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Recent unambiguous experimental mm phase shifts are shown to be consistent at least up to
850 MeV with crossing and analyticity requirements, using the rigorously provable integral
equations of Roy. We compute the s- and p-wave phase shifts in the experimentally unknown

region from threshold to 500 MeV. We find the scattering lengths a0= 0.15+ 0.07 and a0
0 2

= —0.053 + 0.028. We also calculate the s-, P-, and d-wave amplitudes in the subthreshold
region and show that the current-algebra predictions of Weinberg are strongly supported by
the data. W'e consider some phenomenological models which are in agreement with the data
and discuss why their predictions are similar to Weinberg's.

I. INTRODUCTION

Low-energy mm interactions have been the sub-
ject of intense study for the past ten years. While
experimental results have appeared somewhat
slowly, a multitude of theoretical models for the
low-energy mm scattering amplitude have been con-
structed. ' These models are based on varying
combinations of such apparently differing criteria
as duality, ' current algebra, ' and the experimental
P-wave phase shift. 4 When combined with cross-
ing, analyticity, and elastic unitarity require-
ments, very similar results are generally pre-
dicted for the near-threshold behavior of the s-
and p-wave amplitudes. Although these results
may be dependent on the parametrization used,
the fact that such models do have much in common
in the very-low-energy region has led to the idea
that they all possess some basic underlying dy-
namical mechanism, which appears to be the on-
mass-shell appearance of the Adler zero. '

The experimental situation, particularly with
regard to the I=O s-wave phase shift, has until
now been greatly confused by ambiguities. How-
ever, recent high-statistics experiments indicate
that the "down" solution is the correct one for
this partial wave beyond the p-resonance region. ' '
With this clarification of the experimental data
from 500 MeV to 1 GeV, we are now in a position
to check whether these data are consistent with
crossing and analyticity properties, and also to
compute the wm scattering amplitude in the experi-
mentally unknown region from s =0 to 500 MeV
using a dispersion-theoretic approach. In particu-
lar we shall compute the s-, p-, and d-wave scat-
tering lengths from the data.

New theoretical tools, provable in axiomatic
field theory, are now available with which to tackle
this problem. We shall use the integral equations

II. NOTATION; ROY'S EQUATIONS

A. Notation

We write the s-channel partial-wave expansion
for the amplitudes F'(s, t, u), which have definite
s-channel isospin I, as

F~(s, t, u) =Q —,'[I+(-1) ''j(21+ 1)f,(s)
L= 0

xP, 1+ 2t
s —4 (2.1)

where we have set the pion mass equal to unity.
Each partial-wave amplitude, f', (s), has a phase
shift 6, (s) and an inelasticity parameter rt,'(s) de-
fined by

derived by Roy' " (and discussed in Sec. II) as a
check on the experimental data up to 850 MeV and
to illustrate that the "down" solution does give a
consistent I=0 s-wave phase shift (Sec. III). In
Sec. IV we shall also use Boy's equations to com-
pute the s and p waves in the unphysical region,
and the Froissart-Gribov representation to calcu-
late the d waves below threshold. Our resulting
amplitude satisfies all the hundreds of rigorous
constraints that such amplitudes must satisfy. "
Moreover it is in good agreement with Weinberg's
predictions. ' That this is so is a direct result of
the on-mass-shell appearance of the Adler zero
and of the empirical truth of the Kawarabayashi-
Suzuki-Riazuddin-Fayyazuddin (KSRF) relation. "
In Sec. V we discuss these relationships and com-
pare our experimentally determined amplitude
with various theoretical predictions, includirg
Weinberg's. In Table I we tabulate our results
for the s-, p-, and d-wave scattering lengths.
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Alston-Garnjost et al. '

Finally we define the scattering lengths, a'„by

q', is equal to unity when elastic unitarity holds.
In principle this is true only for sp(4, 16); how-

ever, in practice, because the 4m threshold is
weak, the partial-wave amplitudes are elastic up

to much higher energies. In Fig. 1 we give the 5o

and 5, phase shifts and corresponding inelastici-
ties as determined by the recent experiment of

(2.3)

[s(s —4)]'~ '
v't t(s). (2.4)

With these conventions the optical theorem reads

8 (s, 0, 4 —s) -=Im I (s, 0, 4 —s)

B. Roy's Equations

Using only assumptions provable in axiomatic field theory, Roy' has derived an exact set of equations

for the partial-wave amplitudes expressed as integrals over the physical region absorptive parts. These

equations, which embody both crossing and the analyticity of twice-subtracted dispersion relations, will

be used as a consistency check on the experimental data and also to compute the partial-wave amplitudes

in experimentally unknown regions.
These equations are derived by using crossing symmetry to reexpress the t-dependent subtraction func-

tions of twice-subtracted fixed-t dispersion relations in terms of scattering lengths and integrals over the

absorptive pa.rts. Projecting out the partial waves, one obtains an equation of the following form:

2 + OO

f', (s) =s.t. + Q Q(2l'+1) dy G', (s, y) Imf f (y),
I'=o I'=o

(2.5)

where s.t. are the subtraction terms present only in the s and p waves. Such an equation is valid for
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FIG. 1. The phases and inelasticities of the I = 0 s wave and the I = 1p wave from Ref. 7. The vertical lines indicate
the calculated errors at a given mass. These errors are purely statistical (Ref. 7}. The plotted points correspond to
the elastic "down" and "up" solutions of Baton et al. @ef. 8}. The open circles are the results of Baillon et al. (Ref. 8}.
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-4 & s &60. (2.6)

