansion of Z, in terms of various connect-

ed diagrams can be grouped into an expansion in
N '. To do this, first notice that it follows from
(12) that

9„(P)=(2v) '(detA"') ' 'H i =
ap

x exp(- 2P B P8) (16)

(19)

Therefore each A"' is of order N, and the propa-
gator B is of order N '. Consequently a diagram
which consists of G propagators, V, l-prong ver-
tices, and E external sources behaves like N

(a) (b)

TABLE I. Connected diagrams of order N ~. The
diagrams of the first column are found in Fig. 1.

(c)

(e)

FIG. 1. Diagrams (a)-(e) in the first column of
Table I.

Diagram
(See Fig. 1)

(a)

(c)

(d)

(e)

(2)3

2(3!)
(2)'

Expression

—2P~B P8 —-(P ) Z4-P Z5

~~~4) a-8~y~ =Z
8 a8y& 0

12 o'8y Xp v 1

8z ~&zy' —= -zngy )(. pv 2

zA(s) B 8~yap =p0zn8y
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where

D=G-g V, .
1=3

Qn the other hand, topologically we must have

8++ IV, =2G.
E=3

Combining (20) and (21), we get

D= —,
'

Q (l —2) V, ~ E).
1=3

(20)

(21)

(22)

x exp[Z, +P'Z, —(Po)'Z, —p~z, ], (23)

This leads to D& 1. The term D=1 is comprised
of diagrams exhibited in Table I. If we should
want more accurate expressions we can always in-
clude higher-order diagrams. In the following dis-
cussions, we will confine ourselves to terms in
Table I only.

To obtain an explicit formula for 9„(p), we have
to substitute the expressions in Table I into Eq.
(18), and express A"' in terms of the various mo-
ments of distributions g, (k). The computation is
straightforward, but rather lengthy. It is carried
out in the Appendix. However, we can already
see from Table I that the result is of the form

9 (P)=(2w) '(detA"') "'

It is well known that the transverse momenta of
the particles emerging from a reaction are bound-
ed, and are roughly constant depending only on
what particle we measure. It is therefore more
interesting to study the longitudinal momentum
variations, which change from reaction to reaction.
For this latter study, it is sometimes useful to
treat the transverse momentum of each particle
as strictly a constant, and concentrate only on its
longitudinal momentum distr ibutions. This was,
for example, done in Ref. 2. When this is done,
the four-dimensional (4D) formulas developed
above have to be modified into the corresponding
two-dimensional (2D) formulas in the following
way.

All four-dimensional vectors and integrations
are changed into two-dimensional vectors and in-
tegrations. Similarly three-dimensional integra-
tions are changed into one-dimensional integra-
tions. The energy-momentum conservation 5 func-
tion is now two-dimensional, depicting energy and
longitudinal momentum conservation. The mass
m, of a particle should be replaced by m„
= (m, '+ k„')'", with the perpendicular momentum
k, , taken into account. The result is to change
Eqs. (7) and (8) into

where

Z6 Zo Z] Zp 0 (24)

9,(f ) =g, (u)5((f '+~„')'"-f '),

9,(p) = (o,o,lw)"' exp[- (a, + a, )k']kok2w/kp',

The detailed expressions for Z, as well as detA. "'
are given in the Appendix. Suffice it to note here
that each Z, is of order N ', and detA. "' is of
order N'. Further discussions of this formula will
be postponed to the next section.

(8')

with k, ko ko~ defined as in (9}, except with m,. re
placed by m,.~. Equations (18) and (23) are modi-
fied to become

9„(p)=(2w} '(detA"'} '"exp(Z, )

=(2w} '(detA"') "'exp[Z, +p'Z, -(p')'Z, -p'Z, ]+O(X '},
(18')

(23')

where A. "' is now a 2@2 matrix. The detailed expressions for Z, for this 2D case can again be found in
the Appendix.

III. DECAY OF A FIREBALL

where

x exp[Z, +P'Z, —( p')'Z, —p'Z, ], (25)

