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In this paper we discuss two questions concerning off-shell relativistic models not involving
integration over relative energy: (i) Is it possible to obtain a unitary off-shell model with
simple potential whose singularity structure is a reasonable approximation to that of Mandel-
stam? (ii) Is it possible to derive an off-shell model satisfying two- and three-body unitarity
by a consistent procedure from a basic field-theory model'P On the first point we analyze the
singularity structure of three proposed models satisfying two-particle unitarity and show that
their singularity structures deviate as much from the Mandelstam form as that of the Blanken-
becler-Sugar equation. On the second point we generalize one of these two-particle models
to incorporate three-particle unitarity, deriving the generalization from an analysis of the
ladder-approximated dressed-rung Bethe-Salpeter equation.

I. INTRODUCTION

The calculations of Aaron et a/. ' have shown
that off-shell models can be a useful alternative
to the N/D approa, ch. The major advantage of the
off-shell models is that one can conveniently in-
corporate multiparticle unitarity. Most relativ-
istic off-shell calculations involving two- and
three-particle unitarity have been performed on
models where the relative-energy integration has
been removed. ' ' Such models are in an essential
way ad hoc in that to remove relative energy the
Feynman three-particle Green's function is re-
placed by a generalized Blankenbecler-Sugar dis-
persive approximation, ' whose justification in the
first instance is convenience. The original
Blankenbecler-Sugar equation' is just one of sev-
eral proposed two-particle unitary off-shell mod-
els in which the relative energy has been removed.
On one criterion at least, that of comparison with
the ladder-approximated Bethe-Selpeter equation, '
the Blankenbecler-Sugar equation is not the best
model to use. ' It seems worthwhile therefore to
look at alternative prescriptions for removing
relative energies in off-shell models satisfying
both two- and three-particle unitarity. In Sec. 1V
we present one such alternative and show how it
may be obtained by a consistent approximative
procedure from a basic field-theoretic model, the
ladder-approximated dressed-rung Bethe-Salpeter
model, '

To the extent that one's confidence in a model
relies on the successful building into the model of
the correct analyticity properties, the off-shell
models are to be found wanting. There is in fact
a fundamental question of consistency since the
inhomogeneous term of the off-shell model is
normally chosen to correspond to the presumed
closest crossed-channel singularity of the solu-

tion of the model. There is consistency in the
original two-particle Blankenbecler-Sugar equa-
tion even though the singularity structure departs
radical. ly from that predicated by the Mandelstam
representation. In fact complex singularities'
are found to have moved onto the physical sheet.
In partial-wave projection the distorted singular-
ity structure shows up as an extra branch point on
the left-hand branch cut.' ' Consistency does not,
however, exist for other proposed models satis-
fying two-particle unitarity that we review in Sec.
II and analyze in Sec. III. The variety of spurious
singularities is much richer. Those close to the
physical region happen to be quite weak compared
to the t-channel particle pole a comparable dis-
tance away. Thus the distorted singularity struc-
ture does not significantly manifest itself in nu-
merical calculation. ' However, in certain calcu-
lations with two- and three-particle unitarity the
spurious singularities have been found to give
significant contributions. '

The analysis in Sec. III suggests that it is in-
evitable that spurious singularities will move onto
the physical sheet whenever we insist on a Yukawa-
type potential and no integration over relative en-
ergy, since removal of relative energy entails
partially fractioning Feynman propagators and
throwing away those terms that would cancel the
spurious singularities generated in the fractioning
process. By suitable choice of an energy-depen-
dent potential one can remove the spurious sin-
gularities. This is clear in the case of the quasi-
potential equation since this equation can be de-
rived from general field-theoretic considerations.
Al.so, if for the energy-analytic model" discussed
in Sec. II we take the potential to be a dispersed
form of the solution of the ABFST (Amati, Ber-
tocchi, Fubini, Stanghellini, and Tonin) equation"
then we rederive the ladder-approximated Bethe-
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Salpeter equation whose only analytic peculiarity
is its bound-state spectrum. "

In summary, in Sec. II we review four off-shell
models incorporating two-particle unitarity: (i)
the Blackenbecler-Sugar quasipotential model, ' '
(ii) the Gross model, " (iii) the energy-analytic
model, "and (iv) the Cohen model. "'~ In Sec. III
we analyze the analyticity properties of the on-
mass-shell second Born term of each of the four
models. We restrict attention to these terms
since the set of singularities of a second Born
term is expected to appear in the full amplitude

as the first set of a hierarchy of singularities.
The other singularities, further from the physical
region, can be obtained by iterating the equation.
In Sec. IV we generalize the Gross model to in-
corporate both two- and three-particle unitarity.

