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We reproduce the full content of the Fritzsch-Gell-Mann light-cone algebra (originally
derived using the quark model) for deep-inelastic lepton-nucleon scattering using currents
given by the field-current identity. These currents are modified by dilaton clothing from
the usual low-energy vector-dominance form by the principles of scale invariance to pos-
sess a scale dimension three (which is the dimension of the currents in the quark model).
The calculation is performed by the technique of an effective Lagrangian to be used to
first nonvanishing order, and the forms of the interactions needed to maintain the light-
cone algebra are determined. The usual quark-parton results are explicitly obtained, e.g. ,
the vanishing of q o~ in the deep-inelastic limit, the relations between electron and neutrino
structure functions, etc. The Callan-Gross sum rule is examined and shown to be consis-
tent with the above results.

I. INTRODUCTION

Interest in the light-cone commutators arises
mainly due to the observation that the deep-inelas-
tic scattering experiments sample the commutator
of two currents at lightlike separations. This fea-
ture draws attention to the dominant singularity
structure of these commutators near the light cone.
The particular relationship between the light-cone
singularities and the deep-inelastic scattering is
most clearly embedded in the work of Fritzsch and
Gell-Mann" but is present in almost all models of
deep-inelastic scattering. The work of Fritzsch

and Gell-Mann is an outgrowth of the work of
Wilson' on operator-product expansions extended
by Frishman4 and by Altarelli, Brandt, and Prepa-
rata4 to the light cone. It starts with the chiral
currents formed from the free-quark model

V ~(r; x) = i( (x)(—,'X,ly" (1 +ry, )y,

where r =+1 and A. , are the SU(3) matrices. Using
the free-quark anticommutation relations, current
commutators of two currents V,"(r;x) and V,"(r;y)
are then worked out, and in the limit when z'-0,
where z =x —y, Fritzsch and Gell-Mann obtain the
result

[v&(r, x), v,"(r,y)]-fzf.„[s&-'v„(r, s; x, y)+ir~~""' v„(r, A.; x, y)]

+d.„[S~'"'V„(r,A; x, y) fr~&"—"'Vs, (r, S; x, y)]] s.D(z) . (1.2)

Here S"" =q""rl"8 +q""q"8 —q""q "8 and D(z) is
the function which contains the light-cone singular-
ity D(z) = -(2w) 'e(z')5(z'). The right-hand side of
Eq. (1.2) contains the bilocal operators defined by

V &(r, S(p); x, y) =i((x)(2A.,y~)(1+ry, )g(y) a(x y) .

(1.3)

The matrix elements of these bilocal operators be-
tween nucleon states are assumed to be smooth
and the scaling of the structure functions in the
deep-inelastic region is governed by the singular
nature of the function D(z) near the light cone.
Modifications of these results when interactions
are switched on has been examined by Gross and
Treiman. ' These authors consider the specific
theory where strong interactions arise from iso-
singlet vector or scalar gluons. Their conclusion
based on this analysis implies that so far as the

formal structure of Eq. (1.2) is concerned, it re-
mains intact when the interactions are included
(though the definition of the bilocal current be-
comes modified).

The Fritzsch-Qell-Mann picture is a particular-
ly simple and elegant description of light-cone
phenomena. Thus Eq. (1.2) automatically predicts
the observed transverse nature of deep-inelastic
electron scattering (q'v~-0) as well as the main
parton predictions for neutrino scattering. While
the latter have yet to be tested, it is a reasonable
working hypothesis to postulate the general valid-
ity of Eq. (1.2). On the other hand physical quarks
have yet to be discovered, leaving the quark model
origin of Eq. (1.2) somewhat in doubt. The ques-
tion naturally arises if the results of Eq. (1.2) can
be achieved without assuming the existence of
physical quark fields. The situation is somewhat
similar to the analysis in the low- and intermedi-
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ate-energy region of the equal-time SU(3) x SU(3)
current algebra. This algebra was again first ob-
tained by Qell-Mann' using the quark model. How-
ever, in dealing w'ith the physical meson spectrum,
it was seen in the hard-meson phenomenology' that
it was possible to realize the quark equal-time al-
gebra without quark currents but rather using
vector-meson currents. The role of the current
algebra was then to constrain and determine the
meson coupling structures. It is the purpose of
the present work to show that a similar result
holds for the light-cone algebra. Thus we will see
that it is possible to realize the results of the
Fritzsch-Qell-Mann commutation relations in
deep-inelastic scattering making use only of ob-
served particles and without postulating the exis-
tence of quarks. The light-cone algebra then plays
a role analogous to the equal-time algebra in that
it determines the form of the allowed interaction
structures between the physical particles.