P=P'-Q &k');.

Notice from Eq. (All) that Z, &0 and Z, &0. The

We will discuss in this section the result of Sec.
II. Only the 4D formulas are considered. The
2D formulas behave in much the same way.

From Eqs. (14}, (23), (A4), and (A5), we get

9„(p)=(2w) '(detA"') "'

various probability distributions are obtained by
comparing (1}-(5}with (6). Thus

P„=c9„(K),

Pw(k, }= cg, (k,)9„(K-k,),
Pw(k„k, ) = cg, (k, )g, (k2)9„(K-k, —km),

(26)

(2'f)

(28)

and so on
Consider first Eq. (26). Here P=M, —Pf,(k ),

=-5M, measures how much the actual available en-
ergy deviates from the mean total energy if there
is no energy conservation. Remembering that
p = 0, the exponential in Eq. (25} describes a prob-



DECAY OF A DIFFRACTIVELY EXCITED CLUSTER. . . 1485

ability distribution which reaches a maximum at
N

M, —Q (k'},=
j=j

(29)

and falls to zero like a Gaussian as )P~ becomes
large. Considered as a function of N for fixed
2lfj it therefore peaks at a point No determined by
(29) and falls to zero on both sides of it with a
width of order of N,".The factor (detA"') "
gives rise to a quantitative adjustment, but the
qualitative behavior for P„ is still the same.
Note that Z, and Z4are both of order N '; hence
the right-hand side of (29) is of order 1. A nu-
merical calculation indicates that this right-hand
side is a small number (see Fig. 2), and thus the
peak is approximately determined by

5Mj =0 (30}

OI—

P
O.OI —.

O.OOI .—

I 1 1» l 1 I I 1 I 1

5 IO 15

as was assumed in Refs. 1-3. However, in Refs.
1-3, the width of the N distribution is assumed to
be constant (zero), whereas we see here that the
width grows like No"'. This spreading has the
effect in changing the single-particle spectrum
of the inclusive reactions for small c.m. momenta.
Incidentally, the result of zero width will be re-

covered by letting Z, —~.
To illustrate the behavior of P„, a numerical

computation has been carried out for the proton
cluster using Ecl. (A1). The numerical values
adopted are those close to the experimental val-
ues,"namely, a(proton) =4.0 (GeV/c) ' and

n(pion) = 8.2 (GeV/c) '. The results for three
values of M, are shown in Fig. 2. The arrows on
top of the diagram indicate positions determined
from (30) for the three masses. The points drawn
have their overall normalizations already adjusted
according to E1I. (5). Before such an adjustment,
the values for 9,(K) (corresponding to one pion be-
ing emitted) determined from (25}are 0.96 and
0.22@10 ", respectively, for Mj=1.5 and 4.5
GeV. The exact values determined from (8) are
0.997 and 0.597x10 ", respectively. It is grat-
ifying to note that even for N=2, a very good ap-
proximation {4%for M, =1.5 GeV) is obtained
where the @=2 term is important (M,=1.5 GeV}.
The approximation for such a low N becomes very
bad for large M, ( e.g. , M, =4.5 GeV), but there
the value is so small that it does not matter any-
way.

%'e now come to the single-particle distribution
(27). If Z, -~, we obtain the product of a 5 func-
tion located at an N value determined by

(k0) (k 2 ~ 111 2)li2 (31)
j=l

and the factor g, (k, ) exp(-Z, k, '). This is the re-
sult obtained in Ref. 9, where momentum conserva-
tion is taken into account exactly but energy con-
servation is included only to the extent of (31).
The extra factor exp(-Z, k, '), which becomes uni-
ty when N-, comes from the momentum cutoff
factor g, (k,.) of the recoiling particles (i 111). The
recoil for each particle becomes negligible when
N- ~, which is why the factor becomes one in that
limit.

If S, remains what it should be, we see from