Throughout the analysis we denote four-vectors
by P =(p„p) with metric P'= p, '-p~. For sim-
plicity in Secs. II and III we take the masses of
all exchanged particles to be equal to p, , and of
all transmitted particles m. The particles will al-
ways be spinless.

II. TWO-BODY OFF-SHELL MODELS

In this and the following section we discuss four models satisfying two-particle unitarity and defined by
the following equations:

T(p, q }=T,(p, q„)+ A. d'k(4(k'+m')'~'D, (p, k)(q ' k'+-ie)} 'T(k, q„),

T(P„q„)= T.(P. , q.)+~~(d'k[D. (P. , k)D ] '5'(D, )T(k„q„), (2)

T (p, q ) = T,(p, q„)+ — d'k [D,(p, k) D,D ] -'T (k, q ),

Tg(pg, q )= T(p8 0 }+XId kl (DLB ) il (D+)- (D~ D ) 'll (D )1 T+(k, q )

d k[(Doe+D+) 5+(D ) -(Doe D ) ~5 (D )] T (k, q ) . (4)

The equations are written in the center-of-mass frame where the total incoming momentum has vector
E = (E, 1)). The momentum labeling in the equations is as follows:

P =(o, p),
P'=4E'-m',

lp. l=@,

P =(o, p„),
Poe = =,' 8E+(p'+m')'~' (8 taking values +I),

&e=(poe p»

Do(P~ k) = (P - )k' - 9 '+ ~ e,

D, =(k, ~-,'Z)'-(k2+m')+fe,

5~(D&) = 8(P(k, + ~ gE)) 5(D&) (&j&, g taking values +I),

D.'$(P, k) =2 [(p -k)'+ V']"'((P. -k.) -4 [(p-k)'+ p']"'+ 8y }.
T,(P, q ) is the Born term ( n')2A. 3D'(p, q ). The on-mass-shell amplitude of Eqs. (l), (2), and (3) is
T(P, q„), and that of Eq. (4) is T, (P, q„). All these equations were derived as approximations to the
ladder Bethe-Salpeter model defined by the equation

iA,
T(P, q) = T,(P, q)+ —.

Ji d~k[D, (P, k)D+D ] 'T(k, q).

In fact if one uses an energy-analytic (EA} representation" in the relative and total incoming energy for
the solution of Eg. (5) and retains contributions only from singularities closest to the physical region, one
can obtain the tluasipotential model [Eg. (I)]. If one uses an EA representation in just the relative incom-
ing energy" and retains contributions from only the closest singularities in that variable then one obtains
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the EA model [Eq. (4)]. This latter model is likely to be a good approximation to Eq. (5) if p. /m - ~.
Gross" has considered the limit p/m -0 and obtained a model similar to that of Eq. (2). We have, for
simplicity, dropped a crossed-box-graph contribution to the kernel of the integral equation, and to that
extent the model of Eq. (2) is not consistent with the principle of retaining all terms of the first order in

p, /m. Nevertheless we call this the Gross model. The model of Eq. (3) is an ad koc model proposed by
Cohen' as an improvement on a previous idea of Cohen et al. '~

The on-mass-shell second Born terms for the quasipotential (QP) and Cohen (CH) models are, respec-
tively,

B2op =(2n')'A. '~) d'k(4(k'+ m')'~' [(p„-k)'+p'] (q„'-k'+is)[(k-q„)'+ p. ']] ', (6)

a, "=((2wz]' Jd'([[(p - )*(-u.*+ e]([( +(-,'a] -m'+ e]([((.'--,'z]' —m'+(e][([.' —"q„)' —g'+(c]]

