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Bethe-Salpeter equations with energy-independent kernels are reexpressed in a form in
which the kernel is eliminated and the input is the s= 0 scattering solution. In a model of
particle-antiparticle scattering in which each particle has mass M and spin %, the greater
convergence of this form is exploited in the kinematic region s < M? to give analytic scat-
tering solutions when certain approximations are made. A sufficiently strong s = 0 input
amplitude leads to bound states of mass << M with explicit vertex functions. The decay am-
plitude of one bound state into two others is calculated explicitly and found to be of a strength

characteristic of the strong interactions.

The Bethe-Salpeter (BS) equation is the only
known way to-find infinite sums of Feynman dia-
grams. These infinite sums are necessary to de-
rive bound states from field theory. A great deal
of work has been done on the BS equation and ex-
tensive reviews have been written on it." However,
it has always been extremely difficult to solve BS
equations and obtain predictions from them. Let
M be the mass of each of two particles whose in-
teraction is described by a BS equation, and let
s be the square of their c.m. energy. The intrac-
tability of the BS equation towards attempts at
solving it is epitomized by the simple fact that (in
spite of many people’s efforts) bound-state solu-
tions have never been obtained by analytic methods,
however approximate, except in the low-energy,
nonrelativistic kinematic region |s — 4 M?| << M2
This is precisely the region for which the Schro-
dinger equation is usually adequate and field theory
is not really necessary.

In this article we would like to show that in cer-
tain ways, some BS equations are also surprisingly
tractable in the kinematic region s<< M?. Specifi-
cally, we will point out that BS equations with ener-
gy-independent kernels (which include most cases
treated in practice) can be reexpressed in a form
with the following properties: (Sec. I) The kernel is
eliminated in favor of the s=0 scattering solution.
(Sec. II) The resultant equation is more convergent.
(Sec. III) In the region s <M?2, with a suitable input
and some approximations, analytic scattering solu-

J

tions can be obtained. (Sec. IV) If the input s=0
amplitude is sufficiently strong, bound states lie in
this region s «M? and their vertex functions are
explicit. (Sec. V) These bound-state vertex func-
tions can be used in a triangle diagram to calcu-
late the decay amplitude of one bound state into
two others. We calculate one such amplitude ex-
plicitly and find its magnitude to be characteristic
of the strong interactions.

For definiteness, and because the problem is
considered to be difficult, we will consider the BS
equation for the interaction of a spin-3 particle
and antiparticle. We denote their scattering
Green’s function by Ty =T, 550, ¢;K), inwhichthe
Dirac indices and four-momenta of the fermion
lines are (final) o, p+3K and p,p — 5K; (initial)
B,q+3K and 0,q - 3K. K is the total four-momen-
tum; s=-K2 The BS equation can be written in
symbolic form as Ty =1+1S, Ty, Where S, stands
for the pair of free-particle propagators. Most of
the explicit BS equations which are considered use
energy-independent kernels I. We will treat this
case.

I. REFORMULATION IN TERMS OF s=0
AMPLITUDE

When K =0 (so s=0) the BS equation is T,
=J+IS,T,. Using this to eliminate I from the K #0
equation gives the equation Ty =Ty + T(Sx = S,) Tg-
Written out in full, this equation reads

. (d*k
Tap:OB(py qu): Tocp:cﬂ(p’ q; 0)+Z f W Totp:eé(p: k; O)

X [Gée(k+ %K)G)\B(k - %K) - Gée(k)er(k)]Tex;oB(k, q;K) . (1)

Wick rotation has been used: p°=ip,, d*k =dKkdk,. In the infinite-series solution of the BS equation, Wick
rotation is known to be justified term by term below threshold, the region to which we confine the applica-
tion. Also, Wick rotation of the solutions to BS equations in renormalizable theories has been stated by

Domokos to be justified.?
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Only for the electromagnetic interaction is the kernel of the BS equation known well. In most other physi-
cal examples just as much ~ if not more —is known about the s=0 scattering amplitude, since it is the for-
ward scattering amplitude in the crossed channel. Accordingly, it seems reasonable to examine the form (1)
of the BS equation, regarding the amplitude T, as the input.

II. GREATER CONVERGENCE OF INTEGRAL

The fact that at high loop momentum %, Sy has the comparatively slow dropoff S,~ 1/k% [we suppose G(k)
=1/(y*k +M)] causes the integral in spin-3 BS equations to converge rather slowly, which has led to well-
known difficulties (inapplicability of Fredholm theory, undefinable norms).> We will show that Eq. (1) has
better convergence properties, by choosing a simple specific model as an example.

