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We investigate the dynamical significance of correlations between (no) and n, where

(np) is the mean number of neutral pions observed in conjunction with n negative tracks
in high-energy multiparticle production processes. Several models are treated in turn.
Pions are assumed to be produced either singly or in clusters, according to a Poisson or
inverse-power distribution. Influences of charge, isospin, and energy-momentum conser-
vation are studied. The linear rise of (no) vs n observed experimentally at very high
energies is shown to rule out some models of multiperipheral type, but is in accord with

fragmentation models and with a multiperipheral model in which p- or ( -type meson
cluster s are emitted.

I. INTRODUCTION

An interesting correlation measured in multi-
particle production experiments is the variation of
the average number of neutral pions (n ) as a
function of the number of charged particles. ' Re-
cently, new data have become available from the
National Accelerator Laboratory (NAL), Serpuk-
hov, and from the CERN Intersecting Storage
Rings (ISR). These very-high-energy results'
show a linear rise of (n, ) vs n, the number of
negative tracks, significantly different from the
rather flat behavior observed at 12, 19, and 25
GeV/c. ' Data are summarized in Fig. 1.

In this paper we investigate the dynamical can-
tent of the observed correlation. We study the be-
havior of the function (n, ~ vs n in different the-
oretical models in order to find out to what extent
it may be used to discriminate between them. All
the models have two common characteristics:
First, they involve only production of pions either
singly or in clusters, but other effects, such as
K and p production are neglected. In addition, the
models lead asymptotically to the same average
number of neutral, negative, or positive pions,

(n, ) =(n, )

=(n ),
although most models deviate from Eq. (1) at finite
energies. The abundance of pions is a well-known
property of multiparticle production, and Eq. (1)
follows from a Mueller analysis' of the central re-
gion. It is substantiated by recent experimental
data4 from the ISR.

The averages in Eq. (1) are taken for all the
data. We ask now for the behavior of (n, ), name-
ly, the average of n, for a fixed value of n . A
simple example of such a function is

(n, ) =a(n )+(1 —a)n

which obeys the constraints of Eq. (1). The case
g =1 is the result of models in which no correlation
exists between no and n . Once a correlation is
introduced many functional forms can result. We
shall show that for a wide variety of models, when
there is a correlation, it is approximately linear.

We start by discussing pion production in neutral
pairs (a model). We differentiate between Poisson
and inverse-power distributions for the production
cross sections of the pairs. Whereas the first
leads to no correlations, we find that the second
leads to a linear increase. Similar results are ob-
tained for production of single pions which are
constrained to have a fixed net charge (v model).
Then we turn to the production of charged and neu-
tral pairs that could result from decay of p reso-
nances (p model) formed in the collision. Here we
find correlations for both the Poisson and inverse-
power distributions. We show that the constraints
of charge conservation determine the main charac-
teristics of the model. Explicit calculations of
isospin and energy-momentum constraints show
only minor changes of the correlations.

Our results do not depend on details of specific
multiperipheral or fragmentation models which
lead to the general Poisson or inverse-power dis-
tributions, respectively, which we consider.
Moreover, the use of the symbols cr and p does not
imply that such resonances are actually formed in
the collision. Rather, the notation is chosen pri-
marily for convenience in labeling properties of
certain conditional probability functions.

The 0, ~, and p models are treated in Secs. II
through IV. In Sec. V, we consider modifications
which arise from assuming that the production
process is described by the convolution of two
clusters of particles. Finally, in Sec. VI, results
are summarized and compared with data.
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FIG. 1. (a) Data from pp interactions at beam momenta of 12.3, 19, and 205 GeV/c. This figure is taken from
Charlton et al. (Ref. 2). Plotted is the mean number of neutral pions (np) per inelastic pp collision as a function of
the number of negative particles n . Note that for pp collisions the number of charged tracks n,h = 2n + 2. The dashed
line expresses (np) = n . (b) Data from the CERN ISR at v s = 53 GeV (1500-GeV/c equivalent beam momentum)
showing the correlation of (sg with the recorded number of negative tracks in the same solid angle. This figure is
adapted from Fig. 5(bI of Fliigge et aI. Iftef. 2). We have taken (sg = 0.5 times the measured number of y's. As in
(a), the dashed line expresses (np) =n . (c) Data from m p interactions at a beam momentum of 25 GeV/c (Ref. 1).
Plotted is the average number of neutral pions per inelastic collision as a function of n . (d) Data as in (c) for 7I pinteractions at a beam momentum of 40 GeV/c (Ref. 2).
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II. 0 MODEL

The 0 model is defined as the production of neu-
tral pion pairs. We designate by n and k the num-

ber of m'7} and z z' pairs, respectively. We find
then

n =n, n =2k.

