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An optical model of the Chou-Yang type has been extended to treat resonance production in

high-energy pp scattering. Dipole form factors have been used for the hadronic matter dis-
tribution. Good qualitative agreement with experiment is found for differential elastic and

single-excitation cross sections for momentum transfers out to 2-3 GeV~.

I. INTRODUCTION

One of the successful approaches to high-energy

pp elastic scattering is that of Chou and Yang' in
which it is assumed that elastic scattering reflects
the absorption due to all open channels. The had-
rons are viewed as extended objects of absorbing
matter with a distribution described by a form fac-
tor. Since this picture does not arise from any
fundamental theory, the theoretic" l input is the
particular function chosen for the form factor,
which usually is taken to be the electromagnetic
one. Pararnetrizing the form factor with the em-
pirical dipole fit and performing the complete im-
pact-parameter transform, ' one can account very
well for the general features of the data, including
the presence of dips and the value of the forward
slope. This success is not meaningless since
changes in the value of the dipole mass can make
the dips disappear altogether (see Sec. II be-
low}. On account of this success, one is encour-
aged to extend the idea to other diffractive pro-
cesses such as resonance excitation. Association
of the N -N* transition form factor with the elec-
tromagnetic excitation form factor leads to a scal-
ing relation between elastic scattering and reso-
nance excitation that seems to explain quite well
the XN-NN* differential cross section in terms ofi' elastic scattering. '

In this paper we will further pursue the above
ideas by using the elastic dipole fit along with the
scaling property of the form factor to obtain an
explicit expression for the excitation form factors.
In principle, this enables us to calculate the ex-
citation cross sections directly. In practice, how-
ever, the coupling of elastic and resonant chan-
nels becomes very complicated if more than one
resonance is involved, so we have confined our-
selves to one resonance. The aim of this paper,
therefore, is rather limited. We cannot hope to

improve upon the calculation of the elastic scatter-
ing and in fact we are likely going to spoil it at
large values of t where the coupling of more reso-
nances is important in the higher terms of the
Glauber expansion (Sec. IV). We would be con-
tent, therefore, if all the qualitative features of
the data up to ) f )

= 2-3 GeV' emerged. It is grati-
fying that this is the case, indeed. The elastic
differential cross section has a dip while the ex-
citation differential cross section does not.

The paper is organized as follows: In Sec. II,
we present for completeness the treatment of
elastic scattering decoupled from resonant chan-
nels (as was done in Ref. 2). We notice that the
model gives a change in the forward slope in agree-
ment with the ISR (CERN Intersecting Storage
Rings) data "In .Sec. III, we describe the general
formalism for the treatment of the coupled-chan-
nels problem. In Sec. IV we present the actual cal-
culation for the case of one resonance coupled to
the elastic channel and give results for elastic
scattering as well as single- and double-resonance
excitation. We conclude with a short discussion o
the model's results.

II. ELASTIC SCATTERING

To treat high-energy elastic scattering of parti-
cles A and B at small angles, "we will assume
the scattering is approximately spin-independent,
so that we can write the scattering amplitude in the
impact-parameter representation

f(s, f) = i [I -S(b) jJo(b ~t )bdb,
0

where S(b} is the S-matrix element at impact pa-
rameter b and the normalization is such that the
differential cross section is given by

d—= w[ f(s, t)P.
d'0
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o„=2v ll -S(b)I2bdb.
0

(8)

With u =u, and or =39 mb (as we take throughout
this paper) o„ is approximately 20% of or as sug-
gested by present experimental data.

We see, therefore, that the Chou-Yang optical
model can provide a consistent picture of pp elas-
tic scattering when we use the dipole fit with p = p,

To obtain an expression for S(b) we identify the

matter and charge form factors. We can test the
consistency of this hypothesis from the dependence
of the differential cross section on p. , the dipole
mass, appearing in Eq. (6). The curve for do/dt
vs t for various values of p. is shown in Fig. 2.
Notice that no zeros are present for g2~ 0.6 GeV',
whereas two zeros occur for higher values. Pre-
sumably the dip in pp data at t = -1.2 GeV' (Refs.
'7 and 8) arises from such a diffraction zero, so u.

must be at least as great as p, .
The model predicts a slope for the very forward

peak which changes around -t=0.1 GeV'. ' The
values of the slope parameter on either side of this
change are presented in Table I for p, = p, o' and 1

GeV'. As this is an asymptotic model we confront
these values with the ISR data at the highest ener-
gy and find p. =go j.s favored.