In order to implement the above program it is
necessary to have an appropriately defined current
(as in the quark model). The vector-dominance
current of low-energy current algebra is unsatis-
factory as it has scale dimension one. As is mell
known, if the dynamics is asymptotically scale-
invariant the electroproduction structure functions
will exhibit the Bjorken scaling required by ex-
periment' provided the currents possess scale
dimension three. This is indeed the case for the
quark currents of Eq. (1.1). In the intermediate-
energy domain, when the principles of current al-
gebra are combined with those of broken scale in-
variance, one finds that the vector-dominance cur-
rent must in fact be modified and there does re-
sult a current of scale dimension three. This
current has the form

(1.4)

Here p," are the vector-meson fields, A.(x)
= [I+y(x)/E, ]2 where q(x) is a dilaton of scale
dimension one. The parameter b —= I/E, represents
the coupling strength of the scalar dilaton to other
hadrons. The dilaton nature and dimension of q
imply that A(x) has dimension two and hence the
total dimension of V,"(x) is three While t.he deri-
vation of Eq. (1.4) is based on principles appro-
priate for the intermediate-energy region, ' it is
natural to speculate that a current of the form of
Eq. (1.4) is valid at higher energies, for it is a
simple generalization of the low-energy vector-
dominance current and possesses the scale dimen-
sion apparently required by nature at high ener-
gies,

W'e will now state the basic assumptions to be

used in the light-cene commutator calculations
below.

(1) Light-cone commutators: We assume the
validity of the formal structure of the Fritzsch-
Gell-Mann commutators (but do not assume the
underlying quark definition of the currents).

(2) Asymptotic chiral symmetry: We assume
that there is asymptotic chiral symmetry which
implies the conservation of the entire 18-piet of
vector and axial-vector currents, i.e.,

(1.5)

(3) Field-current identity: The 18-piet of cur-
rents has the field-current identity form modified
to obey the principle of scale invariance given by
Eq. (1.4), where p,"(x) are the fields representing
the 18-piet of vector mesons and p(x) is an
SU(3) X SU(3) singlet scalar dilaton field of scale
dimension one.

By condition (1) we mean that the matrix ele-
ments of the light-cone commutators calculated
using Eq. (1.4) should produce the same results
as taking matrix elements of Eq. (1.2). Condition
(2) is most easily achieved by introducing inter-
action structures that depend only on the curl
structure p„„,= 8„p„,—B,p„, . In carryi. ng out our
detailed calculations me will make two additional
dynamical assumptions which also have analogs in
the equal-time current-algebra analyses: (a) In
writing down interaction terms we will adopt a
"smoothness" assumption and r'estrict ourselves
to structures containing the minimum number of
gradients needed to satisfy the light-cone algebra.
As will be seen this turns out to imply that interac-
tions possess one more derivative than is normally
allowed in the low- and intermediate-energy equal-
time current-algebra analyses. The higher-deriv-
ative structure appears to represent one of the
distinctions between the low-energy and high-
energy dynamics. (b) As in the equal-time cur-
rent algebra, me will treat our interaction Lagran-
gian as an "effective Lagrangian" to be used only to
first nonvanishing order in p, couplings. However,
the coupling of the dilaton to hadrons can be in-
cluded to all orders, for this coupling, as will be
seen below, governs in part the detailed proper-
ties of the structure functions.

Section II reviems the scale-breaking principles
that lead to currents of the form of Eq. (1.4).
Section III discusses the form of the effective La-
grangian needed to reproduce the light-cone alge-
bra. In Sec. IV the light-cone commutators are
explicitly calculated for deep-inelastic scattering.
Section V discusses the Callan-Gross relation for
this model and conclusions are presented in
Sec. VI.
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II. SCALE INVARIANCE AND FORM

OF CURRENTS

In this section we give a brief review of the
arguments that lead to currents of the type given
in Eq. (1.4) possessing scale dimension three. A
more detailed discussion can be found in Ref. 10.