The functions G are in general rather complicated. They are given in Ref. 10. However, it will be useful
to write Eq. (2.5) in more detail for the s and p waves so as to display the subtractions terms and the ex-
plicit dependence on the imaginary parts of these partial waves":

f00(s) = a„+~»(2d,' —5a,')(s —4) + dy
s —4 " Im f', (y)

J4

e OO

+ — —[Q,(z) —Qo(z)][+1m fo(y) +3x Im f,'(y) +-,' Im j,'(y)]
7T J4

i+ oo 2 t' ao

[2Im fo(y} -91mf', (y) —51mfo(y)]+ Q P (2I'+ I) dyGQ 'o (s, y) lmf] (y),3 s ., y(y —4) I =0 l'=2 ™4

(2.'I )

f,'(s) =ao —~2~(2a~o —5a,')(s —4)+ dy
s —4 "" Imfo(y)

&4

+- —[Q,(z) —Q, (z) ][&Im f', (y) ——', x Im f', (y) + ~81mj,'(y)]
w'4

W Oe 2 ~ao

+ — ' [2Im f', (y) —9Imf', (y) —51m fo(y)]+ Q Q (2l'+1) ', dy Go ', (s, y)Imf, , (y),
6 s „,y(y-4) I' 0 1' 2

s —4 ""
dy Im f,'(y)f ,'(s ) = ~2 (2a~ —5a,') (s —4) +

(2.8)

e Oo

+ ' dy Q, (z)[&1mfo(y) +—', xIm f ', (y) —
8 Im fo(y)]

w s —4).4

[21mf,(y)+2'Ilmf, '(y) —51mf,'(y)]+ Q P (2l'+1) ~~ dyG', ', (s, y)Imf, (y),18 m „4 y(y —4) I'=0 l'=2

where

(2.9)

x=1+, z =1+2s 2g

y —4' s —4

In the next section we will discuss how these equations are used and in particular how we determine the
all-important subtraction terms.

III. EXPERIMENTAL DATA AND ROY'S EQUATIONS

A. Introduction

We have reliable experimental data for the s-
and p-wave amplitudes only in a limited energy
region, from 500 to 1050 MeV. We shall use for
the I=0 s wave and the I= 1 p wave the data, from
Ref. 7, which are illustrated in Fig. 1. For the
I = 2 s wave we use the results of Baton et al.'
Since Roy's equations, (2.5), require knowledge
of the imaginary parts of the partial-wave ampli-
tudes from threshold to infinity, we must discuss
how we are going to approximate the contributions

from other energy regions and other partial waves.
As noted by Basdevant, Le Guillou, and Navelet"

the partial waves with E ~ 2 contribute most for
y ~ —,'(s —4). That is, the higher partial waves con-
tribute most for larger values of s. However,
only the near-threshold behavior of these waves
is at all important. The required behavior of
these imaginary parts can be estimated from the
real parts using unitarity, i.e. , Im f, ™[(s—4)/s]'~'
x (Re f,}', and the real parts can be estimated using
a scattering-length approximation. The scattering
lengths can, in turn, be computed from the appro-
priate Froissart-Gribov representation for the
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l ~ 2 partial waves: Wigner form given by"

f((s)=
4)

dt's

C„.A' (t, s)q, 1+4 ""
I 2t

I'
(3.1)

f0( )
m~' ' ' m~1'~(y)

y —4 m~' —y —impel'~(y)
'

where

(3 2)

where C« is the s-t isospin crossing matrix, and
where the t-channel absorptive part A~ (t, s) can
be expressed in terms of their partial waves,
Im f ~~ (t ), for -28 & s & 4.

It is appropriate to make a comment here for
later use. While the Froissart-Gribov represen-
tation, Eq. (3.1), can only be proved to be valid
for the l ~ 2 partial waves, because of the need to
comply with the Froissart bound by using twice-
subtracted dispersion relations, in practice the
Froissart-Gribov representation may hold for
lower partial waves. If one believes in some sort
of Regge asymptotics then a p-trajectory function,
a~(s), with ap(s) &1 for s ~4, guarantees that such
a representation exists for the partial-wave ampli-
tude, f', (s)." While this is a very useful relation
which we make use of later, the fact that the I=2
s wave may also satisfy a Froissart-Gribov rela-
tion is much less useful for our purposes, because
of the slower convergence of the integrand.
Therefore we do not utilize this possible phenom-
enological result for the I = 2 s-wave amplitude. '4

To approximate the imaginary parts of the am-
plitude beyond y =53, where the reliable data end,
we note that for large y, G-y '. Therefore, the
integration over y in Eq. (2.5) converges very rap-
idly, damping down the contribution from the
Regge region. Although for s & 12 (i.e. , Ws a 480
MeV) this intermediate- and high-energy contribu-
tion cannot be neglected, our results are not par-
ticularly sensitive to the details of the Regge pa-
rametrization used in Roy's equation until s is
much larger (e.g. , s = 36, Ws = 840 MeV). We
include the fo resonance in the intermediate-ener-
gy region from y =53 up to y= —,'(m&'+m, ') =115 and
assume that beyond that energy the imaginary
parts of the amplitude are given by simple Pomer-
anchukon and p exchange. We estimate the contri-
bution of the background to the intermediate-energy
term by appealing to the Freund-Harari conjecture
and assume that the nonresonant background is
given by the Pomeranchukon-exchange amplitude
[Eq. (3.5)). These intermediate- and higher-ener-
gy terms contribute a polynomial in s to Eq. (2.5).
For simplicity, we only attempt to estimate those
high-energy contributions up to a quadratic in s.
This enables us to make a rather crude estimate
with some degree of certainty since a more de-
tailed Regge parametrization only affects the cubic
and higher terms in s.