Given a set of N=n+k pion pairs, we assume a
binomial probability distribution

with a power law distribution. For convenience of
the calculation we choose

A
N(N —1)' ' ' (N —5+1)

(N —5)! A
as N-~.

N! N

The interesting fragmentation case corresponds to
5 =2. After substitution, it follows that

P (k): , )
w" 0"

( ):,)& )~
(4)

for producing n charged and k neutral pairs. Re-
lation (1}follows when

2q=2p=—

A production model has a certain probability dis-
tribution for N pairs which we designate by D(N).
The over-all probability is then given by

A(n —5)! n+k —5
P nk=, '

qp

from which we obtain

P(n )=QP(n, k)

Aq"(n —5)!
( )3

n!
8

(n0 ) = 2p —ln P (n )

(12)

P(n, k) = PD(V)P„(n, k), (6)
(n -6 +I) .= 2p

1-p (14)

D(N)=e ' —,P (n k)=e ' P . (V)

The probability for producing n negative particles
is given by

P(n )=QP(n, k)

, . (zq)"...
n! (6)

It is easy to see that the quantity (n, ) is defined
by

(n ) =2(k)
1 8

( )2p —P(n )

=2pz .
Hence we find that

(n, ) =-', z

=(n ). (10}

This is to be expected because we started from a
Poisson distribution and were therefore led to a
form P(n, k) which explicitly factors into inde-
pendent q and p components.

A different situation is reached when one deals

where P„ is determined by (4) for the o model. We
investigate two cases:

(a) D(N) is given by a Poisson distribution, as
one would expect in multiperipheral models. '

(b) D(N) is given by an inverse-power law. The
interesting case is D(N)-N ', as in specific limit-
ing-fragmentation models. '

The first case leads to

Substituting now p =—'„we find that for n

(n0) =n —5+I, (15)

which is a linear increase with slope of unity. The
behavior of (n, ) for n & 5 is discontinuous due to
the discontinuous nature of

D 0 (N), which may be
defined as zero for N&5. We shall return to this
point later when we consider numerical calcula-
tions using continuous functions D (N).

Our conclusion drawn from the above calculations
is that the correlation between n and (n, ) can
indeed differ according to the underlying dynamics,
in this case depending upon whether D(N) is de-
scribed by a multiperipheral-like or fragmentation-
like model.

cl 3 (Zq}2FI +Quip)00
))1( -il 0) I (2 ( Q) f / ) t (16)

where we denote by zq the probability of producing
a charged pion and by zp that for a neutral pion.
The variables p and q are introduced to keep track
of the various terms. Both p and q are set equal
to —,

' at the end of the calculation. Equation (16)
leads to

z Iq'
(n~)= — + 2,0

III. m MODEL

We consider a model in which single pions are
emitted independently, constrained only to have an
over-all charge Q. The resulting distribution is a
Poisson in m' and a Bessel function in charged
pall s,
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z Iq' Q(n)=-3Iq 2
(17) (lsospin weight) x 11e ' r' e'

nucleons

("0)= —,'z .

Here I~' is the derivative of the Bessel function
Ic(z) with respect to x = sz. Because of the factor-
ization of Eq. (16) we find

(n) =(n) (18}

as expected from the absence of correlations.
For large values of n, Eq. (16) may be approxi-

mated by

e-mls (2zq}2n +o
(n, n )=

Io( ', z) (2-n +Q)! n ! (zn )"' '

(19)

This distribution may be written as a product

e 'z" Nt
i "- "0 Nt (2n +Q)i ni

x pno(2q)2n + o I
(zn )'" (20)

A (N —6)! N!P„(n, n, )=, '

(
'), ,

p"0(2q)'"-'

(21)

This lends itself to a calculation similar to that of
Sec. II. Thus,

and

A(2q) "-+ (2n +Q —6)!
(1 } z„o+s

(2n + Q)!