The generator of scale transformations is the
dilatation charge

= 1+2ba,
A.4=a

(2.6)

where 5=1/F, O.ne may simplify the kinetic en-
ergy of the o field by introducing the variable y
defined by

(2 1) o'=y+ —by . (2.7)

where 8" are the components of the total (im-
proved) stress tensor 8I'". The dilatation charge
transforms fields g(x) of fixed scale dimension d„
according to

i[D(t), y(x)]=(d„+x"a„)g(x). (2.2)

A dilaton field 7(x) of scale dimension d, is one
which transforms according to the rule

i[D(t), T(x)] = —+(d, +x"8„)T(x) .1
(2 2)

The breakdown of scale invariance is governed by

~

the trace of the stress tensore"„. For the case of
a single dilaton field v(x) (which we will consider
here), the simplest assumption is that 8"„ is sub-
ject to pole dominance" by v, i.e., 8"„=F,m, 'o(x).
This relation is the scale-breaking analog of par-
tial conservation of axial-vector current (PCAC)
(pion pole dominance of B„A,"). In Ref. 10, it is
shown that one can rephrase this condition as a
constraint on the source J,—= (- '+m ')v of the v
fjeld~2

Then

= (1+by)', (2.8)

and the dilaton kinetic-energy term in Eq. (2.5)
has the standard form ——,'a~ye„y.

Equation (2.8) thus implies that the currents in-
deed have the form of Eq. (1.4) (when appropriate-
ly Hermitized). Using Eq. (2.1) and the fact that
e~" possesses a o-meson Huggins term, "e~"
=8„""+-,'F (q"" '-s"a')v, one finds

i[D(t), y(x)] =F, + (1+x~a „)y(x), (2 9)

and y(x) is indeed a dilaton field of scale dimen-
sion one. This then implies that A.(x) is a field of
scale dimension two and hence the total current
has correctly dimension three.

Equation (1.4) implies that the vector current
acquires a "clothing" of the y field. The remark-
able feature of Eq. (1.4) is that the scaling condi-
tion Eq. (2.4) requires that the currents have a
nonpole cp-p couplings. Expanding A(x) we find that
the vector current has three parts to it,

~a~a N V."=a,p."+(»g,)Vp."+(g,t')V'p.". (2.10)

= 2@1vs&u~sg pung „=q, . (2.4)

In Eq. (2.4) 8„is the trace of the Belinfante stress
tensor of all the hadron fields [and may be con-
structed if one likes by the usual device of replac-
ing the Lorentz metric q„„by an arbitrary metric
g„„and rewriting the hadron Lagrangian S„as a
scalar density as indicated in Eq. (2.4)].

We now apply Eq. (2.4) to the coupling of the v to
the p mesons. We choose for Z~ the structure"

'~, (v)p."'p „,. ~,'g(v)p."p„.
,( )sv"v s „v .—2m, 'A.,(v), (2.5)

where p», ——8 „p„,—B„p&„p„,= 18-piet of vector-
meson fields, and A, (v) are a priori arbitrary func-
tions of o. For the vector currents we assume the
general form V,"=g~X(v)p,"(x). Constructing J, and
8~ by standard means, Eq. (2.4) combined with
conservation of vector current (CVC) implies

The most natural assumption is that y is the phe-
nomenological field representing the e(700) meson.
Then the terms of Eq. (2.10) have the following in-
teresting interpretation: The first term on the
right-hand side of Eq. (2.10) is the usual veetor-
dominance term and controls the threshold q'=0
phenomena. The second term has scale dimension
two and governs the intermedia, te q' domain. This
term strongly enhances the e'-e annihilation into
four charged pions (via e'+e -po+e-2a'+2m )
at Frascati beam energies and can account for the
sudden rise in that cross section at about 1,4
GeV. ' In the deep-inelastic region, the first two
terms are negligible, and the last term which has
scale dimension three dominates and produces the
scaling of the structure functions.

III. EFFECTIVE LAGRANGIAN FOR DEEP-

INELASTIC SCATTERING

The quantity of primary interest for the study of
the inclusive inelastic lepton (l)-nucleon (N) scat-
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te ring

l, +N-I, , +X

is 8",",', defined by

W~,'(q, p; r)

(3.2)

where z =—x-y and C,"," is the. current commutator

(3.3)

In Eq. (3.2), the index r =+1 (-1) labels the chiral
even (odd) currents. The normalization factor N~

is given by N~ = [m/(2n)'E]'", where m is the nu-
cleon mass and E the nucleon energy. Thus the
covariantly normalized states of momentum p]",
N~ '~lq, p), have scale dimension -1. An average
over nucleon spin states is understood. For phys-
ical lepton scattering, the photon momentum q" is
spacelike, i.e., q'& 0, and also q'& 0. 8',",' may
be expanded in terms of the structure functions
E„» I"„,, and E„& according to

mW""=F (q' qp r)q"' —F (q' q p;r)p"p'qp

-i»...(q' q p r) '~"""'q p -/q p+
(3.4)

where the E,.„are dimensionless functions. As is
well known, ' only the value of the current commu-
tator in the vicinity of the light cone contributes to
the integral of Eq. (3.2) in the deep-inelastic re-
gion, where q'-~, p q-~ but &u —= -2p q/q'-fi-
nite. Bjorken scaling implies then that the I „~
are functions of &u only, F,, ~ =E,,~(v; r).