For the f, amplitude we use a modified Breit-

&"='(y, t)= t)(t)y p"',

where

(3.4)

3
PP(0) =

32 (3.5)

We make the rough approximation

op(t ) = 1,

P,(t }= P,(0)e"'.
(3.6)

In agreement with factorization and the analysis
of Caso et al. ,"we take

0,',",= 20 + 10 mb,

b = 8+ 3 (GeV/c} '.
Such a large error takes into account not only the
crude parametrization we have used but also the
small contribution from the p exchange.

Substituting Eq. (3.2) for the d wave and Eq. (3.1)
for l &2, together with the partial-wave projection
of Eq. (3.4), into Eqs. (2.7)—(2.9}, we find that
the lowest-order contributions of the fo resonance
and Regge terms to foo(s), f', (s), and fo(s) are

fo(s; HE) =(13+5)x10 (s~ —16), (3.7)

f2(s; HE) =(13+6)x10 's(s —4), (3.8)

f,'(s; HE) = (3.0+ 1.5) x 10 's(s —4), (3 9)

where HE denotes high energy. These forms are
only true for 4&s«53.

Of course, cubic and higher terms in s, which
we neglect here, become increasingly important
for larger s; however, the quadratic terms given
above will be sufficient for our purposes.

We now turn to the most important problem of
how to parametrize the imaginary parts of the s
and p waves from threshold to 500 MeV. This is
the subject of the next section.

y —4 't'P, (1+2m p'/(mt' —4))
mt' - 4 ~,(I+ 2m p'/(y 4})

m& and y& are the resonance mass and width, which
we take to be (assuming the resonance is purely
elastic)

m& = 1269 Me V, y~ = 156 MeV .
For the Pomeranchukon term we take
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B. Determination of the Subtraction Terms

The determination of the subtraction terms in

Eqs. (2.7)-(2.9) is intimately related to how we

deal with the s and p waves from threshold to
where the data begin. The method is to use Boy' s
equations together with unitarity to obtain a self-
consistent set of real and imaginary parts for the
partial waves in this experimentally unknown re-
gion. For each such self-consistent solution there
will be a given value for the subtraction terms.
We further require that these subtraction terms
give, via Roy's equations, real parts for the par-
tial-wave amplitudes which agree with the data
beyond 500 MeV.

We start these attempts to find consistent solu-
tions by computing the p-wave scattering length,
a'„by two different methods which we now de-
scribe.

(a) First we compute a,' from the Froissart-
Gribov representation [Eq. (3.1)], which we assume
exists as discussed in Sec. IIIA. Evaluated at
s =4 we have

oo

at =—
'~~

—
2 [~ A (y, 4)+ a A'(y, 4}—

~ A (y, 4)j.n'„4 y

(3.10)

We divide this integral into four distinct regions,
which we now discuss one by one. Region (i), from

y =4 to 13, is where we want to determine the s-
and p-wave amplitudes, and so will be considered
later. Region (ii), from y =13 to 53, is where we
have the data. We integrate this by using a fit to
the data determined in Ref. 7, which includes the
I = 2 s-wave data of Baton et al. ' To estimate the
errors involved in this, we also integrate a second
fit which passes through the extreme ends of the
error bars. ' This should give our integrals a re-
alistic uncertainty.

Region (iii) is the intermediate-energy or reso-
nance region. In this we include the f, resonance

n~(4)=0.5, 30&yo &50,

3m 'I' u'y, , 1 —a,(4)'=
(m 2-4}'~2 ' '=(m ' 4)

(3.12)

We have used the fact that the small variation in
o.,(s) between s = 0 and 4 has negligible effect on
our calculation to approximate a,(4) by —,'. The
residue parameter P has been determined by ex-
trapolation to the p mass. The parameter y, takes
into account the variation of the residue function
from s=4 to s = pip

The intermediate- and high-energy contributions
to Eq. (3.10) are numerically

a,'(IE) = (3.38 q 0.34) x 10 ',

a,'(HE) = (9.72 + 1.30}x 10 ' .

(3.13)

We then have

and use the form of the f, amplitude given in Eq.
(3.2). We integrate this from threshold to where

Regge asymptotics begins. As before we assume
that Regge behavior is valid for a value of y half-
way between the f, and g resonances, i.e. , y = 115.

Region (iv) is the Regge region (y & 115). Be-
cause the integrand of Eq. (3.10) converges more
slowly by one expbcit power of y than Roy's equa-
tions, the high-energy contribution is relatively
more important. This high-energy term is con-
trolled by p exchange, for which we require a
more detailed parametrization because of the slow-
er convergence. We follow Le Guillou, Morel,
and Navelet' and use

ap (4)
A~*='(y, s=4) =Pzsinmaz(4) y I'(I —o. (4)},

, - 0

(3.11)

where

""d +4
a', =— —, —,

' Imf', (y)+ —', Imf', (y) -& Im f', (y) +(1.31+0.16)x10 '.
M4

(3.14}

To compute the integral from y =4 to 53 we use the fit of Ref. 7 extrapolated all the way down to threshold
(this fit will be referred to as SCAT). This will give us a starting value for a', .

