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If we insist on SU(3)(3 SU(3) classification for hadrons, in the presence of the known low-
lying multiplets, we are led to models of the following nature: Before spontaneous breakdown,
we have two commuting gauge groups, hadronic and leptonic. This divides such models into
three sectors: hadrons, leptons, and a third unconventional set of (presumably high-mass)
scalar mesons which serve to connect the two "known" worlds. Spontaneous breakdown induces
appropriate masses and all usual strong, weak, and electromagnetic couplings. Intimate con-
nections are seen between these three fundamental forces.

I. INTRODUCTION

Gauge principles have been a guiding light in
elementary particle theory for a very long time.
However, by itself, gauge invariance is useful only
for theories involving certain massless particles
(electrodynamics and gravitation). Taken together
with spontaneous breakdown of gauge symmetries,
and the Higgs-Kibble phenomenon, ' the possibility
of an elegant gauge structure for all physical
forces is emerging in the context of renormaliz-
able field theories.

Weinberg' and Salam' were first to move in this
direction, by constructing a unified gauge model of
leptonic weak interactions and electromagnetism.
At that time they also conjectured what is probably
the most fascinating bonus of this gauge approach,
namely that such models may be renormalizable.

The subject lay dormant until 't Hooft4 and Lee4
showed that, modulo anomalies, ' this conjecture
was correct. Various mechanisms for canceling
(known) anomalies have since been discussed, so
that with some confidence the community has be-
gun a search through various (presumably) re-
normalizable gauge models for the one "chosen"
by nature.

Most effort has gone into constructing alterna-
tive models for weak interactions and electromag-
netism, and a number" have recently appeared in
the literature. In spite of the lack of theoretical
"uniqueness" of these models, they all share in an
elegance and force that has, we believe, opened
a new era in weak-interaction physics.

Recently, also, Bardakci and Halpern' con-
structed a similar renormalizable gauge model
of the hadronic vector mesons. This model real-
izes then the Yang-Mills ideas about strong vec-
tor mesons, and thus moves further toward a
unified gauge theory of particle forces. Such a
unified model of hadrons and leptons has now been

briefly presented in the literature. ' It is the pur-
pose of this paper to,discuss the model income depth.

For strong interactions a Lagrangian is not very
useful from the practical point of view: Such a
Lagrangian can at best be used to describe low-
energy hadronic data, but we feel it will be ex-
tremely illuminating as a guide to a better under-
standing of hadron dynamics, and of the interplay
of strong, weak, and electromagnetic interactions.
For example, strictly from the hadronic viewpoint,
such a model suggests that it will be useful to con-
sider a hadron dynamics in which the strong vec-
tor mesons, at some intermediate stage in the
calculation, have zero mass. (We remind the
reader that this is indeed exactly what is happen-
ing in dual models at the moment. ) It has been
shown that there is an intimate connection between
dual models and gauge theories. ' Now the search
is beginning for a dual Higgs-Kibble mechanism
to raise the p mass. We believe there is an inti-
mate connection between our hadron model and the
future spontaneously broken dual model with in-
ternal symmetries, and hope our efforts may
serve as a guide in the duality situation.

Further, as we shall see below, the presence of
the leptons does dictate in a certain way the struc-
ture of hadronic symmetry breaking. Thus, a full
understanding of strong interactions seems to re-
quire the simultaneous understanding of weak and
electromagnetic forces. Intimate connections be-
tween strong, weak, and electromagnetic forces,
such as shown in our model, will, we believe, be
of much more than passing interest in future
theory and experiment.

Our goal in this paper is then a unified renor-
malizable gauge theory of strong, weak, and elec-
tromagnetic forces. Our approach is based on the
following reasoning: It is the hadrons whose sym-
metries are "known" —not the leptons. This is
reflected by the plethora of lepton models, but
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only one SU(3) 8 SU(3) hadron model. ' For this
reason we start firmly )i/'ith the SU(3) 8 SU(3) had-
rons, and search through the various lepton uni-
verses for one which "fits."

In this, we are extreMely encouraged by the
structure of the hadron world. As shown in Ref.
7, the symmetric hadron theory necessarily begins
(before spontaneous symmetry breakdown) with a
local SU(3) 8 SU(3) and an extra "global" group at
least as l.arge. The final symmetry is the product
group. With Bardakci and Halpern, we thus inter-
pret the hadrons as "welcoming" a lepton theory
as a local subgroup of its "extra" group. In this
paper, the extra group will be called "primed" or
"leptonic. "

The program is orderly. We study embedding
the leptons in progressively larger "primed"
groups of the hadron model. Taking SU(3)'8SU(3)'
for the "primed" group leads to trouble with
strangeness-changing processes, but when we go
to SU(4)'8SU(4)' everything falls in place beauti-
fully.

In our search through lepton universes, we first
set ourselves the following additional boundary
conditions:

(1) We require the leptons to allow a (3, 3)
+(3, 3) symmetry-breaking mechanism for had-
rons.

(2) In keeping with having only an SU(3) 8 SU(3)
hadron world (3 quarks), we want the lepton model
to contain only the known leptons. Requirement
(2) limits us to Weinberg's theory, and is relaxed
later. It is worth remarking here that although
some other lepton models can "fit" our hadrons,
none is as natural as Weinberg's.

In any ease, of course, some extra, (heavy)
quarks and leptons are required to cancel anomal-
ies. Our models lead uniquely to an anomaly-re-
moval scheme which, for hadrons, is very much
in the spirit of dual models: In particular, we find
that removal of anomalies and a proper rate for
m'- 2y imply the existence of a heavy pion.

The plan of this paper is as follows. Section II
contains a general formulation of gauge theories.
In Sec. III we reformulate Weinberg's theory in a
suggestive notation, involving a new classifica-
tion of the leptons. Section IV is a review of the
U(3) 8U(3) hadron theory; we include here a dis-
cussion of the hadronic currents. In Sec. V, we
discuss a physical induction of the lepton world
from this hadron world. Section VI contains the
model itself, details, and possible alternatives.
There are two appendixes. Appendix A discusses
the spontaneous breakdown in the somewhat in-
volved system of scalar mesons. Appendix 8
mentions the alternative but unsuccessful attempt
to embed the leptons in SU(3)'8SU(3)'.

II. GENERAL GAUGE FORMALISM

In order to present our analysis in an organized
way, we outline here an operational approach, in-
dependent of representations, for writing a gauge-
invariant Lagrangian. We will always follow just
three steps in each model we consider in this
paper:

Step 1. Classify the particles in the theory with
an appropriate group.

Step 2. Write a gauge-invariant Lagrangian with
dimension (4.

Step 3. Break the symmetry spontaneously,
guided by physical arguments.

We emphasize here that the requirements of
gauge invariance and dimension d (4 are so re-
strictive that the physical content of the theory is
essentially determined by the classification of the
particles. Therefore, step 1 contains the most
important ingredients in building a model.

Step l. We assume we have chosen a group
whose generators are denoted by E, + = 1 ~ ~ ~ n.
The operator which generates local transforma-
tions is %,(x) =expi[F u&„(x)]. The transformation
properties of the particles are determined by the
linear representation to which they have been as-
signed (nonlinear representations are excluded
from our analysis, because of the criterion d (4
for renormalizability). Thus, denoting the parti-
cles as p;(x), we have

y, (x)- ~y, (x)~-'=S„(x)y,(x), (2 1)

where S,(x) defines the representation. For ex-
ample:

(a) If the group is SU(2) with generators T, and

'-(')
is a doublet, then

~y~-j ++/T Ql(X)/2y' 7 = Pauli matrices.

(2.2)

&
i ) ~ v&/x)/2 ~

- i X tu&(x)/2 (2.3)

where X are the usual 3x3 SU(3) matrices. The
infinitesimal form of the transformation equation
defines the commutators of the generators with the
fields. In examples (a) and (b) above we get, re-

spectivelyy,

(a.) [T„y]=-',~,y,
(b) [F:,y]=-.'~"y, [F,",y]=-y-', )".