In order to calculate the light-cone commutators
using the currents of Eq. (1.4), it is necessary to
assume a specific set of interactions. As dis-
cussed in Sec. I, the interactions will be chosen
to maintain the content of the Fritzsch-Gell-Mann
light-cone algebra, when nucleon matrix elements

are taken of Eq. (1.2). In this section we discuss
the form of the interaction, and, as will be seen,
the imposition of Eq. (1.2) greatly limits these
forms, The actual computation of the light-cone
commutators using the allowed interactions is
carried out in Sec. IV.

Since the vector current is proportional to the

p, field, it is convenient to divide the Lagrangian
into a part governing the interactions of the p with
other hadrons, 2~„, a part governing the p-dilaton
interaction Z~~, and a remainders„describing the
dilaton and hadron interactions:

$1=Zp ~+2p~+2„. (3.5)

The p-q interaction is the p-meson mass term de-
termined in Eqs. (2.5) and (2.8) from the scale-
breaking condition

2
p ~

=
~2 p'A. (cP)P,"P „, , (3.6)

where A(y) =(I+bqr)', b =1/E, . This term accounts
for the dilaton "clothing" in the current of Eq. (1.4)
since the arguments of Sec. II show that, in effect,
vt' = -(gp/m p')8 Zp„/sp„, .

To construct Z~„we first note that since we are
interested in calculating a nucleon matrix element
of a single commutator in Eq. (3.2) we are inter-
ested in the part of the effective Lagrangian Z~„
quadratic in the p fields. For then the current will
be linear in the p field and the commutator Eq. (3.3)
will contain only other hadron variables whose nu-
cleon matrix elements determine the structure
functions of Eq. (3.4)." The CVC condition is most
directly satisfied by requiring that the p fields
enter Z ~ only in the curl combination p„„,=8„p„
—S,p „,. Finally we note from Eq. (1.2) that the
light-cone commutators have four types of struc-
tures: two with f„,and two with d, ~„ two with an
c"" factor and two without this factor. Thus the
general form of the action needed to achieve Eq.
(1.2) is

&, =Q f «'ddt l(A (*p;~-)o ,(x.~)~.""(~,x;"~).-4f. .~""'yp...(~;~)

sate'P;~)K'(~,

v;~)

z&,f.a.p „.(—x; r)p~ u~(y; r)C."'(x, y; r) —4d.~.~""',p „.(x; r)p s s~(y; r)@."(x,y; r)],
(3 'l)

where 8""and 4"' depend on other hadrons but are independent of the p field. The index r =+1 (-1) labels
the chiral even (odd) combinations of the vector-meson fields:

p„.(x; r) = [v„.(x)+ra„.(x)]/W&, (3.8)

where v„, (a~,) are the vector (axial-vector) meson fields. The function ej'" and C "' must have scale di-
mension four to maintain scale invariance.

While we wish to consider only local interactions here, we have written Eq. (3.7) in the general form to
exhibit the symmetries that must be imposed on 8"' and 4~'. Thus one must have
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e~"(x, y; r) =e:~(y, x; ~),

4 t"(x, y; r) = -4,"~(y, x; ~) .
(3 9)

The simplest possibility for 8,""and 4,"" is that they depend only on a scalar function f, . If we now impose
the condition that our interaction be local, there are still several different forms available for 0,""and

4,"'. However, the requirement that the light-cone algebra Eq. |'I.Z) be maintained, and Ne smoothness
condition that at most taboo derivatives aPpear, uniquely determines e~" and 4 &":

(3.10b)

g „=p [--2),d„,p„„,(x;r)p"„,(x;r)al'8"f, (x;r) —$,f„,e~" p„„,(x;r)ps', (x;r)e&& f,(x; r)

6,""(x,y; r) = 5'(x —y)e "8'f,(x; ~), (3.10a)

4,"'(x, y; r) = —,'[9~ "5~(x —y)e'~f, (y; r) —s~ "5~(x —y)e' f,(x; r)].
The operators f, and f;are functions of the hadron fields. They have scale dimension -2 to maintain the
scale invariance of the interaction. As will be seen in Sec. IV, the matrix elements of f, and f, are direct-
ly related to the structure functions and so the detailed nature of the f„f, operators (which we have not
specified here) are related in part to the detailed properties of the structure functions. Inserting Eqs. (3.10)
into Eq. (3.7) yields now the local Lagrangian 8»,