We can calculate the total. elastic cross section
from the expression

amplitude again is related to S(b) by Eq. (1}with

the differential cross section for state j to be
reached from state i given by

d
" = v I f,f (s, t) I' . (10)

As in elastic scattering, the only other theoretical
input will be the form factors, as the absorption
coefficients are determined by total excitation
cross sections. The success of the electromag-
netic form factors in incorporating features of
elastic pp data tempts us to use the electromag-
netic excitation form factor for diffractive N-N*
transitions. We can utilize the seal. ing property of
inelastic electron scattering to write"

G (t, m„') = G(t /m ')

(where ms is the resonance mass), so we have on-
ly one common form factor, the elastic one, when

we scale the momentum transfer by the resonance
mass squared. Relation (11}, together with the as-
sumption of factorization for the excitation cross
section, was shown to lead to very good agreement
with experimental data. ' Also, one can somewhat
understand this relation in a simpleminded parton
picture of hadrons. ' We will, therefore, adopt it
for resonance excitation. If we take the dipole fit
of Eq. (6), it follows that Gs is also given by a di-
pole with mass

III. RESONANCE-EXCITATION FORMALISM
mQ

Pz=Pp (12}

S(b) =e-s&'I (9)

with the exponentiation accounting for the coupling
between communicating channels. The scattering

We describe resonance excitation in the model by
specifying the form factor G„(t) which represents
the possibility of a nucleon becoming an N~ and
vice versa. We do not attempt to justify the pro-
cedure, but take it as a working hypothesis. One
may think of it, for instance, as diffractive dis-
sociation mediated by exchange of an infinitely
heavy Pomeranchukon. Another framework in
which it applies is the Glauber picture where G„(t)
is related to the probability that a particle is ex-
cited to a higher state during interaction. In any
case, from the initial NN state, many virtual
states (such as NN*, N~N*, etc.) may be reached
during the course of the interaction, so the func-
tion ep(b) of elastic scattering must be replaced by
a matrix B(b). The possible intermediate states
label the rows and columns in the usual manner.
Every matrix element will be related to the ap-
propriate form factors by a Bessel transform anal-
ogous to Eq. (4). The multichannel S matrix is
given by

where m is the nucleon mass. We can now calcu-
late the absorption density ps(b) from Eq. (4) to ob-
tain

ps(f ) =G ."".[&.(uah) -&.(ub)]

+ u s'u &&i(u b}+u'u s&&i(u ~b)
(13)

2 2 4 4-
C-'= " . »n .+

1 —(m/m„)' m„' m„'m'

Figure 1 shows ps(b) as given by (13) plotted for
N*(1690) and for a fictitious resonance with m„
=5m. The excitation comes from the more central
regions in impact-parameter space as the reso-
nance produced becon es heavier. Clearly, this
should be the case in view of the transform rela-
tion between p(b) and the form factors [Eq. (4)],
and the scaling relation (11).

To complete the specification of the matrix B(b),
we must deduce the form factors for the transi-
tions N*-N*. Here, of course, we cannot hope
for an experimental hint and for simplicity will
take them equal to the elastic N -N form factor.
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IV. CALCULATION

The model outlined in the previous section en-
ables one, in principle, to consider any number of
resonances. In practice, the calculation becomes
quite complicated for more than one resonance,
so we will treat only the prominent N*(1690). With
retention of a single resonance, we expect, a pr~-
o~i, that the calculation will only apply for -t
s 2-3 GeV' for the following reason: At low values
of t only the first few terms in the expansion of the
exponential of Eq. (9) are important, but as l t

~
in-

creases so does the importance of higher terms
and more resonances become coupled. From elas-
tic scattering we know that the third-order terms
become comparable to the lower ones at the second
zero of Fig. 2 (-t =4-5 GeV'). We choose the
N*(1690) since it is more strongly coupled and bet-
ter separated experimentally from other resonan-
ces than are the lower diffractive states which are
usually mixed with the N*(1238)."

The matrix B(b) is now 4x4. We assume com-
plete factorization in the momentum-transfer vari-
able so that, not only is the t dependence given by
a product of the form factors, but the absorption
coefficients factorize as well. B(b) will then have
only three independent elements, B», B», and
B22:

where p(b) for Eqs. (14a) and (14c) is given by Eq.
(7) with p = p, , and p =ps, respectively, while
ps(b) of Eq. (14b) is given by Eq. (13). The fac-
torization assumption requires

2
~ii&22 = &i2 ~ (15)

When we account for the Pauli principle in the
intermediate states the compete matrix B(b) be-
comes

]NN) lNN*) lN*N) lN*N*)

(NN I B„
(NN* l B~2

B(5) =
(N*N l B~2-
(N~N*l B»

B22

-Bu

Bu

Bu

B„

M, M2)

M~ M~

where M„M, are 2x 2 matrices of the same form,
we find the diagonalizing matrix U is

(16}

To exponentiate B we first diagonalize it. Noticing
that B is of the form

B„—= ( NN) B(NN) = «„p(b},

B» =(NN'[B [NN) = ~» p„(b),

B» —-(N*N*lBi NN) = a» p(b),

(14a)

(14b)

(14c} Then we have

(17)

10 102

10'

10

p+p —p+p (Elastic)

6.0 Ge V

19.2 GeV
———24.0 GeV

101

lpa

p+p-p+p" (1690)
7 0 GeV

19.2 GeV

OJ

1O '

E

b 10
& D

oJ
1Q

C9

E

b 10p

10 10-s

10 10-+

1O'
0 0.5 1.0

I

1.5 2.0
-t (Ge V~)

I

2.5 3.0
1P-5

I

0.5
I

1.0
I

1.5
-t (GeV )

l

2.0
I

2.5 3.0

FIG. 3. Coupled-channel elastic pp pp differential
cross section der/dt vs t. The experimental data are
from Ref. 14.