(2.4)

(2.5)

(b) If the group is SU(3)~8SU(3)„with generators
Eg, ER, and P,, (x) is a, 3 &&3 matrix in the (3, 3) rep-
resentation, then
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giep 2. The derivative 8„$=-i[P„,Q] (P„=mo-
mentum operator) does not transform covariantly
when p is replaced by It(x)$'IL '(x). To define a
covariant derivative independent of representa-
tion, we first define a covariant momentum op-
erator 6'„by introducing as many vector gauge
bosons V„"(x) as there are generators,

t~ =Pp+ gV~ F . (2.6)

(P„are considered as c numbers with respect to
E in the following formal manipulations. ) We
demand that under It(x), (P„ transform covariantly:

g„-eIp„e-' = P„+e(gv„E+i's „)e-', (2.7)

where the right-hand side is found by calculating
'IlP„RL '=P„+'Ii[P„,'IL '] =P„+i'It8„'tt . Here we
have assumed that [P„,E ] =0, which means that
F' are internal symmetry generators. If we al-
low the more general case of [P„,E ]c0, for
example F being generators of Lorentz trans-
formations, or dilatations, etc. , then we have to
consider general relativity in curved space. This
displays the known close relationship that exists
between general relativity and the Yang-Mills ap-
proach. " Equation (2.7) induces a transformation
on V„(x):

V .F V' F='tL V F+ —8
P g

(2.8)

[6 „,6, ] -=fgE„",E". (2.11)

Since the left-hand side is covariant, so is the
right-hand side. We get

E(x —
II y lx s y (x gf +N 8 fy 8V')''(2.12)

where f s~ are the structure constants of the group
under consideration.

Using onl. y covariant derivatives we can now
write an invariant Lagrangian as if we had global
invariance, as usual. " Mass terms for V„" should
be omitted since thay are not invariant. For re-
normalizability we should a.iso require that any
term in the Lagrangian have dimension d & 4.

Step 3. The gauge particles a,cquire mass
through the Higgs-Kibble mechanism. ' The local

With these properties we can see that the covari-
ant derivative is

~[+, ~]=s,~ foal „"[E-,y], (2.9)

where t".e com.mutator [E,p] is specified in step
1 and depends on representation. Indeed under a
simultaneous transformation of P and t'"„we get

V~/ i['It6~'-It, 'Ipt'L l] = It(Vpg) IL . (2.10)

Thus V„p transforms covariantly (like P). The
covariant derivatives for V„can be found from the
commutator

gauge symmetry is broken spontaneously by in-
troducing a set of scalar mesons which acquire
nonvanishing vacuum expectation value. A count-
ing a,rgument due to Kibble' shows that, when one
considers this scalar meson system alone, the
number of massless Goldstone bosons generated
by the spontaneous breakdown is equal to the dif-
ference of the number of global symmetries ex-
isting within the scalar system before and after
spontaneous breakdown. In simple" physically
reasonable models, these Qoldstone bosons are
completely eliminated from the Lagrangian by a
gauge transformation, and they become the longi-
tudinal components of the vector gauge bosons
which acquire mass. Thus, the scalar mesons
must be assigned to a representation such as to
generate, through spontaneous breakdown, the
same mummer of Goldstone bosons as the number
of gauge particles that are desired to be raised in
mass.

The restrictive power of the procedure is self-
evident. The model is essentially completed in
the first step, simply by the classification of the
particles. The form of the vacuum expectation val-
ue is further restricted by physical requirements
such as the existence of a massless and universal
photon, masses of fermions, masses of gauge me-
sons (if known), physical values of coupling con-
stants, etc. This procedure also produces many
relations between (bare) masses and coupling con-
stants, which are adjusted to best fit experimental
data (say to zeroth order). As a result, few pos-
sible classifications of particles are capable of
yielding a viable theory. If in addition we restrict
ourselves to as small a group a,s possible which
can describe all possible interactions, and fit the
data as close as possible to first order, then the
form of the theory that one can write is extremely
limited. This will be illustrated in the following
sections.

III. WEINBERG'S THEORY EMBEDDED
IN SU(2)' SU(2)'

In this section we present Weinberg's theory as
an example of the procedure outlined in the pre-
ceding section. We classify the leptons with
SU(2)z CSSU(2)a with generators F~, Fa among
which only F~:,E,'„[corresponding to a subgroup
SU(2) SU(l)] generate local transformations; the
other generators correspond only to global trans-
formations. We are denoting our generators with
a prime for notational convenience which will be-
come clear later. This formalism, as shown be-
low, suggests that the electronic and muonic sys-
tems form a (badly) broken SU(2)I, 8 SU(2)a multi-
plet. The classification is such that it generates
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exactly Weinberg's theory for leptons. Thus, it
appears that as long as we consider only the lep-
tonic system without any reference to the hadrons
this classification is equivalent to Weinberg's.
However, it will be shown that it suggests a
natural extension to the haCkons (not implied by
Weinberg) which will be crucial in the building of
a unified theory of strong, weak, and electromag-
netic interactions, ' such that the group associated
with strong interactions is SU(3) 3 SU(3).

The known leptons are embedded within (2, 2)
and (1,3) representations of SU(2)TISSU(2)s
(v~ = vc, D = doublet, S = singlet):

(3.1)

with the following transformation properties under
%,(x), where %L(x) = expi[F~ o~(x) +F,'„zz,s(x)]:

where

ir nz(x)iz,I 7

equivalent to Weinberg's when we consider only
the leptons.

To make our classification more transparent,
we remark that this is not the only possible 2x2
matrix classification of leptons. Another one given
by Gursey and Feinberg" (which can also be fit-
ted to give Weinberg's theory of leptons) is very
close to Weinberg's formulation

(3.2)

In this case, we must take Y~= (Fo~—+2Fos) in-
stead of F,'R, so that Q =F,'z —Fo~ —2F,'„. Here
~liz transforms only with F'„~ from the left, and $„
only with F,'R from the left. It turns out that only
the previous classification can be joined to an
SU(3) 8 SU(3) classification of hadrons. These
considerations hinge on the respective charge op-
erators, and will become clear in Sec. V. From
here on we concentrate on the classification of
Eq. (3.1).

The SU(2)~ triplet of weak gauge bosons, W„,
are assigned to a (3, 1) representation, the singlet
B„ is part of (1, 3), and Weinberg's scalars

gati
be-

long to a (2, 2) representation. We define

SI (x) ei7 z nmz(x)/z

The commutators of the generators with the fields
are formally defined by the infinitesimal form of
the transformation equations. Thus [ F~, go]

PD& [FSRt 4] PD2 z P [ zizt 481 2[hz 4s] '

The electric charge is given as Q =F,'~+F,'s,
which identifies the weak hypercharge Y~ =F,'R. It
can be checked that this charge assigns the correct
charges to each field by commuting it with Piz and

Electronic- and muonic-type leptons are not
mixed by any local transformation (only F,'s is
included in our local group, while F,'& and E~&
are excluded). It is due to this choice of a local
group that SU(2)„' is broken, and thus, electron-
and muon-type leptons are distinguished by their
SU(2)z'z quantum numbers. We remark that the
doublet

4ozho+Zh' 0 (3.4)

(3.5)

By commuting {P„with each field, we obtain the
covariant derivatives

v„iliD s„p~ —zgw„-gD+zg iliD , h,B»-

where %,Q'zt ' =S~ p S„' ', etc. The covariant mo-
mentum is

is the "G-parity" conjugate of
V„4, =ai,il, -zg B„[-,'h„y, ], (3.6)

V„P =8„$—igW„Q+ig'i' , h, B&. —

i.e. , i'„=ih,g. As is well known, under SU(2)
both g„and g„ transform in exactly the same way;
that is, if ili„- Szg„(like electronic doublet) then
also i'„-S~g„. Therefore, our local group is

The Fv, and Fs, are obtained from Eq. (2.12).
We are now ready to write the most general (elec-
tron- and muon-number-conserving) gauge-in-
variant Lagrangian with dimension d ~ 4,
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2 = -~ F~„F&~ —
~ Ep, Fs&"—i Trying/~ —i Trg~)&&'Pq+ Tr(G&l&»$$~+ H. c.)

+mo~Trptp —i&(Trp g)'- ,'T—r[(V"t&)&&q&t&]. (3.7)

In order not to violate the local gauge invariance, as required by renormalizability, the numerical matrix
G should satisfy G =SRGS„' ' or [r„G]=0. Therefore, G is any diagonal matrix,

=(")
The photon can immediately be found by rewriting the covariant momentum in terms of a canonical re-

definition of fields such that the charge operator Q =F,'~+F,'R appears:

O'„=P„+gF,'~W»+gF,'~W»+gsi nt&(&F,'~ +F,' )R( isn t&W&» +cosPB„)

cos+ (cos'&f&FS~ sin'-&t&F,'s)(cos&t&W» —sinPB„), (3.8)

Age =gslBQ —i 2 r2)1/2
Lg +g

(3.9)

We emphasize that we have found the photon before
spontaneous breakdown. This is because we knew

a priori the form of the charge operator by making
sure it assigned the correct physical charges to
the particles in the theory. In fact, of course, it
is quite general that specification of Q defines the
photon and charges independent of spontaneous
breakdown. In our later analysis we found it very
convenient to follow this procedure, because it
could show a Priori whether a certain classifica-
tion of particles involving both leptons and hadrons
could give a massless, universal photon or not.