,'&,f„,[p—~„,(x; y)e~~p„,~(x;r)J e"&f (x; r) ——,'(,d„, "e" s[p „,(x; r)e~&ps', (x;r)}s ~f (x; r)J,
(3.11)

where AB„B=AB„B—(S„A)B
The final part of the Lagrangian SH governs the

coupling of the f, operators to the other hadrons,
e.g. , the nucleons and the dilaton. As will be seen,
the detailed nature of this coupling determines the
detailed nature of the structure functions. How-
ever, the light-cone condition Eq. (1.2) strongly
limits the general form of even these couplings.
Thus if we assume that f, and f, can couple direct-
ly to the nucleons, e.g. , via a $, f, N Nand $, --
f, N-N type str-ucture, then the dilaton cannot cou-
ple directly to the nucleons and the dilaton-f cou-
plings must be via an even number of f fields, e.g.,
g, y-f-f and g, y'-f-f, etc In the. following sec-
tions we will assume coupling structures of this
type (without specifying their detailed nature) and
show how they realize the light-cone algebra of
Eq. (1.2).

The coupling structures described above give a
simple physical picture of the deep-inelastic scat-
tering process. The current of Eq. (1.4) implies
that the incident photon converts to a vector me-
son "clothed" by the dilaton e-meson factor A.(y).
Equation (3.11) implies that the vector meson then
interacts with the f, and f, fields which have been
emitted by the nucleon. (The f fields absorb and
emit dilatons by the dilaton-f couplings. ) The
scattering of the photon by the nucleon is thus done
via the intermediary of the f fields. Thus one may
think of the f, and f, as representing the "partons*'
in the scattering. This interpretation is strength-
ened by the fact that the structure functions are de-
termined by the detailed nature of these fields.
However, note that the fields are scalar (not spin —,')

and it is still possible, as will be seen in Sec. IV
and Sec. tIt, to achieve the results of the quark-
model relations Eq. (1.2).

&(V) -=1+p(q), (4.1)

then the strength of the y-p coupling is governed
by p(y). The p-cp coupling produces the y clothing
in the vector current of Eq. (1.4) so that P," cor-
rectly has scale dimension three. Since it is p, (y)
which carries the dimension two, it is necessary
to calculate each V," in the commutator C,",' of Eq.
(3.3) to first order in p, (y) so that each current
will correctly have dimension three. Turning next
to the various $, couplings, one obtains the first
nonzero contribution to W,",' of Eq. (3.2) if these

IV. LIGHT-CONE COMMUTATORS AND DEEP-
INELASTIC SCATTERING

In Sec. III, the general form of the interactions
that are needed to calculate the light-cone commu-
tators for inelastic lepton scattering were given.
In this section we will see that these interactions
when combined with the currents of Eq. (1.4) are
indeed equivalent to the Fritzsch-Gell-Mann light-
cone commutators for this inclusive process.

The Lagrangian of Eq. (3.5) consists of the p-rp
coupling of Eq. (3.6), the p-p-f coupling of Eq.
(3.11) containing coupling constants g„.. . , g„ the

f -N-N couplings with constants g, and („and the

y f fcoupling-s w-ith constants g„g„etc. Since
this Lagrangian is an effective Lagrangian, it is
to be used to lowest nonvanishing order in calcu-
lating the structure functions. To see explicitly
what this implies we first note that if one writes
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are kept to second order. More precisely, the
commutator C,"~ must be computed to first order
in the $„.. . , $~ couplings, since one additional
factor of $, or (, is needed for the f field to couple
to the nucleons in the matrix element of Eq. (3.2).
Finally, as we will see below, it is not necessary
to specify the order to be retained for the g„g,
coupling constants to obtain the general form of
the functions R',",'. We will therefore leave open
the question of whether one wishes to treat these
couplings also in an effective Lagrangian formal-
ism, or in a nonperturbation fashion.