(25) and (27) that the 5 function has to be broad-
ened into the function 9„(K,), where

N

Z,j = M, — k'+m '"'- k' j, 0
j=j

The dependence on 0j in this factor, which comes
essentially from energy conservation, is reflected
in an interesting way in the over-all kj dependence.
According to (25), 8„(K,) reaches a maximum at

FIG. 2. Probability distribution P as a function of the
number of pions 2V'. The cluster masses M& are i = 1.5
GeV, ~ = 4.5 GeV, and ~ = 7.5 GeV. The arrows indi-
cate positions determined by Eq. (30}. The parameters
used are n(proton} = 4.0 (Gev/c} and e(pion} = 8.2
(GeV/c}-2.

M, —p (ko},—(k,2+ m, ')'~' = Za/2Z, . (32)

Thus if M, and N were fixed at a value so that~j
lies to the right of this peak, an increase in kj
would decrease K'„so that 9„(K,) would increase
until we get past the peak. As a result, the over-
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p = -Z3+ 2Z45M~ . (33}

As an illustration, the k, dependence is plotted in

Figs. 3 and 4 using the same parameters as in

Fig. 2. The normalization of each curve is arbi-
trary. The cluster mass used is 4.5 GeV through-
out. In both Figs. 3 and 4, curve 1 refers to
exp(-ak'), and curves 2, 3, 4, and 5 refer to
cases where the total number of pions is respec-
tively 4, 6, 8, or 9.

Finally, the behavior of the two-particle dis-
tribution functions (28) can be understood in much
the same way. In addition to the uncorrelated
distribution function g, (k, )g, (k~), we have the ex-
tra factor S„given by (25), with

all k, dependence in P„(k,) might increase towards
a maximum before it subsequently decreases, as
is the case in curve 1 of Fig. 3. If we start on
the other side of the peak, then 9„(ff,}decreases,
and P„(k,) would decrease even faster than that
given by g, (k, ) exp(-Z, k, '). Such effects may also
be seen by writing (25) and (27) in the form

P„(k,) = P„exp[p( k,
' +m, ')'"

—(Z, + Z,}k,' —Z,m, 2]g,(k,},

PO 5/if (k 2+m 2)1/2 (k 2+m 2)1/2

p =k, +k2.
(34)

IV. ANALYSES OF EXCLUSIVE REACTIONS

Most of the data presently available are below
30 GeV/c and possess a large nondiffractive com-
ponent for most of their exclusive channels. The
diffractive model for inclusive reactions at these
energies is of course based on the fact that in-
clusive reactions seem to reach approximate lim-
iting" at fairly low energy, without attempting
to explain why the fact is so. To test the detailed
consequences of the decay hypothesis obtained in
the previous section, we must wait for data from
the present generation of high-energy machines.

For example, if Af„N kg and k, are fixed, then
the only change in (28) comes from the change of
the Z,p' term, ~hen the relative orientations
of k„and k, are varied. Clearly from (34), oppo-
site orientations of these two vectors are most
favored, a fact that is to be expected from momen-
tum conservation alone. Other more complicated
multiparticle correlation effects can also be an-
alyzed in the same way.

IOO i-

IO
IO

Z
CL

3
1

O.I
I

0.2
I

0.4
I

0.6
O.I

' I

0.2
I

0.4
k~

I

0.6

FIG. 3. Pion momentum distribution HN(k) mth arbi-
trary normalizations. The proton cluster mass used for
this illustration is 4.5 GeV. Curve 1 represents
exp(-8.2k ). The total number of pions in curves 2, 3,
4, 5 is respectively 4, 6, 8, 9. All momentum units
are in GeV/c.

FIG. 4. Proton momentum distribution PN(k) with
arbitrary normalizations. The proton cluster mass
used for this illustration is 4.5 GeV. Curve 1 represents
exp(-4. 0k 2). The total number of pions in curves 2, 3,
4, 5 is respectively 4, 6, S, 9. All momentum units are
in GeV/c.