(22 }

(no) = p —lnP(n )=2n =nP
ap

- -1p (23)

which is close to a Poisson distribution in N = 2n

+ Q+n„ the total number of pions, multiplied by a
binomial distribution in p and 2q. If we now re-
place the Poisson distribution by an inverse-power
law, we arrive at the following approximate form:

xII e ~r exp (p '+m, ')'"2A,

pions vs

which reproduces the observed small transverse
momentum p~ of produced particles and the rela-
tively flat longitudinal-momentum distribution of
the leading protons. The parameters R', A. and the
relative weights of the N-particle matrix elements
are adjusted to give a reasonable description of
data. For details see Ref. 8. The isospin weights
used are the Cerulus coefficients' for pp-NN
+pions. The results of this numerical calculation
are shown in Fig. 2, and should be compared with

the constant prediction of Eq. (18), where (no)
= 2.8. It is clear that both isospin and energy-mo-
mentum constraints lead to only small modifica-
tions.

n, =N+ +No,

n =N +No,

no=N, +N

v=N, -N
(24)

n+ «n o

IV. p MODEL

We turn to a model in which pions can be created
in charged pairs. This will be the case if, for
example, p production is a prominent effect. Since
p mesons carry charge and isospin, we have to
take into account the constraints that result from
the conservation of these quantum numbers. Analo-
gous to the m model, we find here also that charge
conservation is the important constraint. We start
therefore from a distribution of p mesons that
looks like Eq. (16). Let us denote by N, the num-
ber of m'm' pairs, N the number of n m' pairs, and

N, the number of w'm pairs. We use n„n, and
no for the numbers of m', m, and m', respectively;
v describes the over-all charge of the p cloud. We
find then

where we have used p = —,'. We keep only the leading
term in (23) since we start with an asymptotic form
for the distribution.

The distribution of the n model takes the con-
straint of charge conservation into account. There
are obviously other constraints in production mod-
els, namely, isospin and energy-momentum con-
servation. To see their effects we calculate (n, )
as a function of n in an independent emission
model' with isospin statistical weights. ' The basic
assumption of the model is that the square of the
N-particle S matrix has the factorized form

It is useful to define a quantity k by

2k =n, -v
from which it follows that

N+ =k+v,

N =k,

No=n -k,
N =N+ +N +No

=n +k+v.

(26)

(26)
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FIG. 2. An independent-emission model for pions
(Ref. 8) with isospin conservation is used here to com-
pute (np) at 200 GeV/c. This calculation is described
in Sec. III.

Let us define the distribution

( p)&+ ( q)s ( r)&o
Pn(n, )= A„N, !N !N!

(ap)"" (aq)'(sr)" '
(k+ v)! k! I'n -k)! (2V}

(„) & (tp)"(s )"- ~(.)(,)
(v +n)! (29)

where 1.&& denotes the Laguerre polynomial. ' The
Eq. (28) leads directly to the formula

in analogy with Eq. (16). As before, we introduce

p, q, and r to be able to trace the various terms.
They are set to —,

' at the end of the calculation.
The probability of producing n negative pions is
given by

P (n ) = Q P(n, n, )

zpq 1
(k+v}!k! (n -k

(28}

Defining a new variable s =pq/r, we find from Eq.
(28)

cases, n «-,'z andn»-, 'z, these expressions are

(no) 2n +v~, n && 3z

(n, ) =2(-.'sn)"', n»-,'a.
(33)

(34)

IQ-

9-
8-
7

6
0

C

The parameter z is roughly the average number of
pairs. This number does not exceed 10 even at the
highest energies available. Therefore, the limit
(33) is not applicable for existing data.

In Fig. 3 we show explicit evaluations of Eq. (31}
for v =0, 1, 2 calculated with z =4.5. This number
corresponds to the result of the recent 200-GeV/c
pp experimentP The various curves in Fig. 3 show
a linear increase at small n with a slope of about
0.3. On the same figure we draw also the results
of a statistical isospin model, ' which turns out to
be very close to the v =0 and 1 curves, thus show-
ing again that charge conservation is the strong
constraint. Once these results are incorporated
into a longitudinal phase-space calculation (similar
to the one used in the previous section), the high-
n part of the curve is modified considerably, as
may be expected. The low-n part however has the
same characteristics of a moderate rise of (n,)
as a function of n .