A convenient method of expressing the currents
in a perturbation series is by means of the "in-
field" expansion of the p field equations. From
Eqs. (3.5}, (3.6), and (3.11) one has (suppressing
the chiral index r)

W(',"(q, P) =I )'„W".BP,", (4.9)

where p""=-&)"" —q"q "/q' and W", (, is just the

structure function calculated with p," replaced by

the in-field p j",.„and ~"„", replaced by the usual re-
tarded function b, ,"g(x —x'):

Thus one can write

Cay = [Vo(o)(x)i Vb(o)(y)l+ I.V (y)(x) V(, (0)(y)1

+ [V,"(,)(x), V,'(, )(y)]. (4 8)

Expression (4.8) may be inserted into Eq. (3.2) to
calculate 5',",". In evaluating 8',",', we need keep
only terms linear in p, (q)) for each current. This
allows one to simplify the analysis, for it is shown
in the Appendix that in the deep-inelastic limit 8',",
becomes

([— '+m'&((q))]5(" —a("a„jp,"(x)=J)'(x) (4.2)

DPc
a - n

.
D jf(x Dcx p

(4.3)

since the p fields enter into Eq. (3.11) only in the
curl combination. From Eqs. (4.2) and (4.3) then
one sees a„(Ap,")=0 so that the CVC condition is
satisfied. One may solve Eq. (4.2) to first order
in $„.. . , $, by writing

p('(x) = p."(x) + Jd 'x' 2 " , (x, x') J„.(x,'".), (4.4)

where J,"(x) is the source obtained from Eq. (3.11).
We note that J," is linear in g„.. . , (
general form

(4.10)

The projection operators P„" and P&
' therefore

just guarantee that the CVC conditions are main-
tained.

The C,"f of Eq. (4.8) contains three terms. How-
ever, it is easy to see that the first term does not
actually contribute to WI"„', for this structure in-
volves terms in WI'," of the type

&p l &(x)p.' (x)&(y)p' (y)lt &

=
&p I &(x)&(y)lp&&01 p." (x)p,' (y)l o& .

(4.11)

where

([- 2+m'& (q)]5~ —a~a. ]p". (x) =0, (4.5a)

V,"(x)= V,"(,)(x)+ V,"(,)(x),
where

(4.6)

and 3 ~", is a Green's function with retarded bound-
ary conditions obeying

([— ' + m'Z( q))] „"5—»a }t& „;(x,x') = )))"5~(x —x') .

(4.5b)
From Eq. (3.11) one sees that the source J„,is
linear in the p field and also linear in the f, and f,
fields. Since we only need the solution of Eq. (4.4)
to first order in („.. . , $„one may replace p„, by
p, in the J, of Eq. (4.4). The current then has
the form

Now for the interaction structures of Sec. III, the

y fieMs in A. do not couple directly to the nucleon
states, but only indirectly via the f, fields (which
do couple to the nucleons). Thus to evaluate the
first matrix element, one must eliminate at least
two of the y fields by D cans of the g„g, couplings.
However, since the y couples only to an even num-
ber of f, fields, there will result a nucleon matrix
element of at least four f, fields. Such a matrix
element would be at least quartic in the („j,cou-
plings and hence of too high an order to be re-
tained. " Thus only the terms linear in $„.. . , $,
in Eq. (4.8) need be retained in calculating W,",'.

We illustrate the above discussion by sketching
the calculation of the contribution of the $, interac-
tion of Eq. (3.11) to W,",". For this case the source
function of Eq. (4.3) is

VN(o) 21~(x)y Pg (x)) y (4.7a) D)'" = $,d...p(-„.a)'&aaf, (x) . (4.12)
f

V)'(„- d'x'-,'[&((x), t (,":,Z..]. (4.7b)

As discussed above, one need only calculate the
current commutator to first order in g„.. . , $~.

Inserting into Eq. (3.2), the last two commutators
of Eq. (4.8) give rise to two terms related by the
interchange y —v, a—b, x—y. Thus the contri-
bution of Eq. (4.12} to W,"," reads
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&Pl [{&( )p'" ( ');. s"' s'f. ( ')), {&(y),t),"(y).) l I p& -{q"--q9, (4.13)

where b „& is the scalar retarded Green's function of mass m~. The p- part of the matrix element now fac-
tors, so that Eq. (4.13) reduces to

IT'.","=ig, 'h, d...(2~) ' «dP&-~(q —PP)&(q+~p)

[f.(P, )+g.(P, ')NP+ )'(n""(P q)'-P'"q'P q+P"P')-{q--q)t,
where L„,(q) and t), (q) are the Fourier transforms of the retarded and commutator functions'~ and f,(P, n)
and g, (P, o.) are the Fourier transforms of the remaining nuclear matrix element. Thus, from Eq. (4.13)
there arise the two structures

M. -=-'(pl {~(y), {~(x),f.(x'))) I p),
N. -=-'(PI [) (y), {)(x),f.(x')}1IP&

(4.15)

Since f,(x) has scale dimension -2, both these matrix elements have scale dimension zero. Hence assum-
ing these matrix elements are smooth on the light cone (i.e., the basic light-cone singularity arises only
from the p commutator function t), ) they are functions only of p (x —x') and p (y —x'). Their Fourier trans-
forms are the functions f,(P, n) and g, (P, o() appearing in Eq. (4.14):

dad e' '&" "'&e'" &" "', , n,

N, = J( dndpe'"~"(" * e's~ (" ' e(u)g, (p, n).