The spontaneous breakdown should be arranged
such that the photon remains massless, while W„
W„and Z =cos&t&W, —sinpB become massive. For
a massless photon we must demand

[Q, el ~- &e&
= o (3.10)

Thus, by taking (P) =12'„ i.e. , (&I&0} =X, we can
give masses to the gauge bosons as well as the
electron and muon. It is more convenient to use
the covariant derivatives obtained with 6'„of Eq.
(3.8). With Weinberg we obtain

(3.11)

1
&2G

With the single proviso below, the structure of
our classification is just that of Weinberg.

where tan&t& =g'/g. Thus, we can read off Wein-
berg's photon and electric charge as the coefficient
of the charge operator;

A„= sin&I&W» + cos&t&B„,

The form of Q emphasizes the point suggested
earlier, that the source for the difference be-
tween the electron and the muon might be the
breaking of SU(2)„'. Furthermore, there is one
amusing philosophical consequence of our rep-
resentation. In Weinberg's original classification,
the universality of electromagnetic charge is fixed
by hand. However, by imagining that the leptons
belong to a badly broken SU(2)~ 8 SU(2)R, univer-
sality of the electric charge is automatically ob-
tained due to the construction of Q as a generator
belonging to a non-Abelian group.

The present SU(2)~ C8&SU(2)R classification of the
leptons has been our starting point for a search
through schemes to unify strong, weak, and elec-
tromagnetic intera, ctions [such that strongly in-
teracting particles are classified with SU(3)~
SU(3)„]. We shall see that the introduction of
the Cabibbo angle, resulting in unwanted AS =1
neutral currents, will suggest embedding the
above classification in progressively larger ma-
trices, finally resulting in the scheme of Sec. VI.

IV. MASSIVE GAUGE THEORY OF
STRONG INTERACTIONS

Some time ago, Bardakci and Halpern' consid-
ered the problem of giving mass to strongly inter-
acting vector and axial-vector gauge systems.
Here we will, for completeness, give only the
model with a final U(3)~ SU(3)R symmetry -using
the notation of Sec. II. We also indicate the direc-
tion we shall follow in unifying this model with a
model of leptons like that of Weinberg, or with
other such models.

The generators of the local group U(3)~&8& U(3)R
are indicated as F ~ and F„R, o. =o, . . . , 8, with
the representation —,

'
&& (left or right), where X„

are the usual 3x3 SU(3) matrices.
We introduce the vector ( V„) and axial-vector

(A„) gauge fields in the matrix form
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(4.1)

freedom of applying more transformations from
the second side with a "primed" group which will
be generated by some other operators F~", FR,

(4.4)

These transform as (8, 1) and (1,'8) representa-
tions, respectively, under the local gauge-trans-
formation operator %(x) =expi[o.~ F~+ nR ~ FR]:

p„+—e„s,

yR S yR + 8 $ -1

S, (x) =expl[-', X a, (x)],

Ss(x) =expi[-,'X o.s(x)] .

(4.2)

The Higgs-Kibble mechanism which will give
mass to all gauge particles (no photon) is generated
by introducing two 3~ 3 complex matrices, M~ and

MR, which transform under %,(x) like sets of
SU(3)~ ~ triplets (3, 1) and (1,3);

6'p=pp+fl
p Er, +fl p ~E» (4 5)

with the same coupling f for both left and right
gauge bosons to preserve parity. We get

The "primed" group here is the "global" group
of Ref. 7. Then, under the group generated by
(Eg, EP), M~ would be a set of fields in the (3, 3)~
representation, and similarly for MR. The
"primed" transformations are not local transfor-
mations in this discussion. However, in the
coming sections where we introduce the leptons
and weak gauge bosons as well, they will be clas-
sified with a local SU(2)~ 8 U(1)' subgroup em-
bedded in the "primed" group.

The covariant derivatives are easily obtained
from the covariant momentum operator

~M,~-' =S,(x)M„

eM,~-' = S„(x)M,. (4.3)
V~Mz B~Mi —if V ~M~,

VpM» =8~M„—if V»MR,
(4.6)

%e remark here that the 3x3 matrices M~ and

MR transform only from one side with the local
gxouP generated by F~ and F„". There is also the

and E~~ and E~&", obtained from Eq. (2.12) in terms
of P„and P„. The gauge-invariant Lagrangian
with dimension d ~4 is

'Tr(F„„F-(—"+F„,F&') —'Tr((V„M )t—V M +(V„M )tV"M ]+m Tr(MtM +MtM„)

+8~([Tr(M~M~) p+ [Tr(M»M»)] ) +b2 Tr[(MIMI ) + (M»tMR) ] (4.7)

(M, ) ={M,) = »I. (4.8)

There are 18 massless Goldstone bosons, which
are identified as M~ -M~ and MR -MR, and which
are eliminated by using the 18 degrees of freedom
generated by F~ and F„. The Goldstone bosons
become the longitudinal degrees of freedom of the
massive vector and axial vector mesons with

where we have written F~„=+08 —,
' x "F„"~, etc.

The gauge symmetry is broken spontaneously by
taking

SVpS

M+»- S(M+»)S-',
(4.10)

by (F~+F~) and (FR+F„')„.
Hadhon currents. Here we also discuss the

structure of the currents associated with the final
(Product) group. As in massive Yang-Mills theor-
ies (in general), we distinguish two kinds of cur-
rents, both conserved but with equal charges. The
first is the usual Noether current(s) 8» generated
by the transformation

masses

m '=m '=f'»' (4.9)
(left and right); the second kind (j") is associated
with the transformation

The remaining scalar particles are the Hermitian
part of M~ and Ms, and have arbitrary SU(3)
S SU(3)-invariant masses. The final Lagrangian
then is obtained from (4.7) by replacing M~ -M~
+ I(1 and MR —M„+~1, where now M~ and MR are
Ile~mitian matrices. As observed by Bardakci
and Halpern, this final Lagrangian is invariant
under a global final grouP U(3)&SU(3)z generated

V~ 8 Vp + —
8~ S

(M+»)-S(M+»)S-'
(4.11)

(left and right). In an ordinary massive Yang-Mills
model, J~ is proportional to the vector-meson
field. Incur case, because masses arise spon-
taneously, we will obtain a modified field-current
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identity -however, as is generally true, we main-
tain

(+f-')s„z~'+Z'=Z„'. (4.12)

(4.13)

The algebra including time derivatives of currents
is more complicated and will be discussed else-
where. '

In the presence of additional hadrons, such as
quarks, pions, etc. , J" does not change, while
J„acquires extra terms involving the additional
fields.

V. UNIFICATION OF HADRONIC AND
LEPTONIC GAUGE THEORIES

A. Extension of Hadron Theory
and General Considerations

As already suggested, the path we will explore
for the unification of hadronic and leptonic models
is the freedom of making local a certain subgroup
of the "primed" group, and classifying the leptons
with it. The following picture emerges: Hadrons
are classified and transform only with the un-
primed U(3)iU(3)„chiral local group, while
leptons are classified and transform with only the
primed group. Gauge invariance does not allow
any direct lepton-hadron interactions before
spontaneous breakdown. The only fields that
transform with both groups are Mi and M„, and
they couple to both strong and weak gauge bosons.
Thus, Mi and MR play the role of a "bridge" be-
tween hadrons and leptons. Before spontaneous
breakdown all semileptonic and nonleptonic weak
interactions occur through intermediate Mi and

As seen below, weak interactions and electromag-
netism do in fact couple to J" rather than J~, so
we give next some more of its structure. The
variation (4.11) gives [S= I+in(x)]

Vg = Tr[Z~(x)s„n(x)],

j„=+,'i[M—,8&M]+f(M+ z) V„(M+ v)

in the unitary gauge. We notice that, in the ab-
sence of the M's, we have the usual field-current
identity.

The algebra of the J& is found in the usual man-
ner, using (4.12). The results are almost those
of field algebra, with the exception that the usual
c-number Schwinger term C in the space-time
algebra becomes an operator. Where algebra of
fields has 5„8C, C =m, 'If', we obtain

c„~(operator) =(M+ g) 8'

2

5 8+(operator terms) 8.

g, 0 00 ~ ~ ~ 0
(Ml, ) =(M„) = a'=l 0 a', 0 0 ~ ~ ~ 0

(0 0,, 0 "0)
(5.2)

M„ loops. After spontaneous breakdown, how-
ever, we generate direct mixings between strong
and weak gauge bosons, so that at low energies
semileptonic and nonleptonic weak interactions
occur through vector-meson dominance.

For hadrons, we consider U(3)~CIU(3)s chiral
theory, "which includes the usual quarks, and

(3, 3) scalar and pseudoscalar mesons (Z =v+iv),
as well as vector and axial-vector mesons. These
fields transform only with the unprimed generators
I'i and I"R of Sec. IV:

ql, SI,qI. , q S~qR, Z —SL Z S

V,"-S, [V~+(iif)s&]S,

V„"- S„[V„"+(f/f) 8"]S„-'.