Finally, we consider the results of a p model
with over-all inverse-power behavior assumed to
be the dominant production mode of particles.
Using similar approximations to those of the pre-

P(n -1)(nk)zr()y
from which the following result can be derived:

(no) =2n +v —2(v+n )

(30}

(31)

2 ~/

0
I

IO

The same result follows also from

a
(no) =2s —lnP(n ) . (32)

Using this relation, we can also find the expression
for (n, ) for a superposition of distributions of the
form (2!). An interesting case is the superposition
of v =0, 1, 2, representing the reactions pp-pp
+pions, pp-pn+pions, and pp-sn+pions. Such a
superposition leads to a result which has the gen-
eral properties of Eq. (31}. For two limiting

FIG. 3. Labeled curves give (n()) for the p model
[Sec. IV, Eq. (31)) with parametersz = 4.5 and v= 0, 1,
2. A p model in which isospin is conserved for the p's by
means of a statistical isospin model (Ref. 9) gives a
result identical to that of the —x—curve, for n ~ 1.
Finally, the dashed curve gives !na} for a p model
with isospin and energy-momentum conservation imposed
by means of the independent-emission model described
in the text (Ref. 8); the same parameters are used as
for the production of pions. All curves are for 200
6eV/c.
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vious section, we realize that for high ne, Eq. (2!)
becomes

p
v/2

P„(n,n, )= C„P1 -~ 0 vN!

{2Jp~ )2k+ u ~..v-'&k-v

2k+ v

(35}

Therefore, if we want to have an asymptotic N '
behavior of D (N), we can look at the distribution

(n +k+v —5)!' (k+v)! k! (n —k)!

It follows that

P (n ) = Q P„(n,n, )

Numerical results are plotted in Fig. 4 for the
special case 5=2 of Eq. (38).

V. TWO-CLUSTER PRODUCTION

In this section we discuss the convolution of two
clusters in the 0 model in order to study to what
extent the conclusions of Sec. II are modified.
This is of particular interest for fragmentation
models which take two-cluster formation into ac-
count.

In terms of the notation of Sec. II, the over-all
probability for producing n charged and k neutral
pairs in two clusters is

P(n, k) = QD, (n, +k, )P„„,(n„k, )

&&Dk(n, +kk) P„„k (nk, kk),

(3V)

where P'„" '& is a hypergeometric series" (which
gives a Jacobi polynomial when the indices v and
-5 are greater than -1). Once again we apply Eq.
(32) and find that

n + —,'(v -45)
(ne) = kn t{ 5)

(n +v)(n -5) Pn' t'(g)
n +-,-' {v —5) Pi"' "(-') '

n n1 + n2

k =k1+k2, (40}

~(N, N, N
~ik, k-k, k
k1

where N =N, +N, . Thus we have

(4I)

where P„„(n,k) is given by Eq. (4). Keeping N,
= k1+ ni N2 = k, + n„and k = k, + k, fixed, and sum-
ming over k„we get a simple relation using the
binomial weights of Eq. (4):

The leading terms in n are

5 3 k t (3)
~n ) =-n —-noi- 4 - an- @v, -b)g~ )

n

(38)

(39)

P(n, k) = Q QDt(Nt)Dk(N —Nt) P„(n, k)
N1 N1

= Q 0(-'& (N)P„{n,k), (42)

which is identical in form to (6). In other words,
for the o model, the difference for P(n, k) between
single- and double-cluster formation is due entire-
ly to the dynamics of the convolution D(a (N).

As an example of this convolution, we consider
first the Poisson distribution Eq. (7). In this case
the result is

I
6

O

Di'l(N)=e-"
1! 2!

N= N1+ N2

(2z )N

Nf (43)

0 I 2 3 4 5 6 7 8 9 l0
A

FIG. 4. The quantity (nkl for a p model with an
inverse-square law for the production distribution.
[Eq. {38), 6= 2 and v= 0]. The behavior of Pp2 {=—0 for

A «2) is discontinuous, giving rise to a discontinuous
behavior of (ng for a & 2.

which is a Poisson distribution characterized by
twice the mean of the single cluster. This leads to

(n) =(n)
(44)

2where —, z is the average for the single-cluster dis-
tribution.