FIG. 4. Coupled-channel single-excitation pp
pp*(1690) differential cross section da/dt vs t.

The experimental data are from Refs. 13 and 14.
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UBU '=

11 B22

Bx, —2Bu —B22

B),+2B~2 -B22

Bj,+B22

(18)

After exponentiation, the three independent $-matrix elements are

(NNISINN) = «[2exp(B»+B»)+exp(B» —2B»-B»)+exp(B»+2B» -B»)],
(NN I S I NN*) = , [e—xp(B»+2B„-B») —exp(B» —2B» —B»)],
(NN I S I N *N*) = «[2 exp(B» +B») —exP(B» —2B,~ —B») —exP(B«+ 2B» —B»)] .

(19a)

(19b)

(19c)

We now have all that we need to calculate eLastic
scattering and single and double excitation; it re-
mains to fix the two absorption coefficients Kyy and

Equation (5) and the corresponding relation
for the total excitation cross section for NN-NN*,

cr,„,=2m NN* S) NN 'bdb,
0

(2o)

10

10'—
p+p-p (1690)+p (]690)

define K» and K» implicitly. These two relations
can be inverted by a simple numerical procedure"
to solve for Kgy and Kg2.

The results of the computation are presented in
Figs. 3, 4, and 5 (experimental data are taken
from Refs. 13 and 14). Figure 3 gives the elastic
scattering treated in the coupled-channel approach.
Comparison with Fig. 2 shows that coupling to the
resonance hardly affects the forward peak out to
the first dip. This is expected since the first term
in the expansion of the S matrix dominates in this

region, so the channels are effectively decoupled.
After the dip, however, the resonance contribution
shifts the curve upwards, somewhat above the re-
cent ISR results. ' This shift demonstrates the in-
creasing role the resonances are playing as t gets
larger. We cannot hope, therefore, to get a good
agreement for elastic scattering from the coupled-
channels calculation unless we include many reso-
nances. It is gratifying, however, that the most
marked feature of pp elastic scattering, namely,
the dip around t = -1.2 GeV', does emerge from
this simplified model. Figure 4 presents the re-
sults of single diffractive excitation. In contrast
with the elastic case, the main feature of this
curve is that no dip is present which agrees with
present experimental data. " The slope parameter
for the forward peak is significantly smaller than
that of elastic scattering, again in agreement with
experiment. Figure 5 shows the prediction for
double excitation. The cross section for the pro-
cess NN-N*N* is 0.07 mb, whereas straight-
forward factorization gives 0.04 mb.

V. DISCUSSION
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FIG. 5. Coupled-channel double-excitation pp
p*(1690)p*(1690)dif'ferential cross section der/dt vs t .

The model presented is an optical model of the
Chou-Yang type. When the form factors are speci-
fied, this model is completely determined. Our
procedure was to fix the form factors beforehand
and then to confront the results with experimental
data. The main guidance in choosing the form fac-
tors was the conjecture that the effective form fac-
tors of the absorbing matter distribution are simi-
lar to the corresponding electromagnetic ones.
The results are quite encouraging: A11 the quali-
tative features of the data out to I t I

= 2-3 GeV'
emerge. In particular, we obtain a dip in the elas-
tic differential cross section around I tI =1 GeV'
and no dip in that of the single excitation. In the
small-momentum-transfer region, where the mod-
el. is expected to work best, we find agreement
with experiment even to the fine details of the data
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such as the change in the slope of elastic scatter-
ing.

The model is a phenomenological one, and we

have not attempted to justify it by any underlying

dynamical scheme. We therefore feel that the main

result of this work is to provide some further sup-
port to the optical approach in dealing with dif-
fractive scattering of hadrons.
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Nontransference of charge is an essential aspect of the hypothesis of limiting fragmentation
for infinite-energy hadron-hadron collisions. One can define experimentally a charge transfer
u from one c.m. momentum-space hemisphere to another. At finite energies, u is not zero
because the fragments may "spill over" to the other hemisphere. A model is discussed which
yields an estimate of u. The general validity of the energy and multiplicity dependence of this
estimate is then commented upon.

INTRODUCTION

In the fragmentation picture' of high-energy
hadron-hadron collisions, the fragments of the
target, taken together, have the charge of the tar-
get, and similarly for the fragments of the pro-
jectile. Define the charge transfer u, an integer,
by

u = [-,'(total charge)„——,'(total charge)~] „„„

—[-,'(total charge)s —-', (total charge)~];„,„„.

Here R and L refer to the c.m. momentum-space
forward (i.e., projectile) hemisphere and backward