In this model, gauge invariance does not allow
mass terms for V~, VR, and q. Masses for these
fields can only be generated through spontaneous
breakdown. For quarks we need a term in the
Lagrangian of the type nqiZq„+H. c. (this is
another reason for introducing Z), and to generate
masses for all vdctor and axial-vector mesons
we have to introduce the Bardakci-Halpern sca-
lars' M~ and MR of Sec. IV. Notice that we can-
not break SU(3)iS SU(3)„ in the usual way, by add-
ing a linear term in Z, like Tr(fZ) (f is a nu-
merical matrix). This would spoil the gauge in-
variance (and hence renormalizability). Such a
linear term must be induced only through spon-
taneous breakdown from a gauge-invariant term.
If only a hadron theory is desired, such a term is
easy to find: Tr(GMi~ZM~)+H. c., where G is a
numerical "insertion" of form

g 0 0)
a

00 ~)
In the presence of leptons the term is a bit haz'der,
but we shall find later just such a term which, in
the limit of no weak or electromagnetic interac-
tions, reduces to just the above hadronic term.

Again, if only a hadron theory is desired, Mi
and M~ may be taken 3&& 3. In the presence of
leptons, however, we will need to take them as
3&&4 matrices (to eliminate neutral strangeness-
changing currents). In general of course, we can
enlarge to 3xn, n~ 3, thus enlarging the "primed"
group to U(n)' U(n)'. No Goldstone bosons will
couple as long as the "new" columns do not develop
any vacuum expectation values (the extra global
symmetries associated with the extra columns
should be broken by hand). Thus
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We find that the smallest n we need is n=4. This,
we find below, eliminates all neutral strangeness-
changing processes to first order.

B. "Induction" of Leptonic Structure from Hadrons

[q, M, ] =q', M, -M, q'. , (5.4)

etc. The above commutator is determined as ex-
plained in Sec. II, with the transformation prop-
erties of ML and MR as in Eqs. (4.3) and (4.4).

To assure a massless photon we have to satisfy

Among the constraints on the unification, two
are particularly worth focusing on. These are (a)
proper introduction of Cabibbo angle and (b) having
a universal, massless photon. These play partic-
ularly crucial roles in the choice of a local group
to classify the leptons, as a subgroup of the
"primed" group (as well as its representations).

We first consider the photon, whose structure
is closely related to the construction of the charge
operator Q. In the type of theory we want to pro-
pose Q will be constructed from the unprimed as
well as the primed generators. The unprimed
part, which will assign the correct charges to
quarks, Z, V„, and A„, is the usual SU(3)LSSU(3)R
charge operator, namely

1
(p, ~y, )+—(y, +y, ).

The primed part of the charge operator should
first of all give the correct charges for the lep-
tons. We assume that we have chosen SU(2)L8 Y'

as a subgroup of a U(n)L8 U(n')R group. We choose
SU(2)L8 Y' both because it is the natural group of
the known leptons, and because, as it will turn
out, our hadrons will not connect to any smaller
leptonic group. Of course we will search for the
smallest n compatible with data.

Thus, the total charge operator is

I ] ML=&RL& [ Q&MR] R =&&I &
=0. (5.5)

Since (ML) =(MR) =
&& as in Eq. (5.2), Q must then

satisfy

qL RR RQLR 0

Therefore, Q
'" must have the form

(5.6)

qL, R

—', ~0 0
0-—', 0
0 0

?
(5 'I)

This suggests that Weinberg's leptons should be
embedded in a 3x 3 matrix with the notation of
Sec. III:

That is, the 3 x 3 submatrix has the same form as
QL ". Now, if we embed SU(2)L8 I" in U(3)L 8 U(3)R
and take SU(2)L as the isospin subgroup of U(3)L,
then the primed part of the charge operator is
uniquely determined as (E,'L+E,'R) +(I/v 3)
(I'BL +FSR); therefore

Y' =~3R + (&SL +&BR) ~ (5.8)

1
Q FsL +I"~R+ ~3

-(I"BL+&sR) +I"sL+ Y ~ (5 3)

The "primed" part of the charge operator I'3~ + Y'

determines the weak hypercharge 7'. At this
point, the crucial ingredient in our induction is
the known charges 'of the Bardakci-Halpern scalars
M~ ~; e.g. , their diagonal entries, which acquire
a vacuum expectation value, must be neutral.

More precisely, the charges of M~ „are deter-
mined by the xePxesentations of the unprimed and
primed parts of Q, which we denote by QL" and
QL ", respectively (s=strong, R&=weak). We have
already determined QL'" as the usual SU(3) charge
matrix,

(-;o o
QLR i0 0

The charges of each entry of the matrices M~ and

M~ are found by computing

D

03

(0 y.L
e„-

o oi

(5.9)

Notice that the operator (I'BL +FSR) commutes with
both gD and pR, if these fields transform as speci-
fied in Sec. III [taking the isospin subgroup of
SU(3) with X„matrices instead of the 2x 2 Pauli
matrices in SL and SR]. Therefore, the hyper-
charge Y' is assigned to pD and &1&~ only by E,'R,
just as in Sec. III. Thus the charge operator that
we have just chosen also assigns the correct
charges to the leptons. This is why we think
Weinberg's leptons are much more suggestive if
classified as in Eq. (3.1) [rather than as in Eq.
(3.2)]. Thus (as mentioned above) the presence
of the hadrons in a sense distinguishes the elec-
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tron- and muon-type leptons by their SU(2)R quan-
tum numbers, and gives a zero-charge neutrino.

As already mentioned and as shown in Appendix
A, U(3)zU(3)z will turn out to be unsatisfactory.
The next most economic scheme is an embedding
of SU(2)~8Y' in U(4)+8U(4)R. Out of the genera, —

tors I'~, +=0, . . . , 15, we choose F,'» to form
an SU(2)~ plus a U(1)' operator Y'. For reasons
that will become clear shortly, the representation
we want to use for these generators has the form
(left or right) Tr(Vz", aW~z ), (5.13)

a rotated picture of the hadrons. Therefore, the
weak SU(2)l, group must be rotated with respect to
the strong SU(3)~ group in such a way that the weak
gauge bosons "see" a left-handed strong isospin
current slightly rotated in the ~, direction. Weak
gauge boson couplings occur in our model through
the scalars M~ and M~, which after spontaneous
breakdown generate terms of the form (see later
se ctions)

~~ =Pauli matrices =(70,v„~»7,),
~a +2~ a~2 (~OP 719 ~29 ~3) '

(5.10)

where 5'„ is a rotated matrix 8'„=B'AV„R ', W„
=Q'„,W„"f„, R =Cabibbo rotation. With the form
of z given in Eq. (5.2) we see that R must be
chosen as

Clearly to„, form a U(2) algebra. Equation (5.7)
is satisfied if we take Q~" =f, + —,'f, . This suggests
that the primed charge operator has the form
(F,'~ +F3~) + —, (Fo~ +F,'R), determining

0 0 o ~ o 0

0 0 0 ] o ~ ~ ~

0 cos8 sin8 0 ~ ~ ~ 0
0 -sin0 cos0 0 ~ ~ .0

(5.14)

(F +F ). (5.11) ~ . 0

Now, if we embed the leptons of Sec. III in a 4&&4

matrix,
0 0 0 0 ~ ~ 0

0
es, "z

PD= ( 0
(5.12)

0
e,-

h 0 ?)'
and let them transform as before (but with t„re-
placing ,' ~„ in S~ —and SR), we see that Fo~ +F,'I
commutes with both g~ and P~. Again only F,'~ as-
signs the value of the hypercharge F' to the lep-
tons as in Sec. ID. The question marks (?) in
(5.12) are suggestive of the presence of new heavy
leptons. In fact, in order to cancel anoma, lies we
will'need new leptons which will fill the spaces
marked by (?); these will also fix the fourth entry
of Q~'R in Eq. (5.7) exactly as given by (5.11).
Discussion of heavy leptons will be continued in
Sec. VI.

So far we have seen how the determination of
the charge operator has greatly restricted our
choice of the SU(2)~8 Y' subgroup. However, we
still need to introduce the Cabibbo angle. This
and the requirement of no ~S =1 neutral currents
will finally determine the representation of the
SU(2)~ 8 Y' algebra which we need.

