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The Rarita-Schwinger field coupled to scalar and Dirac fields is considered at the classical
level. It is shown th"t the fermion fields satisfy a system of hyperbolic equations supple-
mented by initial conditions whose solutions propagate faster than light, thereby violating
causality.

Recently Nath, Etemadi, and Kimel' have at-
tempted to quantize the Rarita-Schwinger field
interacting with a spin--, field and the derivative
of a spin-zero field. Hagen' has shown, however,
that a consistent quantization of such a theory is
not possible within the framework of the action
principle, and that the inconsistencies which one
encounters are in fact quite similar to those which
occur in the case of the electromagnetic interac-
tion of the spin--,' field. '

Velo and Zwanziger4 have demonstrated that in
the case of the electromagnetic interaction there
are difficulties even at the classical level inas-
much as the equations of motion admit solutions
that propagate faster than light, in violation of
causality. In the present work we examine the
field equations satisfied by the fermion fields g"
and g, interacting with the derivative of an exter-
nal scalar field g in the manner proposed by Nath
et al. It is found, as in Ref. 4, that noncausal
solutions are present.

The field equations are"
1

—. y ~ 9+m P —igo„„('9"y=0,

(4)(ir ~ V+m)(y ~ 0)+f(V 7/i)+igPo, „49'0=0.
Upon contraction of Eq. (2) with y and i9" one

obtains

24(r ' 9) ('y ' 0) + (9 ' 0)] + sm (r ' 0) + 'gy op 09 0 = 0

~mf(r 9)(y 0)+(9 0))+g9"(o 09'p)=o (6)

which in turn lead to the secondary constraint

(y g) ——', gm '9~(o„p/9'p)+ —', igm 'y"o~„)9"p=0. (&)

Substituting for (y ~ g) from this into Eq. (5) or
(6) there follows the useful relation

[r"g.s —(6."ra+ 68r. ) r.y—"y81 —,. 9„0'

+m(g„8+ y„y~) g —igo„,g9'p =0,

(2)
where

o,.= lier„, r,]

Not all of Eqs. (2) are true equations of motion.
Considering the equation with z = 0 one gets the
primary constraint

(9 ~ g) ——', igm '[(Bm+2iy ~ 9)9"+m(y ~ 9)y")o„,g9'$=0. (8)

Using these, one obtains equations of motion for al field components, which, when supplemented by cer-
tain initial conditions, are equivalent to the field equations (1) and (2). Eliminating (y ~ g) and (9 ~ g) from
Eq. (2) with the help of Eqs. ('f) and (8) one gets

(-fy ~ 9+m)g" + ', igm '9"9"(o„„g—9'Q) ——,
' igm '[Smg "+(my" +i9")y"—iy"9" ] o„„g9'/=0,

which is, now, a true equation of motion for g . Since we want the equations to be of the first order while

Eq. (9) contains second derivatives of the spinor field, it is necessary to introduce new field variables X,
4=1, 2, 3 by

for which one has the equation

(-~r 9+m)X' &g'o,.9"(0-'9'4) = o

Since this definition is noncovariant, manifest covariance is lost from this point on.
Using Eqs. (3) and (10) we can replace first derivatives of P by terms involving g, X', g". The second

derivatives of g can be expressed in terms of the fields and their first derivatives. Carrying out this pro-



NONCAUSAL PROPAGATION OF CLASSICAL. . .

gram in Eqs. (7) and (9) one gets, in that order,

(y ~ g) + —', igm 'y"o„,)S'Q+ —', gm 'f(y VQ)[mp —igo„,g'8& Q]+i(VQ+ pys, g) y] =0,

(-iy 8+m)y ',-g-'m-'(y v~y)op, (s "y)s~g+ , g-m-'(vy+ pcs„y) s "~+a =0,
(12)

(»)

where B"contains no field derivatives.
Consider Eqs. (1), (11), and (13). They are sat-

isfied whenever the field equations are satisfied,
and conversely, these equations supplemented by
initial conditions (4„(10), and (12) imply the field
equations (1}and (2). This can be shown using the
same arguments as used in Appendix A of Ref. 4.
Thus Eqs. (1), (11), and (13) with the initial condi-
tions are completely equivalent to the field equa-
tions, but have the advantage of being true equa-
tions of motion.

We now proceed to examine the characteristic
surfaces of our equations, as these provide the
propagation properties of the solutions. %e are
interested in establishing that the characteristic
surfaces are spacelike for some values of the ex-
ternal field p. Since the maximum velocity of
propagation of disturbances is given by the slope
of the characteristic surface, we would have then
established the existence of noncausal solutions.

The normals n„ to the characteristic surface
for a linear system of equations of the form

[(I Bp) Q +B g]% —0

are given by'

D(n) =det ~(n&I"")"8)=0.