The Gross model is not time-reversal invariant. To make it so would require two coupled equations as in
the EA model. The on-mass-shell Born term of this time-reversal invariant Gross model (GR) is given

by

B, = B,(E)+ B,(-E),
where

B,(E)= (2n')'A. ' d'k{4EQ, [(P —k+)' —p, '+is] [—,'E —0,] [(k+ —q„)' —p'+is]) '

and 0, = (k'+ m2)'~'. The on-mass-shell second Born term of the EA model is

B2 = B~(E)+ B2 (-E),

where 0, = [(p„—k)'+ p, '] ' ', 0, = [(q -k)'+ ((],'] ' ', and

B,(E) = (2v)'y')) d'k(4EQ, Qo(2E -0, -Qo)(2E -0,+ic)[(=~E+0,)' -0,'+is]].

The strategy we use to find the analyticity properties in s and t of these terms is to perform explicitly
the angle integrations and then to look for pinching and end-point singularities in the

~ k~ integration. This
procedure is straightforward for the terms (6) and (9). For term (7) we have to perform a preparatory
integration in k, . We choose to do this in the following fashion: Writing Do(P, k) as a sum of its positive-
Bnd negative-frequency parts the k, integral consists of two terms

J)dk,(20,(—k, 0,+is—)[(k, + Q)' —0,'+ ie] [(k, —Q)' —0,'+ ie])

dk,(20,(-k, +0, —ie)[(k, + Q )' -0,'+ ie] [(k, —~E )' —0,'+ ie])
4

(12)

We evaluate the first (second) term in (12) by completing the contour in the lower (upper) half-plane. This
yields the following expression for Bc2":

BP=B,'(E) +B,'(-E),
where

B,'(E) = (-1)(2w)' X' d'k[4EQ, Q,(-—'E +0, +0,)(2E -0, + ie)0,']

(13)

The structure of BP is therefore similar to that of BE". The form of the integrand of (11) and (14) does
not lead to a simple integration over the angle variables. To obviate this problem we use the following
identity:

1 2 x d$ 1 1

y(x —y) x' —y~ w Vg y'+$ x'+$ (15)

with the identification x= -k„y=0, —ie. Substitution of this identity in (11) and (14) yields terms that are
tractable.

The singularities of these four second Born terms are given in the next section.
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III. SECOND-BORN- TERM ANALYSIS

Analysis of the four integrals B, , B, , B, , and

B," is equivalent to the analysis of the following
three integrals:

2 (B)=J d'2(A;Bi C(Di) ', (= 2, 2, 3

where A. ; is a kinematic factor, B;,D; arise from
the two Feynman exchange propagators, and C&

'
is a Green's function. These functions are speci-
fied in Table I.

For each of the integrals I; we perform" the
angle integrations after introducing the Feynman
parameter n such that

singularity is located at

s = -4[(u'+ m(4p' —t)'~'] . (20)

This is a singularity of I& generated from the a
pinch singularity (19). The singularity of I, gen-
erated from the n end-point singularities (18) is
located at

s=-4(p+2m)p . (21)

For t&4'. ' the singularity (20) moves into the
complex plane and there is a further x pinch sin-
gularity, namely with the Green's function pole
Cy

' generating the normal Mandelstam singularity
on the upper branch of the hyperbola

(s —4m')(t —4p, ')=4p, ' . (22)
d~[B(1+o.%;+-'(1 —o.)D(] ' .

We are then left with two integrations, one over n
and the other over, conveniently, x-=4(k'+m').
The singularities of the e integral are determined
by pinch analysis. "

For i= 1 the positions of the u end-point singu-
larities are given by

x = (s —4p') + 4i p.(s -4m')'~'

B~2 is in fact proportional to I„and hence the sin-
gularities (20), (21), and (22) are possessed by
B& in agreement with the analysis of Ref. 7. The
singularities are plotted in Fig. 2(a), with the con-
vention that complex singularities are represented
by their projection in the Rbs-Ret plane.

—= xA(s, 0),
and of the o. pinch singularity by

x = 2t+ s —4g'+ 2i [(4p.
' —t)(t+ s —4m')] '~'

—=x,(s, f) .