Numerical calculations for D "& (N) arising from
the convolution of two inverse-square distributions
show that the resulting correlation (n, ) has the
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same asymptotic behavior as for single clusters
whenn is large. In Fig. 5, for the o model, we

contrast numerical results obtained from single-
cluster formation with those from a convolution of
two clusters. For N ~ 1, we employ the distribu-
tion

D (N) =N-'s-s« (45)

Vl. DISCUSSION

New data from NAL, Serpukhov, and ISR (cf.
Fig. 1) showing a linear rise of (n, ) vs n clearly

I

6
0

I I

IO (2

FIG. 5. The solid curve results from a numerical
evaluation at 200 GeV/c of the o model (Sec.II) with D(N)
given by Eq. (45). The dashed curve is obtained from the
o model when two clusters are convoluted [Eq. {42)J
with D(N) again given by Eq. (45). For comparison, the
dot-dashed curve gives (na) = n —1, Eq. (15) for 6 = 2.

D (0) =—0. This form is chosen rather than the one
described in Sec. II in order to avoid discontinuous
behavior of (n, ) . The distribution in Eq. (45) also
results directly from the choice of the excitation
function p(M) presently used in nova-model calcu-
lations, "and provides a good fit to the experimen-
tal distribution o„„vsn,h at 200 GeV/c. For both
single- and double-cluster formation, the fall of
these curves from n =0 to 1 may be traced direct-
ly to the rapid rise of D(N) from N =0 to its maxi-
mum at N =1.5. At small n, observe that (n, ) is
twice as large for double excitation as it is for
single-cluster formation. For large n, our curves
turn over because we arbitrarily truncate the nu-
merical sums at N =15; in a more realistic calcu-
lation this turnover would arise from energy-mo-
mentum limitations on the maximum number of
produced pairs.

rule out dynamical models in which single pions
are emitted independently, or produced in neutral
pairs according to a Poisson distribution in the
pairs. However, the other four models we con-
sidered are presently consistent with the data.
These four survivors are, first, emission of p-
like objects according to a Poisson distribution in
the p's and, second, all fragmentation-type in-
verse-power models (whether decay follows o, s,
or p statistics). All give a linear rise for (n, )
with slopes varying between 0.3 and 2 in agree-
ment with the trend of the very-high-energy data.
Thus, the new data allow some discrimination be-
tween models, which was not possible with data in
the range p, &30 GeV/c. In the low-energy re-
tion, the flat behavior (cf. Fig. 1 and also Ref. 8)
of (n, ) vs n may result from phase-space effects
which cause the (n, ) curve to turn over. Although
existing data on (n, ) a.liow us to eliminate some
models, present statistical precision on (n, ) is
insufficient for further discrimination.

It is interesting that the surviving model of the
multiperipheral type is one in which p-like objects
are produced. The consequences of such a model
for (no) werediscussed sometime ago by Caneschi
and Schwimmer. " If taken literally, this suggests
presence of other two-particle correlation effects,
for example, correlations in momentum and angle
variables, besides the charge correlation we con-
sider here. In spite of the fact that a clean p signal
is not seen in multiparticle data, perhaps due to
combinatorial background, it can be argued that p
production may nevertheless be significant. On the
one hand this is an appealing theoretical assump-
tion, "and on the other hand it has been recognized
for some time that multiparticle production data
readily allow for the pairing of pions at low pair
energies. Furthermore, measurements of (n,„)
at NAL and ISR require a large value of the co-
efficient b in fits of the form (n,„)=a+bY, where
Y is the full rapidity interval, (Y= lns)." Thus
b, the average spacing of particles in rapidity,
is small. In turn, this determines rather small
mean subenergies in the multiperipheral chain
(s,. = 0.4 GeV '), consistent with strong two-pion in-
teractions and, presumably, formation of p mesons
among pairs of pions. We should stress, however,
that our results are more general than specific
models in which p mesons are actually produced.
As will be noted from the analysis in Sec. IV, we
require only that clusters of pions be produced and
that the statistics of their decay approximate that
associated with isospin I = I formation of nm pairs.
What we required is that (s'w ), (s've), and (s s')
pairs be equally likely. Thus, in particular, for-
mation of ~-like mesons would do just as well, not
to mention nonresonant cluster formation.
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