(b) Given a value for a', we can compute the subtraction constant 2aoo —Sao by using a sum rule which was
first obtained by Wanders using the Mandelstam representation, "but which follows more generally from
Roy s equation. Consider Eq. (2.9) and divide by (s —4). Using the definition of the scattering lengths, Eq.
(2.3), and setting s =4 we obtain

2a0 —5a0 —18a', =—, 2A"(y, 0) —5A (y, 0) — A. '(y, 0)
0 2 1 16 dy 0 2

v'(y —4) ' ' ' (y-4) (3.15)
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We divide the integral into two parts. The one with

y &53 is estimated from Eq. (3.9) to contribute
-(8.6 +4.3) && 10 '. The integral from y = 4 to 53 is
evaluated using SCAT. This gives us a first value
for 2a,' —5a,' —18a,', which together with our initial
evaluation of a,'provides us with a starting value
of the subtraction constant, 2a,'- 5a,'.

(c) We next choose a value for the second sub-
traction constant, a'„atrandom in the range
(0, 0.4). Using this aoo and our first value for 2aoo

—5a,', together with SCAT to calculate the inte-
grals, we can compute the real parts of f'„f'„
and f,' as functions of s from threshold upwards
Next we use unitarity to compute the correspond-
ing imaginary parts. Since in SCAT the imaginary
parts below 500 MeV have been obtained by extrap-
olating a fit and are not experimentally deter-
mined quantities, we replace these imaginary
parts in SCAT below 500 MeV by those obtained
from Boy's equations, via unitarity. With these
new estimates of the imaginary parts we repeat
the cycle. We recompute a', and 2a', —5a,' from
Eqs. (3.14) and (3.15}. Then keeping our value of
a', fixed we recalculate the real and imaginary
parts of Qe partial-wave amplitudes. This is
repeated until no change is observed from one
iteration to the next. For this procedure to con-
verge after a reasonable number of iterations
(i.e. , less than 50) with a', &0.2 we had to assume
that the data were known down to 480 MeV (rather
than 500 MeV). This was because for larger val-
ues of a', the real part of the I=0 s wave, computed
from Roy's equations, may violate the unitarity
bound below 500 MeV during the iteration proce-
dure. Since the imaginary parts are not properly
defined for such real parts (i.e. , when [(s —4)/s]' '
x Re f', (s) = ~ sin260(s} & —,'), this can produce insta-
bilities in our iteration procedure. By using the
fit given by SCAT down to 480 MeV, for the larger
values of a,'6 (0, 0.4), we were always able to ob-
tain convergence in 8-20 iterations. Thus for a
given value of a', C (0, 0.4} we obtain a self-consis-
tent set of real and imaginary parts for the s- and
p-wave amplitudes below 500 MeV. We now want
to choose those values for a,'which give real and
imaginary parts for these partial waves in agree-
ment with the data beyond 500 MeV. Since the en-
ergy region from 520 to 700 MeV (i.e., s =14-26)
depends most sensitively on the subtraction terms,
we shall only use the data in this range to define
an "ad hoc" X'. We define this X' in the following
way:

ao 0 15+0 07 (3.17)

As noted before, the agreement we obtain for
Ref', (s) is little altered by the value of a'„since
this real part depends most on a,' and 2a', —5a,'.

l5

io

bl

OQ

computed real parts, respectively, of the partial-
wave amplitudes; o' is the sum of the squares of
the experimental and computed errors in these
real parts. The computed error includes the un-
certainty in the high-energy contributions of Eqs.
(3.7)-(3.9) and Eqs. (3.14), (3.15) as well as the
errors in the integrals over the data.

For all our self-consistent solutions with ao
g (0, 0.4) we can compute the values y' for each s
and p wave. We find that this X' for the I=1 p
wave depends little on the value of ao. This is
mainly because a', and 2a,'—5a,' change by at most
25% for a,'E(0, 0.4). For the I= 2 s wave the experi-
mental errors' are too large for us to be able to
use }(' in a meaningful way. However, in contrast,
we find that X' for the I=O s wave has a very sharp
minimum as a function of a'„which is shown in
Fig. 2. We therefore use this to define the central
value for this scattering length, and so obtain

ao 0 152

However, our X' is not a meaningful quantity with
which to define the error on this parameter; i.e. ,
it is not directly related to the number of degrees
of freedom, which are not well defined in this
case. The experimental points used' were ob-
tained in an energy-dependent fit; therefore one
cannot treat each point as statistically independent.
What we do instead to define the extreme values of
a', is to observe where the bands of experimental
and computed values for the Re f', (s) barely over-
lap in the region from 500 to 700 MeV. (See Fig.
3.} This criterion gives

Ref,(s) —Ref,(s) '
X —

i

ds-
0(s) (3.16)

0 I

0.05 O. lo O.l 5
go0

0.20 0.25

where Ref, (s), Ref, (s) are the experimental and
FIG. &. A plot of (g 0 ) '-, defined by Eq. (3.16), ver &us

0ao.
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0.6—
o =0.22

a'—,= -2.9 + 2.0 )a, '
(3.22)

0 4

0.2—

to be compared with the independent experimental
determinations of this ratio, " -3.1+ 1.1, and with

Weinberg's prediction of -3.5. All our results for
the scattering lengths are summarized in Table
I for easier reference. "

OO

0
0.6—

o =OI5

C. Are the Data Consistent with Crossing
and Analyticity Properties?

0.4—

C/l

0.2-
I

VJ

0.4—
ooo =0.08

0.2—

'lo l5 20
s (m~)

I

25
I

30

For aoDin the range given by Eq. (3.17) we find

and

Qy 0 0357 + 0 0020 (3.18)

2a,' —5a,' = 0.569 y 0.040 . (3.19)

FIG. 3. The cross-hatched band contains the experi-
mental values of L.(s -4)/s] Ref p (s) from Ref. 7. The
solid lines indicate the range of values for the same
quantity calculated using Roy's equations with a fixed
value of ap (ap = 0.08, 0.15, and 0.22 are shown).