Assumption 1. The input amplitude T, has the form

Totp; oﬂ(p, q; O) = —iT(P, q; 0)(i75) ap (i75)cB (2)

(Dirac matrix factorization in the s channel). Substitution of this input into Eq. (1) shows that the solution
has the same form:

T ap; aﬁ(py q;K) = —iT(j), q; K) (i'}’s)cxp(i')’s)aﬁ ’ (3)
where the scalar T(p, q;K) satisfies the scalar equation

o ) d*k =3+ MK 2+ 4 (k2 + M) (R-K)? — 5(B* + MO)K * .
T(P,q,K)—T(P,q,O)‘*J.WT(p, k,O) (k2+M2)2[(k2+M +4K2 (k K) ] T(k’CI;K)- (4)

It is clear that in this case the term S, - S, behaves as 1/k* at large k. (In any model it behaves as 1/%",
n>3.) The asymptotic behavior of this term now resembles that of the conventional scalar particle BS
equation, which is known to be more amenable to conventional discussions (Fredholm theory, definable
norms).* We will exploit this property in the case s <<M?2.

III. SOLUTIONS WHEN s<< M?

Assumption 2. We stay in the kinematic region s<<M?2 In this case Eq. (4) to lowest order in s/M? is
explicitly

4 2
T(0,4:K) = T(p,050) +3s gﬂ—;ir(p,k;o%kajMZ)z(l —§kz’j4M2) T(k, ;K) (5)
in the c.m. frame.

Remark 1. The error in (5) is of order (s/M?)?, which we can make as small as we like.

Remark 2. Equation (5) has the form of an O(4)-invariant part, plus a non-O(4)-invariant part involving
the term R=-4k,%/ (k% +M?).

Remavk 3. If the term R is neglected, it is well known that choosing the specific input T(p, g; 0)
=1/[e(p ~ q)?] allows equations of the form of (5) to be solved analytically by a method applied by Cutkosky
to the scalar-particle BS equation.

Remark 3 suggests the possibility of choosing inputs to Eq. (5) for which Cutkosky’s analytic method of
solution can be used; Remark 1 suggests the possibility of treating the term R by first-order perturbation

theory. That is how we will proceed.
Cutkosky used the following transformations®:

2M 2 - M?
p—-i—)‘q (i=1,2,3,4), usz%v, (6)
(abbreviated as p—u) and
2M 2M
T, q;K mt(u,v,s)m 7)

(where g —v). Then Eq. (5) transforms into the following equation on the compact unit 5-sphere u?=1:

Hu, v; s)=tu,v;0)+ fdQ Hu,w;0)(1+R)tw,v;s), (8)

4M2 2 )

where k—-w and



4 k2 2 w?

R 3w 31w,
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Remark 4. The well-known “solvable” input referred to in Remark 3, T(p,q;0)=1/[e(p - ¢q)?], transforms

by (6), (7) into the form
1

elu-v)?
_ 472
h Pnlme(P+1)(P+ 2)

tu,v;0)=

Y(Prlm;u)Y*(Prnim;v),

where the Y(Pnlm;u) are orthonormal surface harmonics on the 5-sphere,® with P>n> 1= |m|>0.
Now we can implement the suggestions after Remark 3 by supposing the following:
Assumption 3. The input T'(p, q;0) of Eq. (5) transforms into the same type of diagonal form as the above:

tHu,v;0)= 35 tp,Y(Pulm;u)Y*(Prlm;v).

Pnim

®)

Assumption 4. The O(4)-breaking term R in Eq. (8) can be treated as a first-order perturbation. (The

accuracy of this assumption will be examined below.)

With these assumptions it is elementary to solve Eq. (8). The solution, transformed by (6) and (7) back

into the original amplitude (3), is
3 L&', )TEE ", K)

T(xp;oﬂ(p:Q;K)=i

Pnlm S—Spm
where
16 7Mm? 1
Pnim _ . 7
r (p,K)= D2+ M2 [3(1+<R>pn1)]1/2Y(Pnlm’u)Ws,
— Pnim _ 16 72M? 1 " LN
r (g,K)= M [3(1+<R>Pnl)]l 3 Y (Pnlm;v)iv,,
and
- 4 M2 (2m)*
Pni 3tPn(1 + <R>Pnl) ?
in which
(R)pn 1= JdQuY*(Pnlm;u)RY(Pnlm;u)
1 [(e+3? = @+3P ) _1[(e+3)° = (1+3)
6l m+2)°-3 6 (m+2?-3 1

(10)

(11)

(12)

(13)

Remark 5. Equation (13) shows that (R)p,,; is in general small compared to unity, providing a verifica-

tion of Assumption 4.