(18)

(19)

2 l

(
p p} 4m -t

For fixed i, x=x,(s, t) provides us with two confor-
mal mappings s- x. In Fig. 1 we plot the image
curves of the real axis of + under these mappings
for t&4p.'. It is clear from Fig. 1 that movement
along the real s axis does not lead to engagement
of the singularity x,(s, t) with the x contour of inte-
gration (4m' &Rex&~). This is in fact true; how-
ever, we move in the cut s plane. However, for
the singularity x (s, t) there is always engagement
with the x contour provided we are sufficiently far
to the left in the s plane. The only pinch singular-
ity of the x integral that subsequently develops is
with the kinematic singularity of A„at x =0. This

x =x+ (s, t}

x=x (s, t)

o'

TABLE I. Three sets of functions employed in the
analysis of Eq. (16).

C;

1 (k +m) (p -k) +p 4 —k +~~

(k2+~2)1/2 (p p )2 p2 Ef &Q ~1+gq
2 + ~2)1/2 (p k)2 + p2 84E- ~1+4'

(q -k) +p,

(0 -q+2 -p2

(0, -q )'-p'

pl

FIG. 1. Image of Res axis under eonformal mappings
x = x~(s, t) generated by the n-pinch singularity of I ~.
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I

I

I

l

l

I

m', 4m')

Ret

4m'

4m'

Res

—= 2 m'x, (s,o), (23)

and the n pinch singularity at

—,'(4 m
' —f)'x

=([(p,'(p, ' —4m') +m't}(s+ f —4m')] '/'

Similarly one can show by standard methods'
that the o. end-point singularities of I,'= f,(E)
+I,(-E) are located at

2m'x =([)J,'(y, ' —4m')(s -4m')]'/' + (2 m' —p, ')s' '$'

~j Ret

+ (2 m' p, ')s'/'j'

—= ~(4m' —t)'x,(s, f) . (24)

l2m'

4m'
5m

Res

The images of the real s axis under the conformal
mappings x =x~(s, t) are plotted in Fig. 3 for f
& (4m' —)(,')y, /m'. It is the x singularity that en-
gages the integration contour and distorts it for s
past m . This distortion results in an inverse-
square-root second-type singularity occurring on
the physical sheet at s = 0 due to confluence with

Ret

4 5 2

—t+4m

—t+5m 2

/
(

l

I

(
m' 4m'

4m'

Bm'
Res

x=x+ (s, t)

(d) Ret

2'

'h 4m'
I

24m —t

6m'
m'

x=x (s, t)

4m (Bm -t)
4m

Res

l

2'j
5/

4/

FIG. 2. The singularity structure, for m =p, of (a)
&P, (b) BP, (c)B&, and (d) EF&

FIG. 3. Image of Res axis under conformal mappings
x = x™,(s, t) generated by the o.-pinch singularity of I

&
.
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(s —4m')(t —4p') =4p' . (25b)

There are also pinches between x, and the Green's
function pole on the undistorted contour of integra-
tion. These singularities are plotted in Fig. 2(b).
Since I,,' is proportional to B, these are the sin-
gularities of BG2R.

The integral I,'=I,(E)+I,( E) is a —hybrid of the
first two integrals I'„I,'. The z end-point singu-
larities are (18) and (23). The o.-pinch singular-
ities are nontrivial to locate since there is no
longer symmetry in e. There is coincidence of
poles in o. when

y'u'+tv(v+-, 's) —t(v+ ,'s)'+vt(t+s —-4m')=0,

(26)

where u=k, ' v=0'. The constraint k, =+ 2s' 'Z/2

+ (v+m')' ' is equivalent to the relation

x+. This and the s-channel elastic threshold branch
branch point at s =4m' are the only singularities
of the amplitude for t& (4m' —g')(p/m)2 —= t, .
When t = tj the singularities X ~ coincide with the
kinematic singularity at x= 0 simultaneously with
the Green's function pole at s =x. This confluence
implies a branch point at t = t, through which
emerge inverse-square-root singularities on the
lower branches of the hyperbolas

(s —4m')[t -4(4m' —p, ')j =4(4m' —p, ')', (25a)

(28)

emerges onto the physical sheet. This singularity
1s generated by an A-pinch slngularlty xn conflu-
ence with the pole at x=0. The equation is ob-
tained from (26) and (27) by substituting v= -m'
and eliminating u. It eventually moves into the
complex plane.