Knowing the subtraction terms, we can now use
Eqs. (2.7)-(2.9) to compute the real parts of the
s- and p-wave amplitudes from threshold upwards.
We, of course, already know that our computed
results will agree with the data at least up to 700
MeV, but what happens beyond that energy?

The computed bands for 5,'(s), 602(s), and 5,'(s)
are illustrated in Figs. 4 and 5 together with the
data. ''' The bands reflect the uncertainties in
our knowledge of a', and a,', and of the lowest order
high-energy corrections, as well as the experimen-
tal errors on the imaginary parts. As can be seen,
we have remarkable agreement up to Ms=850 MeV,
particularly for the I=1 p wave, for which there
is less uncertainty in the data. The deviation at
higher energies is not surprising since we have
only included estimates for the quadratic terms in
s from the high-energy contributions, and this is
clearly unrealistic for energies closer to 1 GeV
than threshold. Nevertheless we see that the
"down" solution for 5'„beyond 720 MeV, is com-
pletely consistent with the general theoretical
properties built into Roy's equations. "

We have also used the same procedure as de-
scribed in Sec. IIIB replacing the "down" solution
for 5', beyond 720 MeV by an "up" solution. Al-
though self-consistent real and imaginary parts
can be obtained up to 700 MeV, we have been un-
able to produce a 5,' phase shift which rises rapidly
enough in the p-resonance region. A more system-
atic study of this, together with a discussion of

These values are to be compared with Weinberg's
prediction': TABLE I. Our results for the s-, p-, and d-wave

scattering lengths.
ao 0 195 2a,' —5a,'=0.67 if f, =83 MeV

(the Goldberger-Treiman value);
ar Scattering-length values

ao 0 053 + 0 028

which gives the ratio

(3.21)

ap 0 150 2cPo 5ao 0 52 lf fff 95 MeV

(the experimental value) . (3.20)

From our determination of a', and 2a', —5a,' we ob-
tain for the I= 2 s-wave scattering length the value

ap
p

ap2

2ap —5a p
p 2

a~
1

a'
2

a 2

0.15+ 0.07

-0.053 + 0.028

0.57+ 0.04

0.036+ 0.002

(1.69+ 0.05)x 10

(0.7+ 3.0)x 10 ~
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2
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0.9

FIG. 4. The I = 0 and 2 s-wave phase shifts: The
bands bordered by the solid lines are those computed
from Kqs. {2.7) and {2.8). The cross-hatched band
corresponds to the experimental results for bo of
Ref. 7, also shown in Fig. 1. The K~4 results of Ref. 20
are shown for comparison, where the open circles are
the points fixed by their y2 fit, and the solid points are
those determined by the Pais-Treiman method {Ref. 20).
The data points for bo are from Baton et al. puef. 8).

IV. PARTIAL WAVES IN THE UNPHYSICAL REGION

A. Results

the intermediate-energy region, which includes the
S* and jo resonances, will be the subject of a
forthcoming article.

Since the "down" solution for 6O(s), beyond 700
MeV, is confirmed, we can have great confidence
in our determination of the partial waves in the
experimentally unknown region from threshold to
5QO MeV. However, we should note that our values
for 5,'—5,', in the region 300-360 MeV, are not in
complete agreement with those values obtained
from K,4 results, ~ which are also shown in Fig. 4,
but within their large errors they are not incon-
sistent. We now proceed to calculate the s-, p-,
and d-wave amplitudes in the unphysical region
from threshold to pseudothreshold.

a', = (1.69 + 0.05) x 10 ',
a'=(0 7~3.0)x10 '. (4 I)

These quantities include contributions from high-

)60

I40-

I 20-

Cl

80-

Cl

However, more than this, just computing j'„j'„
j,', j'„andj,' from the imaginary parts of the s
and p waves ensures that crossing symmetry is
satisfied, since with Im j', (s)=0, for l» 2, the sup-
plementary crossing conditions of Roy are trivially
satisfied. '" In fact all known crossing, analytic-
ity, and positivity constraints on the s, p, and d
waves below threshold will be satisfied in this
way. "

The results of using Eqs. (2.7}-(2.9) to compute
j'„j'„andj,' are illustrated in Fig. 6; no errors
have been assigned although they are primarily
just those already given to the appropriate scatter-
ing length, i.e., the uncertainty in j', (s) is just
g0.07, while in j', (s) it is +0.002(s —4). The v'n'
s wave, jooo(s) = —,'(jo+2jo}, which is of particular
interest with regard to the rigorous constraints
discussed in Ref. 11, is shown in Fig. 7. The d
wave j', and the v vo combination joo(s} were calcu-
lated from the Froissart-Gribov representation
of Eq. (3.1) and are depicted in Fig. 8. Although
the slope of the m'm' d wave can be rigorously
proved to be negative from s =4 down to at best
s =-', ,"we see that our d wave has negative slope
for all se(0, 4) just as suggested by Martin. ~

This means that the m' r' d wave has only one sec-
ond-sheet pole for s6(0, 4).'2'~

The values we obtain for the d-wave scattering
lengths are

In computing the s, p, and d waves below thresh-
old we shall neglect both the contribution from
the higher partial waves up to 1 GeV and that of
the high-energy term. While the contribution
from the higher partial waves is definitely negligi-
ble, the neglect of the high-energy term will affect
our results slightly. For example, the values of
the partial waves at s=0 will change by a few per-
cent, but since we have a 50% uncertainty in the
s-wave scattering lengths this seems justified.