We want to see if a timelike vector n„satisfies
(14}. We try n„= (0, 0, 0; n}. Taking the coefficient
of s, in Eqs. (1), (11), and (13), and evaluating
the resulting 32x32 determinant, one gets

D(n) =n"[1 ;g'm '(v y)-']—'. -

then in some frame one has

1- -', g'm -'(vy)'= 0 (16)

and thus a normal in the time direction. Conse-
quently the characteristic surface is spacelike
and we have noncausal solutions.

One might hope that these solutions are elimi-
nated by the initial conditions (4), (10), and (12).
Such, however, is not the case. The discontinu-
ities in the field derivatives propagate along the
characteristic surfaces. ' We shall show that those
traveling along the bad characteristics are com-
patible with the constraints.

Let the discontinuities in the field derivatives be

[s„y]=n„u,

[span)) ] = n~ co (17

[s 0]

where [f] denotes the discontinuity in the function

f. If these travel along the bad characteristics,
n& should be (0, 0, 0; n).

Taking the discontinuities of Eqs. (10) and (4),
and of the four-gradient of Eq. (12), one gets the
conditions imposed by the constraints:

n" u =0,

g ~ (nx (u) =0,

{18)

(19)

If the external field is such that for each space-
time point x there exists a Lorentz frame such
that

1--', g'm-'(vy)') 0, „sy~0

(y (u)+ —,'igm 'y~v„, us"y+ —', gm ~f{y vy)[mu —ig(rq, (u's'y]+i(vy+pysoy) v)=0,

where we have assumed that the external field is sufficiently differentiable.
Taking the discontinuities of the equations of motion one gets

(y n)u=O,

(y ~ n) v'+ g o„„n"(u's" y = 0,

(y n)(u" —-', ig'm-'(y ~ vy)(r„, n" (u"s" y+ —', igm-'(vy+ pys, g) vn =0.

(20)

(21)

(22)

(23)

We now show that there are nontrivial solutions u, v", &u" (i.e., not all of them identically vanish) satis-
fying Eqs. (18)-(23) that are compatible with n„—= (0, 0, 0; n) and Eq. (16).

With n~= (0, 0, 0; n), Eqs. {18), (19), and (22) are satisfied identically. If we further take

u=O, v" =0=&@", and &u'=f,

(21) is also identically satisfied. Equations (20) and (23) coincide, becoming

[y'+ ', ig'm-'(y vy)-g„s"y]f=O.

(24)
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Multiplying by y and substituting for cr„, this becomes

[1——,'g'222 '(Ty)']f=O,

which is identically satisfied by virtue of E21. (16). This establishes the compatibility of the noncausal solu-
tions with the constraints.

The author is indebted to Professor C. H. Hagen for suggesting the problem.
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We construct a model of the strong interactions with spontaneously broken U (3) x U (3) gauge
symmetry based on the ideas of Bardakci and Halpern and interpret the gauge bosons as the
observed strongly interacting vector mesons. We assume that global SU(3) is broken only by
terms of dimensions less than four in the Lagrangian. The model that arises is a trivial gen-
eralization of the strong" part of the Bars-Halpern-Yoshimura model. This leads to a well-
satisfied relation among the p, X*,A&, Xz, (d, and Q masses.

In this paper we describe a model of strong in-
teractions with spontaneously broken gauge sym-
metry, based on the ideas of Bardakci and Hal-
pern. ' %'e interpret the gauge particles in the
model as the observed strongly interacting vector
mesons and find a relation among the vector-me-
son masses, The Lagrangian which emerges is
of little value as a phenomenological description of
the strong interactions because of the large cou-
pling constants involved; however, it may not be
unreasonable to hope that the predicted relation
among the vector-meson ma, sses is more reliable,
since it follows simply from the gauge structure of
the theory.

A further justification for studying such a, model
can be found in the work of Bars, Halpern, and
Yoshimura' on unifying strong, weak, and electro-
magnetic interactions. In fact, the model we con-
struct is just a simple generalization of the
"strong" part of their model, with weak and elec-
tromagnetic interactions turned off in an appropri-

ate sense.
In constructing the model, we make three kinds

of assumptions.
(i) Gauge symmetry properties. We assume

that the Lagrangian which describes the strong in-
teractions is invariant under gauge transforma-
tions in the chiral group U(3) &U(3). There are
18 gauge vector mesons g," and I.,". fori =1 to 8
and If," and L,", where (R" + L") are vector and
axial-vector, respectively. The fermions in the
model are the fractionally charged quarks

Under an infinitesimal gauge transformation, they
transform like

1 ~ 9 1
st)2, = 2M2 2 F2212 + 2p(02, 2 A.a/2

1 ~ 9 1
22esa "«s+2P&222 "sA ~

where the X's are the usual SU(3) matrices. The


