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Is a Subtraction Necessary for the Pion Mechanical Form Factor?

Ranabir Dutt and P. G. Williams
DePa&ment of Physics, Westfield College, University of London, London N. W. 3, England

(Received 16 June 1972)

We investigate the consistency of e and S* dominance of the pion mechanical form factor
with unsubtractedness, Ward identities, and s-wave xx phenomenology. We conclude that
the e is not dominant as a result of the strong coupling of the S* to both mx and EE channels
and an unsubtracted form factor is not ruled out in contrast to the conclusions of previous
authors.

(m(p, ) ~8"„(0)[w(p, )}(4~,&u,)'" =- f„'m, 'I'(q', m, ', m, ')

=2m 2G (q') (1)

where q=p, -p, and G~(0) =1. Assuming only e
dominance of the mechanical form factor G~(q'),
Kleinert and Weisz' (KW) have obtained a minimal
form satisfying the Ward identities:
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2
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In recent years considerable attention has been
paid to the concept of approximate scale invari-
ance. ' These ideas have both high- and low-energy
consequences; it is the latter on which we wish to
concentrate in this paper. The essence of the
method for obtaining low-energy predictions from
broken-scale invariance is to assume that the sym-
metry is realized through the Goldstone mechanism
where the appropriate Goldstone boson is the sca-
lar isoscalar o (or e) meson around 700 MeV. It
emphasizes analogy with the corresponding ap-
proach in chiral symmetry where the pseudoscalar
mesons are the Goldstone particles. Using such
methods several authors' ' have derived Ward
identities (WI) for the gravitational form factors of
the pion in an attempt to gain some understanding
of their dynamical behavior and the precise role of
the e.

In this paper we wiQ only be interested in one of
these form factors involving the nonvanishing trace
of the energy-momentum tensor:

of I (q') given in Eg. (2a) has two interesting as-
pects:

(a) Since the form factor does not vanish as q'
—~, there may either be a genuine subtraction in
the dispersion relations for I'(q'), or since the ap-
proximations involved in its derivation are low-
energy ones, there may be other important contri-
butions besides the & which have been neglected.

(b) Equation (2a) indicates a large slope at zero
momentum transfer,

2m, 'Gz'(0) = 1+(d —2)m„'/m, ',
suggesting a large scalar mass radius, '

1 (rw)2 G I(0}

= 1/2m „', (6)

approximately 15 times the corresponding expres-
sion for the pion's charge radius (r,'„)'= I/m~'.

In this paper we adopt the point of view that nei-
ther of these properties is satisfactory. We im-
pose a requirement that I'(q')-0 as q'- ~, and
achieve this by taking account of the S*pole, which
recent data' suggest lies near the Kg threshold
around 1100 MeV. We show how dominance by the
e and S* leads to a smooth and unsubtracted form
for I'(q'), which satisfies the WI and allows almost
equal mass and charge radii for the pion.

We begin by giving modification of the WI anal-
ysis of KW assuming e and $* pole dominance,
starting from their expressions'

a = -m, ' + (4 —d)m „',
b = -2m, '+(1 —d)(p, '+p, ' —2m„'), (2b)

f,'m, 'I'(0, p', p') = 2m „'+2(d —1)(p' —m „'),
(6)

where the energy-momentum density has been as-
sumed to have the form

, (q', 0, 0) = 6 '(0)[ae, (0) —a(0)],
q2 0

Bpp = Bop + 5+u

D =Qp+CQ8.
(3)

, (0,p, ', 0) = (1 —d)h '(0)b(0),
P1 P =01

r(q', o, q') = ~-'(0)[~e.(q')& '(q') —(4 —d)], (9)
8« is scale- and SU(3) S SU(3)-invariant; 6 only
breaks scale invariance; and u, which breaks both
symmetries, has scale dimension d. The structure

ae. (0}= da(0),

where the generalized propagators are

(10)
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b (q') =—-i d'x e" "(T'ILB „A"(x)B „A"(0))),,

ae (q') = iJ-td'xe""(T(e„"(x)o'(0)j),.

and S* dominance of Ae, (q2):

2 4

a(q') =,™,, (13)

(14)
v is the SU(2) 8 SU(2)-violating part of the SU(3)
ISI SU(3)-breaking term given in Eq. (3) for the en-
ergy-momentum density.

Q =0'+ T,

o = -,'(v 2 + c)(&2u, +u, ),
~= —,'(1 —&2c)(u, —v 2u, ) .

(12)

We now assume pion pole dominance of b, (q2) and e,

q —ms~

where g, and g2 are unknown. They are related by
Eq. (10):

m, ' m, '
2-g2 2 ~ (15)

m ' ms+
Finally, Eqs. (13)-(15)are inserted into Eqs. (6)-
(9) to give a minimal unsubtracted off-shell form
factor

where

A +B(p,'+P, ') C + D(P, '+P, ')
q —ms' (16)
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)
[m, 'm $*'+2m„'m $4'(d —2) —dm„'m $4,'+g2m „'(m $2,
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jm ~ —m,

This expression is consistent with our requirement that I'(q') -0 as q'- ~ while at the same time satisfy-
ing all the Ward identities. We have gained this flexibility by inserting an extra. pole suggested by experi-
ment', but we have paid for this by having an extra free parameter g2. Of course, because the approxima-
tion is essentially a low-energy one we cannot claim to have proved that the S* implies absence of subtrac-
tions; other effects could always alter this. This is why we insist that unsubtractedness is an assumption,
and the form (16) is a minimal one consistent with the WI.