New singularities of I,' arise from the o.-pinch
singularity at the end point of the x integration.
These occur at s=0, re' and are weak of order
6'lnA where 4 is the distance from the singularity.
From the branch point at s = 0 emerges a singular-
ity on the curve

t ', m' -—--(-,'s -m')(3s/m')'~'

+-- —[(s+ 5m')(3m' —s) /s (&3m —/s)I'~'
2m

for m= p. at (s, f) = (0, —,'m'). lt is generated by a.

confluence of n-pinch singularities in the x plane.
It eventually moves into the complex plane.

B," (BE2") is essentially a linear combination of
I'„I," (I,', I,'), and hence the singularity structure
of B;"and B," can now be deduced o o r
ysls.

We present the results in Fig. 2, where we plot
the singularities of the four second Born terms.

(I —v+ y')' —su=0 . (27)

A solution of Eqs. (26) and (27) does not necessari-
ly imply a pinch of the n contour. For fixed nega-
tive I; if we follow s, for example, through the
physical s-channel region from large positive s to
the boundary at s =4m' —t, a path is traced out in
the x=4(v+m') Argand plane derived from the con-
dition of confluence of the two poles in the n plane.
The confluence occurs at complex values of n,
moving in the limit at s =4m' —I; to the e contour
of integration at +=0. There is no pinch at this
point. A pinch can only develop if one of the poles
slips over to the other side of the countour at an
end point. Hence to locate the singularities of I,'
due to the n-pinch singularity one examines the
singularities of I', generated by the a-end-point
singularities and determines for what values of t
that a-end-point singularity is generated by a con-
fluence of u poles at that end point. It is from
such points on I,' singularity curves that the 0.-
pinch-generated I', singularities emerge onto the
physical sheet. For example the a= -1 end-point
singularity generates with the kinematic singular-
ity at x =0 a branch point at s = —12m, ' for rn = p. .
There is a confluence of poles at z= —1 when t
=6m'. At this point (s, f) = (-12m', 6m') a singu-
larity on the curve

The two types of model satisfying two- and
three-particle unitarity that have been studied
numerically we will refer to as the field-theory
model' and the generalized Lippmann-Schwinger"
model —both models are essentially ad hoe. The
field-theory model is a linear integral equation
for the sum of the minimum number of Feynman
graphs that will yield two- and three-particle uni-
tarity. The integral operator involves integration
over relative energy. In the generalized Lipp-
mann-Schwinger model the relative energy has
been removed by an ad hoc mutilation of the
Green's function propagator yielding a minimal
extension off shell satisfying unitarity.

In this section we wish to show how by a con-
sistent procedure one may derive from a field-
theory model a generalized Lippmann-Schwinger
model. The field-theory model is given by Eq. (5)

+ l l +

FIG. 4. Representation of a method to evaluate the
Feynman integral of a box graph.
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FIG. 5. Representation of a method to evaluate the
Feynman integral of a box graph. FIG. 6. Pictorial representation of Eq. (35).

~(p')=2, J d'». (k')[(p -k)'-u'1 ', (3l)

which can be solved by iteration. ' More simply
one can use the propagator of Levine et al. ,

'

b~(p') =(p' —m') '[I +(p'- m')Z, (p')] ', (32)

where

and

Z, (p') =X ) dsp(s)(s —m') '(s —p' —ie) '
& (m+p )

(33a)

r
p(p') = ' d'k ~'(k'- ')~'((p -k)'-u') (33b)

To prevent ghosts one must impose an upper bound
on the coupling constant of Z, .