According to Cabibbo's theory, the weak cur-
rents which are part of an SU(2) multiplet "see"

4=R4A ' 4-=R4R ',

S' =AS'8 S' BS'8
(5.15)

which transform as above, namely, under the
"primed" group

where 8 is the Cabibbo angle.
Thus our group is now generated by the operators

F',~», Y' (rotated with respect to F,'~23 and Y'). In
the simplest case of SU(3)~ 8 SU(3)„' these are rep-
resented by X„=&Ay238A ' for the left-handed gen-
erators, and unrotated 338 for the right-handed
generators. For the case of SU(4)~ 8 SU(4)s, we

represent the left- or right-handed generators by
t„=Rt„R ', where t„are as given in Eq. (5.10).
The representation of Q is invariant under R in
both cases. However, it is only in the latter case
that the neutral operators do not (Cabibbo) rotate
t3 t3 po Ip As wil 1 be seen, this is why the neu-
tral strangeness-changing currents are eliminated.
For this reason, we relegate further discussion of
the SU(3)~ 8 SU(3)„' to Appendix B, and continue
here with the preferred SU(4)~8 SU(4)„' scheme.

Finally„we remark that to maintain the couplings
of the unrotated leptonic world unchanged we need
of course rotate the entire leptonic representation
(so that they would not be aware of the rotated gen-
erators). Thus, we will formally introduce a fully
rotated notation:
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$D s~ /~st

Ml M~SL

MR-MzSz '~

(5.16)

etc. Actually, this is equivalent to saying that
weak gauge bosons couple to hadrons (M~ „)with
rotated t~, and to leptons with unrotated t~. In
particular, S~=S&, so some of this formalism is
for notational convenience.

We have given reasons for our choice of the
SU(2)z Y' group, and its representations. Thus
much has followed from no AS=1 neutral currents
and known hadron charges. More problems re-
main to be solved, such as medium-strong SU(3)

SU(3) breaking in the presence of leptons (with
no physical Goldstone bosons), cancellation of
anomalies, etc. These will be discussed after we
construct explicitly our model in the coming sec-
tions.

mesons (strong, weak, and electromagnetic) as a
similar 14x 14 matrix with diagonal entries,

v~: [fvi~, f vg z'(f. +-', f,)a~, gw~+-', g''f, a~]

(6.3)

VI. UNIFIED MODEL

A. Construction of Lagrangian

%t = expi(o. ~
~ F~ + nR ER + p ~ F~ +y Y),

0 0 0

0 Os,'0
0 00S,'

where, as detailed in Sec. V,

S~ =expi(t p+ , t,y), —

SR' =expi(t~+ p to)y,

(6.1)

(6.2)

and so on. Recall that the operation denoted by a
tilde is the Cabibbo rotation.

In the same notation we represent a.ll vector

As we saw in the last section and Appendix B,
the use of SU(3)~ 8 SU(3)~ as the primed group for
embedding the leptons led to trouble in general
with strangeness-changing processes. Speaking
generally, then, we have at this juncture two
possible directions: One choice, followed by most
authors, ' is to try enlarging the'hadronic group
(more quarks, etc.); as explained above, we con-
sider this unesthetic at least, and in fact such at-
tempts do not solve the "strangeness" problems
in our case anyway. Thus our choice' will be, as
anticipated above, to enlarge the primed group to
U(4),' U(4),'.

For the sake of elegance, we will present the
model in a unified (strong, weak, and electromag-
netic) supermatrix notation. For example, the
general local operator transformation is repre-
sented by the 14' 14 supermatrix

Then the unified gauge transformation on V" is
just

~V„~-' =S(V„+is„)S-'. (6.4)

Similarly, for steinberg's leptons, we introduce
the SU(2) doublets P~ and the SU(2) singlets g~ as
in Eq. (5.12). To fit them into a supermatrix no-
tation l, we define rotated quantities

(D=Rg~ ', P, =Rg,A ', (6 5)

0 0
0 0

0 0
0 0

4s ~2 4c& (6.6)

1
o o ~24D

(gcD: charge conjugated in Dirac space and trans-
posed in matrix space). We then specify the trans-
formation %Ll%,

' =SLS '. This means that the un-
rotated gD and P~ transform with the unxotated rep-
resentations S~ and S~:

(6.7)4D sLIDSR & 4S sRPSss

Thus, they belong respectively to (4, 4) and (1, 15)
representations of U(4)~ SU(4)z. For the scalar
mesons, the supermatrix notation is most sym-
metric:

0 Z 0 M, /~2
Z' O M, /W2 O

0 M~/~2 0

M~/~2 0 (j) 0

'aM%, '=SMS '.
(6 6)

Here Z —= o+im is the usual (3, 3) multiplet of scalars
and pseudoscalars; M~ R are now three by foux--
complex matrices (one extra column to support the
enlarged primed group), and P is the rotated
Weinberg scalar P = p, f, +i P ~ i. The notation em-
phasizes that (a) M~ R are the only fields in the
model which transform under both the hadronic
and leptonic groups, and (b) Weinberg's p is to
the leptonic system precisely what Z is to the
hadronic. It is this symmetry which will allow
us to construct a (3, 3) + (3, 3) symmetry-breaking
term in the model. %'e take leptons and quarks,
for the moment at least, as discussed in the pre-
vious sections.

Covariant derivatives are formed in the usual
fashion, leading to our unified gauge-invariant
Lagrangian
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2 = ——,
' Tr(Fz"'F&,

+FR�

"Fs») —,' F—~,F~s" ——,
' Tr(F„,F ~~) —iqV "y„q —i Tr (l V"y„ l) ——Tr[(V"M)t V„M]

+ P(q~ZqR+H. c)+Tr(gvgtjisG+H. c)+ V(M~)+ V(M„)+ V(Z)+ V(P)

+Tr(G, pMzMz Q+ G2MstMRptp) + Tr(G, Q~M~tZM» +H. c). (6.9)

W2 f„m, ' fm, 2f m»' f, m, , d)-
2y K2 y K2 & ~2

1 1

(6.10)
G, : (a, a, b, c).

The interpretation of these parameters will be
clarified in the following paragraph.

We come now to the spontaneous breakdown.
First, we use 21 degrees of gauge freedom (all
but Q) to eliminate the 3x 3 submatrices of M~
-M~~ and MR —Mst, and all the components of P
except Po. With an eye to the charge operator
(5.3), we next assign the charge-conserving vacu-
um expectation values

(&f&) =&i, (M ) =(M„)=2». (6.11)

We shall return in a moment to the specific al-
lowed form of », but first notice that (6.11) gen-
erates, through the last term in g, a linear term
in the Z field. Thus Z itself acquires a vacuum
expectation value (Z) —= v, which is the usual (3, 3)
+(3, 3) hadronic symmetry breaking in the spirit
of Gell-Mann, Oakes, and Renner. "

The allowed forms for a and v require a detailed
discussion of this complicated scalar system.
Such is tedious and not terribly illuminating, but
can be found in Appendix A. Here we only state
that to lowest order, neglecting weak effects, we
can take the following isospin- and strangeness-
conserving vacuum expectation values": ~ arbi-
trary and

a, 0 00
K=

/

0 Kg 0 0
0 0 g20

(6.12)
v, 0 0
ov, 0~,

(0 Ov, )
with no massless Goldstone mesons. Except for
d, the interpretation of the parameters in Q, and

Here the V( ~ ~ ~ )'s are the usual quartic and
quadratic terms, "with certain G "insertions", '
which are 4&&4 numerical matrices which, be-
cause they break only I'R-type symmetries, do
not spoil the unified gauge invariance. In particu-
lar, we write their diagonal entries as

G: —(m„m„, 'P, 'P),. 2

v is standard, "while G„d, and V( ~ ~ ~ ) can be
adjusted to give arbitrarily l.arge masses to Po and
the remaining scalars in M~ and M~. The vacuum
expectation values v& are directly related to the
pseudoscalar decay constants f„and f»."

To illustrate the meaning of the w, , we also list
(ignoring electromagnetic mixing of p, P, &u, etc
for the moment) some (bare) vector-meson masses
after spontaneous breakdown":

m '-m ' f'»'-
.P Q)

m '=f'»'
m»+ 2f I. »J + »2 + (Vg vm) ]

With proper choices of K, K2 vg and v, these
formulas for the vector-meson masses are well
satisfied by experiment. Further, W' and Z also
get a small extra contribution to their masses,
due to g. Such relations should be taken together
with a number of remarks: (1) Electromagnetic
mixing, to be discussed below, gives order-e'
corrections to p~P masses. (2) Ignoring (1) and
the presence of the remaining M~ „terms —which
influence the known hadrons only through loops-
the hadron theory is just a familiar mass-mixing
Yang-Mills 0 model. Of course, with z, I(:„we
lose the second Weinberg sum rule, so in general
we prefer», = »„ leaving v-p splitting to higher
order. (3) Frankly, we do not know whether our
Lagrangian will be more useful as an effective
Lagrangian or as a guide to nonperturbative struc-
ture and the currents of the strong interactions.
In general, we will discuss whichever view (or
both) when they appear interesting.