20-

0.3 04 0.5 QS 0.7 0.8 0.9 I.O
Mrr (GeV)

FIG. 5. The I = 1p-wave phase shift: The band
bordered by solid lines is that computed from Eq. {2.9).
The cross-hatched band corresponds to the experimental
results of Ref. 7, also shown in Fig. 1.
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energy terms, and their errors are again esti-
mated by the method discussed in Sec. IIIB. We
note that the exotic d-wave scattering length is at
least two orders of magnitude less than the corre-
sponding I = 0 scattering length, giving support to
the assumptions of Ref. 4. We also remark that
the value for the I=O d-wave scattering length of
Eq. (4.1) is very close to that given by assuming
that the threshold behavior for this partial-wave
amplitude is dominated by the tail of the f' reso-
nance and setting v = 4 in Eq. (3.2).

B. Subthreshold Zeros, the Adler Zero,
and the p Resonance

4sp+ 5s, = 12 . (4.2)

While including the high-energy contributions
which we have neglected would slightly alter our
results, the form of our s, p, and d waves, shown
in Figs. 6-8, must be very close to the true situa-
tion within the errors assigned to the scattering
lengths (Table 1).

A most important point to note is that the I= 0
and 2 s-wave amplitudes have zeros at s = s, = 1.10
and s =s, = 1.49, respectively, with a, =0.15 and
ap'= -0.053. These positions give 4s, +5s, = 11.9.
Changing the s-wave scattering lengths within
their uncertainties will change the positions of the
s-wave zeros, but since the relation (3.19}must
still be satisfied, the positions of the s-wave zeros
will continue to obey the condition

Let us make a brief comment on this relationship,
discussed in Ref. 6, which seems to have been the
source of some confusion. In an exactly linear
model where

foo= 2a(s —s,),

f,'= a(s, —s),
(4.3)

s, and s, satisfy Eq. (4.2) exactly just from cross-
ing symmetry, regardless of the values of s, and

s„which may in general of course be outside the
region (0, 4}. However, it is shown in Ref. 6 that
if so is roughly in the range (0.2, 1.5} and s, is re-
lated to s, by the approximate relation Eq. (4.2),
then, assuming a simple quadratic off-mass-shell
extrapolation, the on-mass-shell amplitude is con-
sistent with the vanishing of the off-shell ampli-
tude at or very close to the Adler point, s= t=u
= 1.' However, more important in this respect is
the fact that the on-shell Chew-Mandelstam invari-
ant amplitude, "A(s, t, u} = —,'[E'(s, t, u} —F'(s, t, u)],
has a line of zeros in the Mandelstam triangle,
shown in Fig. 9, which is very much like that de-
picted in Fig. 1 of Ref. 6 as the on-shell appear-
ance of the Adler zero. As discussed earlier in
Ref. 25, the real-s, real-t projection of this com-
plex zero continues smoothly into the physical re-
gion to become the Legendre zero of the p reso-
nance. This is a very important point in linking
current-algebra-based models and p-wave-domi-
nant solutions to mw scattering.

0.15

I 5.0—

O.IO

I 2.5—

0.05

I 0.0
0
OO

IO
O

7.5

-0.05

I.O 2.0
s (m~)

XO 4.0

FIG. 6. The partial-wave amplitudes fo, fo, andf
&

below threshold from s = 0 to 4, computed from Eqs.
(2.7), (2.8), and (2.9), respectively, with scattering
lengths of ay= 0 15 a p

=-0 053 and a~ = 0.0357.
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FIG. 7. The m m wave f o
= 3 (fp+2fp) in the un-

physical region with the scattering length a &
——0.0153.
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FIG. 8. The d-wave amplitude f 2 and the m x combi-
nation of f 2 in the unphysical region, computed from
Eq. (3.1) without error bars.

V. DISCUSSION AND CONCLUSIONS

FIG. 9. The A(s, t, u) = 0 contour within the Mandel-
stam triangle lies inside the band shown for all our
solutions. The A = 0 contour for each individual solution
is roughly parallel to the lines ab and cd. The band is
defined by the subthreshold partial waves shown in
Figs. 5 and 7, together with their uncertainties.

We now briefly compare our results with those
of other approaches. First, the data we are con-
sidering are in good agreement with the favored
"between-down" solution of Morgan and Shaw" (at
least away from KK threshold), which they found

using forward dispersion relations. Because of
this agreement we find similar values for the s-
and P-wave scattering lengths. However, unlike
the work of Morgan and Shaw, our analysis is not a
prediction but a computation of experimentally de-
termined parameters.