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If the exclusive events at these high energies are
mainly diffractive, then we can test the hypothesis
by first grouping the events according to their
fireball mass M„which is the invariant mass of
all the particles in the forward hemisphere in the
c.m. system. We can then analyze the multiplicity
distributions, single-particle momentum distribu-
tions, two-particle momentum distributions, etc. ,
and compare them with the predictions discussed
in Sec. III.

The only free parameters in the formulas in
Sec. III are the various moments of g, (k,.). By
looking at the transverse-momentum distributions,
a fair idea of the shape of g((k() could be obtained.
Thus, for example, we may start from moments
of g,.(k,.) computed that way and see how well the
various predictions are fulfilled. If necessary, a
fit may also be attempted by varying these mo-
ments.

Even if neutral particles go undetected in an
experiment, the predictions may still be checked
with one additional assumption, one that is used
very frequently. (For example, this assumption
leads to'' correct relative normalizations and
shapes between p+p- n'+ anything and p+p- n +
anything. } This consists of assuming that in a
neutral system of pions, there are one third each
of n', w, and ~ . This is to say that the prob-
ability for creating a n'n pair, or a pair of v,
is —,

' for each. A neutral system of 2n pions there-
fore has a probability (2}" of having no neutral

pions, and a neutral system of 2n+1 pions has prob-
ability (—,')" of producing n changed pairs and one
neutral. pion. When this factor is incorporated
into the probability distributions in E(ls. (26)-(28),
corresponding formulas for 4c and 1c events may
be obtained. Comparison with experiments can
then be made.

When events are grouped in this way, according
to the fireball mass M„we may also decide which
of the several' ' production mechanisms are cor-
rect. Another thing that can be done is to calcu-
late the exclusive components for inclusive re-
actions and compare them with experiments. For
this we need to know the production mechanism
and to integrate over M, . It is therefore not as
clean a test unless we can be sure that the pro-
duction mechanism is correct.

The predictions of the previous section depend
only on the absence of any decay correlation other
than that of energy-momentum conservation. This
is clearly the simplest kind of internal structure
we can assume for a diffractively excited cluster.
Should large deviations from these predictions be
seen, important nontrivial structures are prob-
ably present inside the cluster, and it will be
very interesting to discover what they are.
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APPENDIX

In this appendix we give explicit expressions for A" ' and Z( [Table I and E(ls. (12), (23), and (23')] in
terms of the moments of g, (k). Both the 4D and the 2D formulas are considered. Explicit formulas are
also given for the particular cases when

g, (k) = (o,/w)'" exp(- n, k') (A1)

g((k) = (n,./v))" exp(-o, k') .

If we expand g((x) in the following way:

(As)

then

(A4)

where M 3 and 1 for 4D and 2D cases, respectively. Comparing (12) and (A4), we obtain
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(A5}g( ) =~rg( «) -[g( «)g~ i)+ ( ~ «)g( i)+g( «)g( «)j]+2g( «)g&«)
i

w (4) ~i (4, i ) f' (2, ( ) (2,( ) + (2, j 1 (2.( 1+ (2, ( ) (2, i )'f f' (l, i ) (3,( ) + (l, i ) (3,j ) (l, i ) (3,() + (l, i ) (3(1,]yg ~pga!8'yg [g~ gyp +gay gal +g ab g Ij)y ] [ n g Byg +g8 gDfy'g +g
y

g~'g +gg golly

+ 2 [a (l, i )a (13 j ) (2, j) ~ a (1,j ) (I, i )a (2,j ) ~ a (l, i )a (1,i ) (2, j )