B. Photon System and Vector-Meson Diagonalization

The structure of our theory with respect to these
topics is somewhat unusual. As discussed above,
the (massless, universal) photon is found as the
coefficient of Q in the covariant momentum
(F =F +F „):
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f(F,V, +F,V )+gFggWS+g'&'B=eQ &+ [(2~3F.+2F.) —5~3sin'q Q] V»
COS'g

+f(- ,'F, -+-,' v 3F,) V,', + (cos'/F3~ —sin'P I")2',
cosP (6.14)

where
e =g sing cosy,

g' 2g sing
tang = —,tang =

V,', =-—, V, + —, u 3 V, .

With f'/4m-2 and g, g' small, we obtain approxi-
mately Weinberg's e-gg'/(g'+g")'".

Because of the diagonalization, our picture of
electromagnetic effects is unusual. As a first
indication of this, we notice that we are forced to
electromagnetically mix the strong vector mesons.
The pp&u mass matrix becomes

7r[(v 3 Qf,V„+fU, V,', +f 'X, V,)' ~'] . (6.16)

Here we have allowed a different universal cou-
pling constant f'of for the ninth vector and axial-
vector mesons Vp and Ap K stands for the 3x3
submatrix of z [Eq. (6.12)] with y, tv, . The other
symbols are given as

A" = cosy(sing W," +cosPB") +sing( —,
'

v 3 V~~+ j' Va"),

(6.15)

V„=-cosy(-,' v 3 V, + —,
'

U, ) —sing(sing W, + cosQ B),

tion, say in electron quark (electromagnetic)
scattering, we find that the hadronic vector cou-
plings always add to the photon in just such a way
as to simulate vector-meson-dominated electro-
magnetic form factors in lowest order: e.g.,

(6.18)

Further, these eouplings give a hadronic correc-
tion to the muonic -', (g-2) of order 5x10 ',
agreeing with previous estimates. "

Vfe will discuss the effect of the diagonalization
on currents after specifying our prescription for
the other weak vector-meson couplings. These we
choose not to diagonalize, leaving charged W' and
neutral Z terms of the form

2'= gf Tr[Vg(Mg+K)W(Mg+K )]+(Z terms)

(6.19)

as they are. Thus the charged lowest-order cur-
rents proceed via vector exchange at low energies.
Actually, of course, one can diagonalize, but this
is quite lengthy, and the theory is easily inter-
preted without doing so.

f fm(f2 a e2)-li2

2 0

(0 o

0)
0
i j

oo o
U, =i 01 O

(0 o Ij

(6.17)

It turns out that f' must be close to f to obtain the
usual P-&u (canonical nonet) mixing angle. We also
find that, aside from small electromagnetic mass
corrections, the p-+ mixing angle can be fitted to
data, and is very sensitive to variations in f -f of
order e'.

Further, of course, the eigenvectors of the
mass matrix, which are the physical p, ~, and

P, have direct order-e'/f electromagnetic cou-
plings to the leptons. This can be easily seen
from Eq. (6.14): V» is also associated with the
total charge Q, like the photon. Thus electromag-
netic effects will not be describable purely in
terms of a J]' A. „coupling. In explicit calcula-

C. Currents and Universality

Hadronic currents in our model are, of course,
determined by the Lagrangian J. The physical
weak currents J," can immediately be read off as
the hadronic coefficient of W~ in 2 (M's considered
hadrons). In the limit g, g'-0 (and mass of the
fourth column of M's large), these currents are
just those discussed in Sec. IV. The electromag-
netic current is also the hadronic coefficient of A~,
but as stressed above, this current is not useful in
the usual manner, due to the "other" electromag-
netic effects from neutral strong vector mesons.

Although, as in Sec. lV, these currents can be
found through hadronic considerations, it is per-
haps more illuminating to consider their structure
from the point of view of the "primed" transforma-
tions and the 8" equations of motion. As an exam-
ple, we discuss the Noether derivation of J," from
this viewpoint. For simplicity, we consider only
transformations seisin the unitary gauge
[t(M —M~),„,=0, p —p~=iI] —in this case, those
generated by F,', . Thus P, M, and the other had-
rons do not transform (otherwise we cannot main-
tain the gauge), while the leptons transform as
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usual. With respect to W, we follow Sec. IV to
consider two classes of transformations (and hence
two groups of currents). As in Sec. IV, the two W
transformations are those with or without an extra
S' '~„S'. The transformation smith the extra deriva-
tive term leads to the physical currents J," defined
just above; these can be written as

(~.+~y),

divided by M~ " Before vacuum expectation values,
such processes are zero to order g', due to a can-
cellation between internal 6'- and 6"-type column
exchanges [as in the Glashow-Iliopoulos -Maiani
SU(4) model]. Therefore, after spontaneous break-
down, these amplitudes are suppressed by hadron
masses and mass differences divided by M~'.
These conclusions are being checked in detail and
will be presented elsewhere. "

where ~ & are the covariant kinetic energy
terms for M and P in the unitary gauge. The
transformations zoithout the derivative lead to

~aN 6W
(~ ~N

which are the ordinary Noether currents of the
leptons and W' fields, and not the hadron currents.
As always in these algebra-of-fields-type situa-
tions (see Sec. IV), the two sets of currents are
related by a total divergence, which this time is
8„I'~~,'. Thus J~& is related to the weak Noether
current J~~N through the 8' equations of motion;
simultaneously, forms essentially J~I" are related,
as in Sec. IV, to the hadronic Noether current
through the strong vector-meson equations of mo-
tion.

It is clear from the above discussion that the
hadronic charge algebra is that of the leptonic
charges; hence universality is guaranteed. '

A further remark about the electromagnetic cur-
rent: It would be useful to have an "effective"
electromagnetic current that takes into account the
hadronic corrections mentioned above. We would
conjecture that such an object is the current cou-
pling to Weinberg's photon (i.e., do not diagonal-
ize; Weinberg's photon is the real photon taken at
q =0).

Neutral strangeness-changing currents and a
corresPondence PrinciPle. In lowest order, w'e get
no AS=1, EQ=O currents, because our Cabibbo
rotation (5.14) does not rotate neutral weak vec-
tor mesons [t, =t„ t, =t,]; we have accomplished
this only by increasing the size of M~ „, without
extra quarks.

Qn the other hand, it is clear that the four col-
umns of M» are acting like the ((P, 2, A., 6")
quarks of other models. ' In fact, we see a type of
"correspondence principle" at work here in the
sense that, from the structure of some n-quark
"direct coupling theory" (e.g., qWq), we can read
an n-column "M theory" (our models here) -or
vice versa. This principle will be useful below'

when we consider inclusion of other lepton models.
Preliminary calculations indicate that higher-

order induced strange currents are suppressed by
factors of hadron masses and mass splittings

D. Fermions and Anomalies

As thus far presented, our model has anomalies.
Further, in the presence of both strong and weak
vector mesons, it does not appear possible to can-
cel quark-vs-lepton anomalies. Hence we will dis-
cuss a simple doubling scheme which, at least for
the hadrons, is very much in the spirit of dual
models. In particular, our approach will lead us
directly to the existence of a heavy pion. The
scheme is as follows.

We introduce (heavy) q', g~ D that couple to gauge
bosons just as q, g» but with the opposite sign of

y, . The new leptons go where we had question
marks in the 4&&4 lepton matrices:

0 0

0 0

0 0

0 p,~ 0

e&

(V."4
(6.20)

e,- 0

0 0

0 0

0 0

0Vn ez
/+ I /a p,&

In the leptonic system, anomalies are canceled
without complication. However, now q and q' loops
with an odd number of y, couplings tend to cancel
(because both type of quarks are picking up mass-
es and interactions from the same type of terms
q~Zq~, qsZq~) —suppressing w'-2y. This we can-
not allow. The only solution to this dilemma ap-
pears to require the introduction of a heavy pion'-
Z' field Z' =o'+in'. For simplicity, we choose to
couple q only to Z, and q' only to Z'. (Most gen-
eral couplings do not affect the conclusion. ) Now

it is easy to arrange that the masses of q' and Z'
are high while keeping (Z')/(Z) = v'/v«1 so that
the new Z' has negligible effect on all lose-lying
hadrons, including V and A. Now, of course,
n - 2y proceeds only through q. To get an extra
factor of 3 in the 7t'-2y amplitude there are a
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number of choices. We can go to sets of integral-
ly charged quarks, with F providing a "charm, "
or me can, most perversely, e.g. , introduce two
more such "pairs" of canceling quarks with large
mass. " Such schemes appear quite flexible with
regard to quark classification, the only common
denominator being the apparent necessity for a
heavy pion. Implications of such ideas in the
opeI'Rtol iRl fol'111ulRtloll of PCAC (pR1'tlRlly coll-
served axial-vector current) will be explored else-
where.