Of the many theoretical models based on com-
bining analyticity, crossing, and unitarity with
the experimental p-wave phase shift, our results
are closest to those of four recent works. These
are models by Widder, by KQhnelt, by Piguet and
Wanders, "and by Le Guillou, Morel, and Navelet'
(LGMN). Widder's best solution is the closest,
with scattering lengths a0=0.15, a,'= -0.064, and
a', =0.037. The predicted I=0 phase shift, which
has 6', = (82+7)' at s =m~', is in good agreement
with our results up to 900 MeV. Below threshold
Widder's model has quasilinear s-wave amplitudes
with zeros at roughly s, =1.6 and s, =1.12. Solu-
tion A of KDhnelt" has an I= 0 phase shift which is
up to 10' higher than the data in the p-mass re-
gion. Nonetheless his s- and p-wave scattering
lengths and the s-wave zeros are much as we find
them to be.

Of the quasilinear models of Piguet and Wan-

ders, ~ which include the p as input, that shown in
Fig. 12 of their paper gives a 6', phase shift in
good agreement with experiment up to 800 MeV.

The last of the rigorous models we shall mention
is that of LGMN. ' They find values for a,' and 2a,
—5a', larger than ours, and so predict larger values
for 6, than given by the data. ' However, the ratio
ao: a,':a', predicted by LGMN is very similar to
that we have found. The difference in our results
lies in the fact that LQMN obtain a value of Qy

=0.045 compared to our value of 0.036. Le Guillou,
Morel, and Navelet obtain their result for a,'by
fitting the data of Baton et al. ' and extrapolating
the fit to threshold. Their larger value for a', re-
sults from the fact that they gave extra weight to
the lowest data points (around 500 Me V), and
Baton et al. have somewhat larger values for 6,'
at such energies than given by the data we are con-
sidering. For example, at 500 and 525 MeV our
computed 5', values are (6.3 a 0.4)' and (7.6+ 0.4)',
respectively, while Baton has (8+5)' and (10+3)'.
Within the errors, of course, they agree, but
since LQMN gave extra weight to these points they
find a larger value for a', than we do.

It is appropriate to remark here that Kuhnelt's
conclusion, ~ that inelasticity or the passage of 6',
through 180 near 1 GeV does not change the situa-
tion in the very-low-energy region by very much,
is completely borne out by these comparisons.
None of the four theoretical models we have dis-
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cussed includes inelasticity or the rapid rise of

p through 180 beyond 900 MeV, yet they al 1 have
low-energy results in good agreement with the
data which do have appreciable inelasticity beyond
KK threshold and a 5,'which passes through 180 .

All four "rigorous" models we have mentioned
are typified by having subthreshold zeros in their
s-wave amplitudes and a p resonance in their p-
wave amplitude. This behavior of the partial waves
is in good agreement with the data. Our analysis
shows that Weinberg's predictions' are also in
very good agreement with the data.

This is a very important clue to understanding
any dynamical mechanism underlying low-energy
mm scattering. The fact that the Chew-Mandelstam
invariant amplitude~ displays the on-shell appear-
ance of the Adler zero inside the Mandelstam tri-
angle and that this zero continues smoothly into
the physical region to become the Legendre zero
of the p resonance is the first point in unifying
all approaches to mm scattering which give physi-
cally reasonable results. Most models which have
a p-wave resonating at some mass m~ have near-
threshold or subthreshold s-wave zeros, and if
in the model m~'»4 (as, of course, it is experi-
mentally), quasilinear forms for the partial waves
below threshold result. Similarly, quasilinear
subthreshold partial waves which have zeros mill
give a resonating p wave under certain plausible
assumptions, such as the hypothesis that "exotic
channels are weak. ""

So far we have only related the Adler zero and
the fact that the p wave resonates, without refer-
ence either to the particular resonance parame-
ters or to where exactly the Adler zero appears
on mass shell inside the Mandelstam triangle. To
completely specify the solution to the subthreshold
vv problem we also need the values for a,' and ao/
ao. Current algebra determines the s-u odd ampli-
tude at the point s =u =1, t =0, where two pions are
massless. The Adler-Weisberger relation sets the
scale in terms of the pion decay constant, f, The.
assumption that the I= 2 component of the o com-
mutator vanishes implies that the Chew-Mandel-
stam invariant amplitude, A(s, t, u), vanishes at
s = t = 1, u = 0. Now the Adler self-consistency
condition means A(l, 1, 1) =0. The PCAC smooth-
ness hypothesis allows us to relate these off-mass-
shell conditions to what happens on the plane s+ t
+u=4. If the smoothness of a quasilinear model
is assumed then A(s, t, u) must vanish close to the
line s = 1 on mass shell too. What does this mean
for the ratio ao/a,'? To answer this, the position
s = s~ of the zero of the s-wave amplitude,
—,'[f', (s) —f,'(s)], is a convenient parameter. In an
exactly linear model the invariant amplitude
A is just this s wave, and so it vanishes on the

line s= SA. Now in a quasilinear model the ratio
of the s-wave scattering lengths is related to s„
by

a~ 5 6
0 2 sg

(5.1)

(, )
1 4mo21o

24v f.' (m, '-4)5t' ' (5.2)

We have noted that the on-shell appearance of the
Adler zero within the Mandelstam triangle leads
to the quasilinearity of the subthreshold s- and p-
wave amplitudes and to a value for the ratio a,':a,'
:a', close to that which Weinberg predicts. Fur-
ther, the fact that the KSRF relation [Eq. (5.2)] is
empirically well verified produces the agreement
in the values for the s- and p-wave scattering
lengths, regardless of whether they are predicted
from current-algebra arguments or in some sort