In Eq. (4.14) we have already gone to the deep-inelastic limit where q', P q»P' =-m2. Thus

&-~(q Pp) = (q-* 2P-qP) '-

and

t), (q+o.p)=- w2i (5'q+2p qo.).
Performing the u integration then yields

.'(,gp'd. ,.h-, (~)[q"' —q'"p"'/q P+P"P"q'/'(q. p)'],
where &u = -2p. q/q' and

h.&(~) =- "dP (P+ I/~)lf. (P, I/~)+ g.(P, I/~)]-(~- -~)

(4.16)

(4.1'I)

(4.18)

We note that h, (ur) is an odd function of ~ and also real [since f, and g, obey the reality conditions f, (P, a)
=f.( P, -~), g*.(P-, ~) =g.(-P, -~)l.

Before continuing on, it is interesting to note several features of the result. First, the $,d„, interaction
is the one that governs the experimentally observed electroproduction process. The tensor structure of
Eq. (4.17) implies that there is no q o~ contribution to the deep-inelastic cross section. Thus theinterac-
tion of Eq. (3. 11) combined with the current of Eq. (1.4) automatically produces a transverse electropro
duction cross section in the deep-inelastic region. Second, we see that it is the matrix elements of A. and

f, in Eq. (4.15) which determine the structure function. It is the q)-f -f and f -N-N interactions that deter-
mine the precise functional dependence of the structure functions on ~. Thus one need not specify the de-
tailed nature of these interactions to determine the general tensor and isotopic dependence on S',~.

The quantities in Eq. (4.15) play the role of the matrix elements of the bilocal currents in the quark mod-
el, though here they have a trilocal form. Actually, however, only bilocal. structures contribute to the
structure functions. For example, the term in Eq. (4.18) proportional to fdP f,(P, n) (where o. =1/m) is
equal to

2~ J(d(p y)e '""(Pl{)(y), {&(O),f,(0)l} Ip&

by Eq. (4.16), and similarly for the other structures of Eq. (4.18)."
(4.19)
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(4.20a)

The contribution of the $,f,», terms in Eq. (3.11) to W,"» can be calculated by the same technique used
for the (,d„, interaction. One finds

W!' =-'&.Z, ' if. ». I..(~)[n"' - q'"P"'lq P+P "P'q'l(q p)'1,

where h, z((()) is given by

().,(~)-=f &))(()+(/~)l/()))/~, )+)..()), )/~))+(~--~), (4.20b)

and f,(P, o.), g, (P, o.) are defined analogously to f,(P, c() and g, (P, n) [Eqs. (4.15) and (4.16)] but with f,(x') re-
placed by f,(x ). [Note that h, ~(~) is even in &u and is real. ] In addition f, and g, obey one extra constraint.
Thus defining h, (&u) by

&(~)-=)&»(l)+2)~)if (l), ()~)+)(((),))~)l+(~--~), (4.21)

one must also require

h, (&u) =0. (4.22)

The tensor factor in Eq. (4.20a) also has the "transverse" nature that occurred in the electroproduction
sector of Eq. (4.17). Equation (4.23) is imposed to guarantee this. That is, more generally, the calcula-
tion of W,",' yields an additional longitudinal piece proportional to g,if„,h, (ar)(q ')—q"q"/)q'). Thus Eq.
(4.22) imposes the transverse property for the neutrino sector. One may view Eq. (4.22) as an extra condi-
tion to be satisfied by the q/-f -f and f -N-N couplings.

The calculations of the contributions to W,",' of the $,f„,and $,d„, terms of Eq. (3.11) are straightfor-
ward. Adding these to the results of Eqs. (4.17) and (4.20) allows one to determine the structure functions
of Eq. (3.4) for the total interaction:

(uE2. » (u); r) =d, », [mgpa —,'],h, „((u;r)]+if, »,[mgq'g, h, ~(co; r)],
E„,((u; r) = —,'(uE„»((u; r),
E»(»&u; r) =rlif„,[2mgz'g, h, „(&u;r)]+d„,[-2mg~'(, h, z(&u;r)]].