E. Other Lepton Models

Among the other lepton models in the literature,
none fits our hadrons as well as Weinberg's. How-
ever, with more scalar mesons (etc.), some other
models ean be incorporated, and we will make
some brief remarks on this subject.

The second model of Prentki and Zumino looks
good at first sight. ' Indeed, their leptons fit
naturally into our go s. However, due to the (2) "'
in their neutrino classification, me would violate
hadronic universality (by this factor) if we coupled
directly to our hadrons above. " Consulting the
correspondence principle again, we find that uni-
versality is restored with the addition of one more
set of ax 4 matrices M~ „. At this stage, however,
we consider this unattractive.

A more economical generalization follows lines
between those of Weinberg and of Georgi and
Glashom. As discussed in Sec. V, the presence of
the M's requires four weak gauge bosons. Keep-
ing the same weak gauge bosons, we now classify
the leptons under SU(2) with Georgi and Glashow.
The leptons are singlets under F. The .Georgi-
Glashow scalar fields Qo =t ~ Qo are needed
to retain their lepton mass pattern; Weinberg's
scalars Q~ are also needed to construct our (3, 3)
symmetry-breaking term (see above). Further,
( Q~) =& can be taken to provide the bulk of weak
gauge boson masses. To avoid Goldstone bosons
in lowest order, terms like Tr [ PgPo P~] must be
included in the potential. In this model, then, with
only three extra scalars (po), we suppress neu-
trino processes in the manner of Georgi and
Glashow. Without the extra U(1), the original O(3)
model of Georgi and Glashow does not seem pos-
sible to incorporate.

We have not found a way of incorporating (with-
out Goldstone bosons in lowest order) the model of
Lee, Prentki, and Zumino.

one parameter, say e (electric charge), to expand
a11 meak and electromagnetic effects. As e-o, we
rea.ch the pure hadronic system, which is of inter-
est in itself. The hadron Lagrangian is in most
respects the model of Bardakci and Halpern. A
notable exception, of course, is the (3, 3) sym-
metry-breaking term. Since X '=gM~ '-O(e),
then G, [Eq. (6.9)] is also O(e). Thus in the term
Tr[G, (/+A)M~t ZMs], the term Tr(XG, M~t ZMs)
survives as (another e-independent) part of the
hadron world. Thus a/L hadron symmeA'y breaking
occurs in terms of dimension d: 3. Since we have
required parity-, isospin-, and hypercharge-con-
serving strong interactions, this conclusion about
symmetry-breaking dimensionality follows directly
from the structure of the leptons.

The question of deep-inelastic sealing for our
model remains to be investigated. Although the
current algebra generally resembles algebra of
fields, still there are a number of special features
here that interest us in a reexamination of the pos-
sible scaling. (1) The theory is renormalizable,
i.e., longitudinally damped in some sense. Can
this connect with the physical fact o~/or -0? (2)
Whereas in algebra of fields one has current di-
mension one, here we naturally obtain asymptotic
dimension three. (3) Possibly relevant to this
question is the further fact that the unified theory
can be taken scale-invariant before spontaneous
breakdown, all except for the P mass term.
Hadronic scalar masses are generated along with
other masses, as long as we include also potential
terms like Tr(M~MEZZ ), etc. The theory cannot
be taken completely scale-invariant (or a Gold-
stone dilaton appears). "

Finally„we want to ma, ke a few brief remarks
concerning the introduction of baryons in the mod-
el. In lieu of a, Bethe-Salpeter bound-state calcu-
lation, we have the option of introducing elemen-
tary baryons, but the resulting picture is not very
attractive. To give (renormalizable) mass to the
usual (8, 1)= B~, (1, 8) = B„baryons, one is forced
to introduce an (8, 8) scalar field y which couples
to baryons as B~ gB„and to Z as X"8 Tr(A.„ZA.BZt).
The last term is needed to avoid new Goldstone
bosons in low'est order. y of course, involves 128
new scalars, whose masses can be taken large.
An alternate possibility is the old (3, 3) +(3, 3)
baryons, "whose masses can be generated by Z
alone (no new scalars); such classification of
course leads to bad D/I' ratios to lowest order.

F. Final Remarks and Directions

We mould like to discuss briefly perturbation ex-
pansion around the "hadron"' theory. We choose to
hold fixed the masses of W, Z, and p. This leaves

APPENMX A: SPONTANEOUS BREAKDOWN
AND THE SCALAR SYSTEM

The pa, rt of the Lagrangian me mish to study here
ls
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2' = V,(M)+ V,(Z) + V,(g)+ Tr(G, ptM~tZMs+H. c.)
+Tr(G, ptM~tMip+G2MstMsgty) . (A1)

and g;, A. , and v; are real numbers.
Let us first deal with the particles of the fourth

column of Mi ~. Writing
We will take the potential terms V( ~ ~ ), as fol-
lows:

V, (M) = o Tr(Mi~Mi) + P(TrMitMI )'

+y Tr[(MitMi)']+(L R),
(A2)

( 4,z Xs„s)
Mi „=1

(000 0~' (A4)

V, (Z) = n'Tr(ZtZ) + p'(TrZ "Z) +y'Tr[(Z~Z)'],

V, (P) =6Tr(gag)+e(Trgtg)'.

G j and G, are diagonal "insertion" matrices, as
detailed in the text.

We remark that the SU(2)ix U(1)' gauge invari-
ance allows more general insertions, and in more
places, than indicated. The only further restric-
tion is that, to preserve CP invariance both be-
fore and after spontaneous breakdown, all inser-
tions must be real matrices (G,*=G;), which com-
mute with the SU(2)i x U(1) ' group. However, in
lowest order in the weak and electromagnetic cou-
plings, we would like to have isospin-, hyper-
charge-, and parity-invariant strong interactions.
For this reason, we only allow the insertions in-
dicated. We wait until higher -order divergent
weak-interaction loops demand a certain insertion
as a counterterm, and do not introduce it other-
wise. This is a device to make their effect show
only in higher orders, and thus be physically
negligible.

For the moment, we will not introduce the term
detZ+detZ~, but will return later to remark on
the circumstances of its inclusion. Now, we as-
sign vacuum expectation values ( P) =A.t„(Mi)
=(M„)= K, (Z) = v, where

I(, 0 0 0

2&2
v~s+-~ c)lip +(L~ 2 (A5)

where c, d are the numbers in the 4, 4 position of
G». The parameters c and d can be adjusted to
give arbitrary masses to pi+ y~. Thus, though

X» are extremely important in the structural
connection between strong and nonstrong interac-
tions, they play no important role in the analysis
of the scalar system. In what follows, we regard
Mi ~-(i ~ as just 3x3 matrices.

Proceeding, we list the (matrix) relations ob-
tained on requiring the absence of linear terms in

P, Z, andM:

2&V G,'+ &A.'G2 + o. + 2p Tr (K') + 2yK' =0,

&XK Gi+ [n '+ 2P' Tr(v') + 2y'v'] v = 0, (A6)

Tr(v K'G,') + [Tr(K'G,') + 25 + 16m A,']X = 0,

where (» are 3x3 matrix fields and y~ ~ is the
fourth column, we notice that we are inducing no
linear terms in g, y . This is consistent with (A3).
In fact, the set of quadratic terms involvi ~g gi „
is just the usual terms from V(M), plus

0 I(,', 0 0

0 0 a30
0 0 0 0

v, 0 0

v= 0 v, 0

(0 0 v)

(AS)

where aG,' are the 3&&3 parts of ~, G;. Because of
the "insertions" G,' „ the equations are well un-
derdetermined even allowing arbitrary diagonal
K~ V~ A. .

In preparation for writing down the quadratic
terms, we use our 21 degrees of gauge freedom
(all but Q) to eliminate the 21 scalar degrees of
freedom ((~ —])i s and (P —Pt}. Then, using (A6)
to simplify, we have

Tr[ (2yK —zkvG&) $& +2yK)iK)i+ aX G&Fiv)~]+4p(TrK4) + $i

+Tr(-2XK'v 'G,'Z Z+2y'v'ZZ +y'ZvZv+y'Z vZ v)

+P'[Trv(Z+Z )]'+ —,'[eA, '+(2/A)Tr(vK'Gi)] P,'+Tr[XKG,'(t~Z+Z)s+Z $g+ t'pZ )]

+go Tr[()z + $z)(vKG,'+AKG,')+(Z+Zt)K'G, '], (AV)
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where we have written E
~ = (.