We see if the amplitude mere s-wave-dominant,
as studied by Chem, Mandelstam, and Noyes, '
the s wave would have no subthreshold zero (i.e. ,

s„=~) and no p resonance, and ao/a,' would equal
However, nature appears to be more as Wein-

berg predicted with s„closeto unity; hence a,'/a,'
is nearer to ——', than —', . While with reasonable
smoothness assumptions this implies that the
amplitude vanishes close to the Adler point, we
should take care in drawing the conclusion that
this also implies that the o commutator is purely
isoscalar. While in an exactly linear model this
conclusion would also be true, any additional
quadratic and higher-order terms which may be
present when we take more than one pion off mass
shell may give an unknown value for this commuta-
tor, even with s„closeto unity. This is of course
a general feature of soft-pion calculations which
makes only a linear approximation meaningful.

We have seen why in models utilizing soft-pion
results s„is close to unity. However, from some
general principles, other than current algebra,
it is not clear why s„=1.24. Namely, what model-
independent feature of nn scattering explains the
appearance of the Adler zero on mass shell near
the line s = 1.24? The answer to this question is
an unsolved problem.

We now turn to the problem of how the scale of
mm interactions is determined in the various ap-
proaches. For this the value of the p-wave scat-
tering length is crucial. Those models which use
the experimental p wave as input have their scale
given by the p mass and width in essentially the
ratio I'~/m~', while in current-algebra models,
as discussed above, it is the pion-decay constant
which sets the scale. The ratio I'~/m~' and the
pion-decay constant, f„arerelated by the well-
known KSRF relation"
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of p-dominated model —values which also agree
with experiment. "

We conclude by recalling what we have achieved.
We have shown that the s- and p-wave data of Ref.
7 are consistent with the crossing and analyticity
properties used in deriving Roy's equations. In
particular the I= 1 p-wave phase shift, which has
very small errors, almost exactly reproduces it-
self via Roy's equations. For the I=0 s wave we

have shown the consistency of the favored "down"
solution up to 850 MeV. We have computed the s-
and P-wave phase shifts in the experimentally un-
known region from threshold to 500 MeV. We have

also calculated the l=0, 1, and 2 partial waves
below threshold and found the s and p waves to be
quasilinear with scattering lengths in agreement
with Weinberg's current-algebra predictions and

the dispersion-relation results of Morgan and

Shaw.
We conclude that current-algebra-based predic-

tions are strongly supported by the data and reit-
erate an earlier conclusion~ that the minimum of
dynamics necessary to understand low-energy mn

scattering in addition to crossing, elastic unitar-
ity, and analyticity is the on-mass-shell appear-
ance of the Adler zero.

~Work supported by the U. S. Atomic Energy Commis-
sion.
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In the quark model, nuclei (B ~ 2) have exotic quantum numbers. Given a nuclear reaction
in which certain quantum numbers are exchanged, what is the scattering amplitude at high
energies, in the GeV region? Does it have Regge behavior? Is it dual? Are there multi-
baryon resonances'? In this context we present a general survey of all high-energy nuclear
reactions -mainly those involving light nuclei. For B = 0 exchange reactions, like md md

and m h m t (h=—He, t = H), there is the impulse and rescattering (Glauber) model. For
B= 1 exchange we discuss the one-pion-exchange (OPE) model for pp dr+, pd cip, and
yd pn, and the "knock-on" model forpd n'+t, dd tp, dh hd, yh pd, and yn pt.
In the case of B= 2 exchange we examine the impulse and rescattering diagrams for md d~,
yd dm, and yd dy, and use the OPE model to calculate cross sections forpd-t~, pt

tp, and ph Q. Briefly considered are: (1) backward elastic scattering from heavy
nuclei (pA Ap) and (2) inclusive nuclear reactions such as N+ A 6Li + anything and
pA d+ anything. We postulate that in general nuclear reactions have Regge behavior, but
are not dual, because so far there are no exotic multibaryon resonances. Nuclear reactions
appear to be completely dominated by anomalous singularities, whereas ordinary nonexotic
hadron reactions appear to be dominated by normal singularities and poles.

I. INTRODUCTION

Given a two-body nuclear reaction in which cer-
tain quantum numbers are exchanged, what is the
differential cross section at high energy, in the
GeV region? Forward diffraction scattering has
received the lion's share of the attention because
the cross sections are large and do not fall off
with energy. In this paper, we will be concerned
mainly with nondiffractive reactions, those in
which quantum numbers are exchanged.

Nuclei are weakly bound systems of protons and
neutrons. What is remarkable is that the nucleons
retain their identities and do not melt into a multi-
baryon state bearing no resemblance to its con-
stituents. The general expectation is that nuclear
reactions should be completely accountable in

terms of the more fundamental nucleon-nucleon
interactions. The specific mechanisms are be-
lieved to be very complicated and not really worth
investigating.

At asymptotic energies the problem might sim-
plify. Let us assume that the scattering amplitude
has Regge behavior at high energy. Recall that
Regge poles were first introduced into hadron
physics as a general prescription for ensuring that
unitary bounds on scattering amplitudes are not
violated. If only a spin-Z~ 2 object is exchanged,
the cross section will grow with energy, and
thereby violate the Froissart bound. Most of this
contribution must therefore be canceled by other
high-spin exchanges, and the Regge prescription
is the simplest way of ensuring this.

The p-pg channel has a bound state, the deuteron.