(13«)g(12«) (23«) g(j ~ «) (& ~ «)g(23«)+ (j 3«)g(12«)g(22«)] 6g(13«)g(13«)g( ~ «) (13«)f

where the sum over i goes from 1 to N No.w since (!'2„~~ b„)j vanishes if there is an odd number of
Pg «

spatial indices, so does A„"'. . .„.Consequently, if we use (abed) and [abed] to denote respectively A'„". . . „PJ
and g'„",.'. . „,, in which the indices p, , ~ ~ ~ p, , take on the value 0 a times, the value 1 2b times, the value
2 2c times, and the value 3 2d times (so that I =a+2b+2c+2d), then we have

(2000) = [2000]—[1000]2,

(0100) = [0100]

(3000) = [3000]—3[1000][2000]+2[1000]3,

(1100)= [1100]—[1000][0100],

(4000}= [4000]—3[2000]' —4[1000][3000]—6[1000]4+12[1000]2[2000],

(2100)= [2100]—[2000][0100]—2 [1000][1100]+2 [1000]'[0100],

(0200) = [0200]—3 [0100]2,

(0110}= [0110]—[0100][0010].

(A6)

The square brackets in (A6) actually depend on i Asu. m of i from 1 to N of the right-hand side of (A6) is
understood. For the 2D formulas, (A6) is still correct except that (0110) is irrelevant. For 4D cases,
since gj(b) is spherically symmetrical, we may carry out the angular integrations in [abed] and arrive at
the formula

[abed]=
b d I „ /a, b+c+d), (-1)!I=—1,

(2b —1)I I (2c —1)I!(2d —1)I!
(A7}

with

(a, e) =-4)f k'dbg, (b)(&')'(b')'.
0

(A8)

We may now work out from Table I the contributions to Z, in (18) and (18'). We will first carry out the
substitution for the 4D formulas. From (17) and (A5), we know that

Br = (2000) '

B"=B36(/ ——(0100) —'5,/.
This leads to

(detA(2)) 1/2 B 3/2B 1/2
S T

The various terms in Table I are

Z3 = —,
' [Br (4000) + 6B„B3(2100)+ 3B3 [(0200) + 2(0110)]),

Z, =—)'2{Br (3000) + 9BrB3 (1100) ],
Z2=+3[Br'(3000) +6Br B3(3000)(1100)+9(1100)B3 Br],
Z, = -', [Br'(3000) + 3BrB3(1100)],

Z = 8

(A9)

(A10}

(All)

~5= 2&S ~

In the case of the 2D formulas, (A6) is still valid, but instead of (A7) and (A8) we have

[ab00] —= (a, b) = g;(ffj)(k')'(b2)'db . (A12)
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We still have

B -=B = (2000}

B"=B =(0100) ',
but now

(detA, ) ~ =(B B )
&'~

and the various terms in Table I become

Zo = +~(B„(4000)+ 2BrBe(2100)+ B e( 0200)},

Z, = ~~(Br (3000} + 3BrBe'(1100)},
Z2= +~(Br'(3000)'+ 2Br'Be(3000)(1100}+ BrBe2(1100)'},

Z~ = +~(Br (3000}+BrBe(1100)},

z, =&a„
~5= 2&S ~

J,

(A14)

(A15)

Finally, we come to the special case when g;(k) is given by (Al) and (A2). Again we consider 4D cases
first. Now(A8) can be evaluated explicitly. The result is

(2k, n) =g (m, ')'(0, n+ k —l),
i-0 &

&» &, ~&=g(")», &'O, +& -»,
)=0

(0, n) = (2n + 1)!!/(2 a, )" .

(A16)

(A17)

(A18)

(A19)

Thus all the Z, may be obtained from algebra, except possibly the computation of (1,0) and (],1). lf one
prefers, even these bvo integrals can be reduced to modified Bessel functions:

3/2
(1,0)=4m —' exp(-a, k2)(k'+m )'~~k2dk

0

exp 2o.;m K, —2'e;~'),

3/2
(1 l)=4w —' exp(-a k')(k'+m ')'~'k'dk

+0

3/2 ~m 4

exp 2e;m ) K2 z Q)m ) Kg 20|&m

For 2D cases, (A2} and (A12) are used. Equations (A16) and (A17) are still valid, but (A18) should be
replaced by

(0, n)= (2n —1)!!j(2a, )",

(-1)!!= 1 .

Moreover, (1,0) and (1, 1) can also be evaluated. The result is
j./ 2

0) 1 e-a;» (k2+m a}x/2dk
lr 4 oo

j./ 2

(zm«') e+ '" 'K, 20.&m
' +K, 20.;m

1/2
(1, 1)= —' e ~" (k'+m. ')' 'dk k'

7T

(A20)

(A21)

X/2
lm 2 +&gwgj. /2~ 1 + m 2
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Finally, let us remark that both for the 4D and the 2D, we can see from (A6)-(A8), (A16)-(A18), and

(A20) that

(0200) = (0110)= 0 . (A22)
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