It is relatively easy to see that this system con-
tains in general no Goldstone bosons. Further, if
we chooSe to fix Q, and $~ „to have large masses
(e.g. , by large A. , y), while o+ iw stay at lower
masses (see interpretation of entries of v in text),
then the mixings of physical particles (say just the
pseudoscalars) with P, and (» are very small
and there is no practical need to diagonalize fur-
ther.

Thus far, we have analyzed the system without
a detZ+detZ~ term, keeping the ninth axial-vec-
tor meson. This leaves us with a problem as far
as considering our Lagrangian as an effective
Lagrangian. To zeroth order, then, we have a
z-q degeneracy. The ninth axial-vector current is
not conserved in the model, however, so this de-
generacy is not expected to persist to all orders.

We would however feel more comfortable with
the conventional "effective" z-q dynamics. This
can be achieved by omitting the ninth axial-vector
meson entirely. Thus, with no need for ninth axial
gauge freedom, we can add the detZ term. Now
our 20 degrees of gauge freedom just suffices to
remove the resulting 20 Goldstone scalars (the
scalar system of course starts with one less sym-
metry). There is a problem, however. A /ow-
mass (about 1 GeV) q", with the quantum numbers
of q', remains; it is the pseudoscalar that would
have been absorbed into A, . It would be of interest
to carry out some detailed calculations on its mix-
ing with q, q', and its decays, etc., with the pos-
sibility of its identification with M(953)."

APPENDIX B: EMBEDDING OF THE WEAK
GROUP IN SU(3)L (3 SU(3)g

Groups and Representations

Y, = E3s +
~3 (F8r, + F8„).

Local Transformations

The general local operator

&=expi(n~ E~+us F„+P.E~+y, Y, +y, i2)

is represented in a unified supermatrix notation:

S, O 0 0

0 S, O 0

0 0 S~0
0 0 0 S,'

(B2)

The hadronic group is as chosen in the main text.
The local leptonic group is SU(2)~SU(1),'U(l), '

embedded in the primed SU(3)~@SU(3)s. We call
the latter's generators F„'~, E„'s (n =1, . . . , &).
These are represented by X™ and X„, respective-
ly, where for the left-handed group we have ap-
plied a Cabibbo rotation (X = e'8 "7X e '8 "7). Only
five of these generators are realized locally; these
are E„'~, (n = 1, 2, 3), Y, = F3++ (I/v 3 )(F,'~ + E8s),
and Y, = (1/~3)(F,'~ +F8+). The charge operator is

1
Q = Fsz +Ess+ ~3 (Est, + F8&) + F3& + Yz .

We remark that since the charge combination
E,'„+(1/v 3 )E,'s is invariant under a right-handed
Cabibbo rotation, we could write

We present here a scheme for embedding the
leptons in SU(3)~@SU(3)s. This would seem to be
the most natural extension of the hadronic theory
to include also weak interactions. Unfortunately,
the simplest scheme leads to conflict with experi-
mental evidence on strangeness-changing neutral
currents. This effect is well known and will not
be discussed further. (It is however, the g,'=0
limit of the following scheme. )

Therefore, we extend the leptonic gauge group
by one more U(1),' operator in addition to SU(2)~
U(1), '. Then, as seen below, we succeed in sup-
pressing greatly the 45 = 1 neutral currents in
semileptonic decays. However, &S = 2 nonleptonic
interactions are found not small enough to lowest
order. We consider this result as a failure of this
scheme. This is why we are finally led to embed
the leptons in U(4)~ U(4)„' as shown in Sec. VI.

S~(x) =exp —,'i A. ~ P+ ~ A.,(y, +y, )
(B3)

1Ss(x)=exp ,i X, +~-A,, y, +~ A.,y, , etc.

Fields and Classification

The hadronic part includes quarks, vector and
axial-vector mesons, Z =0+ im multiplet, etc.
The only change from the model in the text is that
M~ and M~ are now 3 ~ 3 matrices, transforming
as

=S~M~S~

SaMzS~
(S4)

The weak gauge bosons are W„, B», B», associated
with the generators +~, Y„Y,with couplings g,
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g,', g,', respectively.
The SU(2)~ doublet leptons g~ are assigned to

part of the (8, 3}' representation while the singlet
leptons g~ belong to (1,8}'.

6'~ =P~ + f(VI q
' El + V~ p

' E~) + g F~ W„

+ gl Y1Blu+I;2 Y2B2u (Bs)

vl p~. 0

4= ei

(o 0 o

0 pi 0

ps= e„-0 0

The Lagrangian is constructed analogously to the
U(4)I U(4)„' model in Sec. VI, with the G inser-
tions now being 3 &&3 matrices and in particular the
G, insertion parametrized as

fm, 2 0

0 f, m, 2

0 2 f~m~' —f,m, '

Defining the rotated representation for PD as gn
= e'"7e(~, we specify the transformations

%$D'a '=SJ, (~S„' ' and%L(~ %L '=S„'(~S'

(B6)

(This means that the unrotated gD transforms with
the unrotated S~ as follows: g~-S~(~S~ '.) Final-
ly we introduce a (3, 3)' complex Sx 3 scalar P
(Q = e' "&P) transforming just like gD, and satisfy-
ing the invariant linear constraint

Tr f(j - P)P]=0.
Here

000
I'= 000

001)
commutes with the local SU(2)~ SU(l)|SU(1)2
group. This last constraint is necessary to avoid
a Goldstone boson in lowest order in the spontane-
ous breakdown scheme we wish to consider below.

Lagrangian and Spontaneous Breakdown

Covariant derivatives are written with the help
of the covariant momentum operators

(XO Oi
OA. ' 0

~00,-~
'

(z, 0 0)
&~, &=&~,&= =~ 0, 0

(0 O~f

(We will specialize to A.
"=A, below for simplicity.

We do not find any interesting results with A.
"

wA. .)
The potential term V(&f&) also must contain the
necessary gauge-invariant insertions that break
extra symmetries by hand, thus avoiding massless
Goldstone bosons in lowest order.

Further, notice that we can write a lepton mass
generating term

G Tr(JDPgz) +H.c. (810)

which gives the mass ratio m, /m„= (A, '/X) cos8.
(This relation can actually be broken by allowing
6 to be a matrix inside the trace, without breaking
the gauge invariance. )

where A. and ~ are respectively the vacuum expecta-
tion values

Photon Diagonalization and Heavy Neutral Weak Gauge Bosons

If the photon is found as in Sec. VI 8, we remain with taboo weak neutral gauge bosons Z and B, associated
with the following generaiors and couplings:

(g + g~ ) Z~ (cos &j5 E~~ —sin Q V~) + g2 (Eg8+ E~8)B2~,
3

where

Z = cos&f& W, —sing B, ,

tang = gi/g.
In this notation we write the mass matrix for the massive weak gauge bosons:

(B12)
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g' [A.'+ A.
"cos'8 + X'"sin'8] ( W,

' + W, ') + (g'+ g")[A.'+ X"cos'8 + A.
'"sin'8] Z '

+ g"(X"+A.'")sin'8 B ' —2g'(g'+ g")'"A,"'sin'8ZB, . (B13)

Defining the neutral eigenstates Zy Z2 as

Z =cos NZ~+ slQ&Z2,

B,= -sineZ, +cos~Z, .
We find in the approximation X' «A. —= A.

" (remember m, /m„-=A. '/A. )

(B14)

2x —sin'8 g'+ g"
tan2N= 2 . 2, X=

x -sin8 g,
(815)

Strangeness-Changing Neutral Currents

The couplings of the heavy neutral weak gauge bosons to hadronic and leptonic currents are obtained as

2-sin8 cos8[Z~, +J~s t o]„[(g'+g,")'"Z„—g,'B,„]+(g'+g,")"'Z„(cos'Q jt~-sin'p jtg„, (816)

where J~, is the left-handed hadronic current associated with A.„j3~ is the left-handed leptonic current as-
sociated with A.„etc.

Rewriting the above in terms of Z, „and using the mass matrix, we calculate the effective semileptonic,
nonleptonic, and leptonic Lagrangians. We find that

(1) the purely leptonic processes are almost as in Weinberg's Lagrangian, with a small change of the or-
der of Z"/Z'= (m, /m„)',

(2) the neutral b.S = 1 currents in semileptonic processes are suppressed in the decay rates by a factor of
(A. '/X)~= (m, /m, )4, and

(3) the nonleptonic effective weak Lagrangian contains AS=2 pieces, which, compared to the largest
b, S= 0 pieces, are smaller only by a factor of = (sin8)' [there are also terms which may give an approxi-
mate M =-,' rule (A.

"xA. may be better)].

Conclusion

In spite of a lot of effort we could not improve on item (3) above within many variations of the SU(3)~
SSU(3)„' scheme. To avoid this large contribution of aS =2 processes in lowest order, we were finally led
to consider enlarging the primed group to U(4)' x U(4)' as discussed in Sec. VI.
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