IV. BOUND STATES

Although the solution (10) ostensibly has the form
of a sum of pole terms, it is valid only in the re-
gion s<<M?. Therefore it cannot be said to have
bound state poles unless sp,; <<M? also. It is not
known yet whether nature contains bound states
whose mass is small compared to that of their con-
stituent particles. Since the possibility of such
bound states remains open, we will take this oppor-
tunity of considering them.

Assumption 5. The input amplitude T, is strong
enough to cause sp,;<<M? for some P, =, l.

Remark 6. Assumption 5 implies that the solu-

r
tion (10) contains bound states of mass #p,; =Vsp,;
which have explicit vertex functions (11).
Remark 7. It can be shown that the bound-state
vertex functions (11) are correctly normalized.”
Remark 8. An explicit form for ¢,, leads, by
(12) and (13), to an explicit form for the bound-
state poles, which therefore lie on explicit Regge
trajectories. For example, suppose that we choose
tpn=0p,/[€(P~ a,)]. Then it is easy to see that the
leading trajectory will have the form

e 4(217)2€M2( 1
=73 @ 1-1/3(a+2) ’

which is almost linear in the physical region. (Dy-

- a,)
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namical models give s in terms of «.) To satisfy
Assumption 5, € must be small: €<<1/(2m)*.

Remark 9. Equations (9) and (12) show that there
is a close relation between the positions of the
bound-state poles and the input amplitude 7,. In
fact the relationship between one and the other is
so direct, under the assumptions made above, that
it is hardly possible to say that one is more funda-
mental than the other. In studies of physical situa-
tions satisfying assumptions of the sort adopted
here, one would try to correlate both together.
(Note that ¢,,=0 implies the absence of poles sp,,
from the spectrum.)

Remark 10. The situation is just the opposite
for the bound-state vertex functions I, Eq. (11).
They are independent of the coefficients ¢, of the
input amplitude. Thus in models of this general
type, the vertex functions depend on the quantum
numbers but not on the bound-state mass.

In view of Remark 10 it is clear that in possible
physical applications, statements derived from
the bound states’ vertex functions would be less
subject to arbitrary parametric variation than
statements involving their masses. To conclude
this paper we will ask a question answerable from
the vertex functions alone. What is the strength
of the amplitude for one of these bound states to
decay into two others?

V. BOUND-STATE->TWO-BOUND-STATE
DECAY AMPLITUDE

We will calculate one such amplitude from its
triangle diagrams. The sides of the triangle are
composed of the spin-% constituents of the bound
states. To fix ideas we will give the amplitude for
a JPI¢=1"1" bound state V to decay into two J¥I¢
=071 bound states P.

The bound states whose vertex functions have
been given above can be provided with unit isospin
by multiplying their vertex functions by the factor
7/¥2 (which preserves normalization). Using the
P=n=1=0 vertex function in (11), the vertex func-
tion of the bound state P would be®

2n 12 1/2
r‘P(p,K)= %(E%) l.')’5-7:.

None of the vertex functions (11) could be com-
bined with ¥/V2 to represent a V bound state. The
quantum numbers are wrong. However, a second

input containing scalar Dirac matrices 1 instead of
iys can be added to the input (2). The equations de-
couple. The scalar solution has a similar form.
The vertex function of the bound state V could be
7/V2 times the P=n=1=1 vertex function of this
solution; it is

Ir''(p,K)=

1872% / 83 \Y2 2M
PP+M? (64 112>

The vertex functions I'? and I'V can now be used
in the calculation of the V-~ PP decay amplitude
(or vertex, if 2mp>my). The calculation of the
triangle diagrams is simplified by Assumption 5.
Furthermore, although the propagators along the
sides of the triangle have the form 1/(y-k+M), the
factors 1/(k%+M?) in each vertex function prevent
the Feynman integral from diverging.

The V- PP amplitude given by this calculation is
(2477 /25)€, €+ (B; —B,). (Here €,;, is the isospin
factor and p;, D, are the P momenta.) Denoting the
numerical coefficient by f, we have f2/47=5.07.
The physical p, 7 mesons have the same quantum
numbers as our V, P bound states, and the p— 77
decay amplitude has the same form, with f%/4x
~2.4. This comparison shows that the decay ampli-
tude of one bound state into two others has the mag-
nitude of a strong interaction.

We recall that in this calculation the bound-state
vertex functions used were obtained under the as-
sumption (among others) that the masses of the
bound states were small compared to the masses
of their constituents. This assumption is the same
as occurs in some current speculations on the com-
position of strongly interacting particles. Because
of this, and because the decay amplitude we have
just found is of the magnitude of a strong interac-
tion, we are led to wonder whether BS equations
in the kinematic region s<<M? might be relevant
to the real world.
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