The energy-analytic method does not naturally
lead to a three-particle unitary model. Instead we
will use the method of Gross which is based on a
certain procedure for evaluating Feynman inte-
grals. For the box diagram the procedure is as
follows. The integral to be evaluated is

dk k —p -j, k+~ —m

x[(k —2E)' —m'][(k-q)'-g']) '. (34)

provided we replace the propagators D, ' by
dressed propagators that possess at least two-par-
ticle branch cuts. Summing the simplest nonover-
lapping set of bubble graphs does not lead to a con-
sistent scheme, since the particle pole is shifted
to the renormalized position but the two-particle
branch point is not so renormalized. Saenger'
has considered a summation over a larger number
of graphs and as a consequence has proposed a
nonlinear equation for the dressed propagator

~.(p') =t p'- .'-~(p')]-', (30)

where

Completing the contour in the upper half-plane of
k, and using the residue calculus, we obtain four
terms corresponding to the four graphs of Fig. 4,
where the line with a full-headed arrow denotes an
on-mass-shell 5 function. The dominant term for
p, /m small is the first (Fig. 4). The simplest way
to see that this is true is to note that for p. =0 the
first term diverges while the other three stay
finite. Gross studied the higher-order planar and
nonplanar ladder graphs in a similar fashion and
wrote the sum of the dominant terms as a two-
particle unitary model which when restricted to
planar graphs is given by Eq. (2).

We use this method to obtain a simple model for
a "spinless N-n" system where the potential is
given by an exchanged nucleon propagator. ' The
box diagram of this system evaluated by complet-
ing the k, contour in the upper half-plane is given

by the four terms represented by the graphs of
Fig. 5. A measure of the relative size of these
four terms is given by the separation between the
singularities and the integration surface. For ex-
ample, in comparing the first and fourth terms at
vertex A. with external particles on the mass shell,
it is clear that the meson in the fourth term (Fig.
5) is further off shell than the nucleon in the first
term In other w. ords, the meson singularity in
the fourth term is further from the integration sur-
face than the nucleon singularity in the first term,
A rough measure of the distance off shell is given

by the deficiency index (d) of a vertex defined by
d=minl m, +m am, l, where m„m„m, are the

masses of the particles at the vertex. Thus for
vertex A of the first (fourth) term d= p, (d=2m
—p, ). Analysis of the second and third terms in-
dicates that the first term is dominant overall.

This result still stands if we replace the bare
nucleon propagators by dressed propagators of the
form (30) or (32). Analysis of higher-order
dressed planar ladder graphs in the manner of
Gross leads to the following integral equation for
the dominant terms.

r(k„p, lk„p, ) =r,(k„p, lk. , p.)+~) d'k[(p, +k)'-m'] '& ((p +k +» )

x e(-k, )5(k2-q2)T(-k, p, +k, +k lk„p, ) . (35)

lf one had used propagator (30) then the nucleon exchange propagator would also have to be dressed. A

graphicai representation of Eq. (35) is given in Fig. 6. With k, on mass shell, Eq. (35) is explicitly a rela-
tivistic equation without relative energy.
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We finally prove that Eq. (35) satisfies unitarity in the elastic and first inelastic regions. "' If we write
Eq. (35) as

T = To+KT

and subtract its complex conjugate, we obtain

T —T = To —To + (K -K)T +K(T —T) .
Considering (K-K)T as the inhomogeneous term, we obtain

T —T =R (T, —T,) +It (K -K)T,
where R = (I -K) '. In the elastic region T, = T, and

kernel (K K) =--2ziA. [(p, +k) —m'] '5+((p, +k, +k) —m')5'(k' —p')

= -f(2~)-2T,5'((P, +k, +k)' —m')5'(k'- ~~') .
But fl T, = T; hence two-particle unitarity follows.

In the first inelastic region T, = T„and the kernel of (K -K) is given by

-2pikb+(k' —p, ') (5+((p, +k)' —m2) Z~((p, +k~+k)')

+[(p, +k)' —m'] ' 5'((p, +k, +k)' —m')+[(p, + k)' —m'] 'X&~&~ p((p, +k, +k)') }.

With the identification of the two-three-particle amplitude as

T(k„P, Ik. P.)~~(P.)v(P.; k., P. -k.),

(38)

(39)

(40)

(41)

and v taken to be bare, substitution of (40) in (38) leads to the unitarity relation in the first inelastic re-
gion.

In a further paper we hope to consider a generalization of this model incorporating time invariance, non-
planar contributions, and spin.
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