One point which should be made at this stage is that the results of IQV cannot be obtained from ours by
simply taking g2=0, but rather by taking ms~- ~. This is because $ is playing the role of the "distant"
singularities that led KW to a subtracted form factor. In particular we obtain from Eqs. (16) and (23) their
low- energy relation

f,G, ,„=m, '+ (d —2)m „' .
We can now compute the on-shell slope at q' = 0 from Eq. (16):

= f m I"'(0 m 2 m )
eG (')

q2 Q

2 2 m 2

m m$+ m m$)c &&2rri
(16)

where we have neglected higher powers of m„' but
not terms involving g2. The fact that g2 enters this
formula gives the additional freedom to alter the
slope from the value 1 given by single-pole model.

Okubo' has actually derived a bound for the slope
when I'(q2, m, ', m, ') does not require a subtraction.

He obtains

f„'m, 'r'(0, m„', m. ') &0.5, (19)

which is one way of setting a bound on g, . How-
ever, rather than doing this we shall connect our
work with that of Renner and Staunton' (RS) by es-
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timating I"(0, m „',m, ') from the Omnes formula:

f.'m, 'I'(q', m, ', m „')

= 2m„'P(q') exp
q' t'" s)ds

(20)

might naively expect.
These values for g2 are also consistent with an

independent analysis by Crewther, "who obtained
a value for the caw coupling Q„„from collinear
dispersion relations in broken-scale invariance.
In our notation this coupling" occurs in

g sln25o
tans =--

y +g cos25()
(21)

2 2fq~q Gqwm f st s+ Gs+ww
2 2

q —m, p —mz+

where 5,'is the I = 0 mm s-wave phase shift and q is
the inelasticity. This formula is approximate: It
contains only two-particle unitarity, although cou-
pling to other channels than nvt is approximately
accounted for by q, There is also an ambiguity in
that P(q') is in general an arbitrary polynomial in
q'. Our assumption that I'(q')-0 as q'- ~ implies
that P(q') = 1 and that 6',(~) &0; following RS we
will take 6,'(~) = ~. Orginally these authors took q
= 1, but in a recent analysis Pennington' has used
the more recent data around the KZ threshold re-
gion for which q41. This enhances the importance
of the S~ region enormously because of its strong
coupling both to mm and to KI7. The result is that
I'(q', m„', m, ') appears to be dominated by S* rath-
er than e (Ref. 10); the role of the latter is to
broaden the effective S* pole. This provides a
justification for our neglect of the e and S* widths
in evaluating the left-hand side of (20) from (16);
all our tests are made near q2=0, which is at least
about 500 MeV away from the dominant effective
8* peak.

These assumptions then lead to a value for the
slope at q'=0, using the most recent experimental
d.t.,'-.f

'

f 'm 41"(0 m ' m ')= ' " =0162m, ' "- ~(s)ds
'r 77 7t' ~ 7l' g J ~2

4m~

(22)

It is satisfying to note that this value is consistent
with Okubo's bound (19) and therefore consistent
with our assumption that I'(q') reciuires no sub-
traction. This then leads to a numerical estimate
of g, by comparing Etls. (18) and (22), which is
given in Table I for a range of d between 1 and 3.
Of course, the absolute values of g, and g, are not
important because they depend on the definitions in
Eg. (14), but their ratio is significant because it
characterizes the relative importance of the two
poles. The negative sign of g, /g, is responsible
for the mutual cancellation needed to give a small
slope. This then leads to a scalar mass radius

(23)

and therefore has the value (at q' = m, ') given in
Eq. (16):

2 4m mr
& E E'7f7f e m 2 2 ~2 2m 2,&G =m ' —g

S+ & S+ E'

From Table I this is around 0.44m, ' (for d= 1),
which compares favorably with Crewther's value"

f, G, „=m,'(1 —m, '/m„') =0.6m, '.
Before proceeding with our main argument we
would like to note an interesting sum rule that
emerges from Eqs. (16) and (23) at q'=0:

f, G, „+fsgGsg„= 2m„', (24)

TABLE I. I'henomenological values of g& and gz
for a range of d.

which was first obtained by Carruthers' from a
simple unsubtracted form for Gs(q').

At this stage one might argue that we should com-
pare our expression for a~(0) in Eq. (14) with that
obtained for See(0) by RS, as well as by Pennington
using experimental data. We shall not do this be-
cause we believe that the connection between ~~
and A~„ is not as simple as the above authors as-
sumed. The general connection between these
propagators is given by the virial theorem'

0„"= (4 —d)(o + ~),

which implies

wee(0) = (4 —d) [ae, (0) + me, (0)] .

In order to compare this expression with experi-
ment, RS and Pennington use low-energy relations
for ~e, and neglect ~e, . This approximation,
combined with the low-energy relation'

see(0) = d(4 —d)(0 ~u, +cu, ~0),

0.16 2.3
77 P

which is more like the charge radius, as one

-830
-850
-865

1945
2040
2135

2 Q 3
2 4

-2.5
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implies from the Ward-identity equation (10) that

a(0) = (0 i u, + cu, i 0) .

However, this equation is badly violated: Pion
pole dominance gives (in units m„= 1) 6(0)= -f,'m, '
= -0.5, while RS (Ref. 8) use -12.6 for the right-
hand side. The discrepancy probably lies in the
neglect of ge, (0).

We then conclude that at this time no reasonable
,
'estimate can be made of Ae, . It is not possible to

go beyond the point we have reached in this paper,
and we therefore believe that there is no convinc-
ing evidence for a subtraction, provided due ac-
count is taken of the S* contribution. Moreover,

although it might be true that e is the Goldstone
boson of scale invariance, its role is complicated
by an equally broad nearby S* which couples
strongly both to wn and KK. We should perhaps
add a note of caution that these calculations lean
heavily on experimental results which are obtained
not directly but through an extrapolation.
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