(4.23a)

(4.23b)

(4.23c)

Now, the full content of the Fritzsch-Gell-Mann light commutators Eq. (1.2) for this process is Eq. (4.23b)
plus the requirement that the coefficient of d„, (and if„,) in Eq. (4.23a) equal the coefficient of if„, (and
d„,) in Eq". (4.23c).' The latter conditions can be achieved by requiring

, (4.24)

Thus by choosing relation (4.24) between the coupling constants, one satisfies completely the Fritzsch-
Qell-Mann algebra for inelastic lepton scattering.

V. THE CALLAN-GROSS SUM RULE

In the previous section it was seen that the interaction of Eq. (3.11) produces a purely transverse cross
section in the deep-inelastic region. This result appears to be in contradiction with previous ideas based
on the Callan-Gross sum rule'» that a field-current-identity current has vanishing q'vr in the limit q'-~.
We will show here that this is not necessarily the case and that the results of Sec. IV are in fact consistent
with the Callan-Gross sum rule. The idea that the transverse cross section vanishes for a field-current-
identity current arises in part from the application of the sum rule to the specific algebra of fields model
of Lee, steinberg, and Zumino. Actually, if one assumes the validity of asymptotic scale invariance,
one expects for this case that not only does q'a~ vanish in the limit q'-~, but also q'0~ does. This is due
to the fact that the currents appearing in the algebra of fields have scale dimension one. One needs cur-
rents of dimension three to obtain nonvanishing structure functions (as is indeed the case for both the quark
model and the model of this paper). One can indeed obtain a nonvanishing q'cr (and a vanishing q'o~) in a
theory which uses the field-current identity provided that (i) the currents have the proper scale dimension
three and (ii) a judicious choice of the coupling structure is made. The second condition is clearly vital,
as the field-current identity itself is just an interpolating equation, and hence empty of dynamical content
in itself until the interactions are chosen.

%e begin by briefly reviewing the ballan-Gross sum rule and then examine it in the context of the inter-
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actions of- Sec. III. The basic quantity considered is

(5.1)

where p is the proton energy and p approaches infinity in a fixed direction. For a current of dimension 3,
A" is dimensionless and can be decomposed into the form

(5.2)

where p,. =—p,./~p~. Here A, and B are also dimensionless. {On the other hand, if R" has scale dimension
& 0, and if the interaction preserves scale invariance asymptotically, one would expect that A and B van-
ish. ) Using dispersion relations for the virtual Compton amplitude, Callan and Gross relate A and fl to the
electroproduction structure functions

1 d~2
A = 2 [E2(n) —2o.E,(n)],

0

1

8 = — do. 'E, (o.) .
0

(5.3a)

(5.3b)

Thus the vanishing of A implies the transverse condition E, =2cIE, (u =—1/u& = -q /2q p).
We now apply the sum rule to the interaction of Eq. (3.11). The electroproduction cross section is gov-

erned by the $, part of the interaction:
1 tX P~ps= 24daacpa pap usa 8 fc'

The canonical momentum of the p field n, , is given by

Il' g(x) = BI p g
—8 pog+ 28gp ~/Bpo g.

Using the p field equations and the canonical commutation relations, we find

(5.4)

(5.5)

&(x 0)[V,'(x), V', (0)]= igp'(-m p
'5„A(0)8'8'+ 5'~5„X(0)'

+mp '5„1(0)X(x) '8'A(x)8'+46'p', (0)p'„'(0)X(0)/54(x)

+ 2i X(x)X(0)[ ZBp „(x)/aP„.(x)a g„(0)](8v„/BP~, ) . (5.6)

The first term in Eq. (5.6) does not contribute to fI". In evaluating the next three terms, recall from the
discussion at the beginning of Sec. IV that the effective Lagrangian is to be used only to second order in
the $ couplings. Thus, using the same analysis as the one following EII. (4.11), the matrix element of the
second term (p~ A.'(0)

~ p) is at least fourth order in the $ coupling constants and hence is not to be retained.
A similar argument holds for the third and fourth terms. Thus only the last term contributes to the Callan-
Gross commutator, and there one may replace Bm~, /Bpo, , by 5~5„. Since

6'Zp„/Bp„, (0)ap„,(x) = &,d„,(a'a'f, —5"8'a'f, ),
this term contributes a structure to 8" proportional to

Z"-[m/(P')']$ d „(P~ [a( )0'][ '8Bf,( )0-5"8'Bf,] ~P).

(5.7)

(5.8)

Since f, has scale dimension -2, and X has dimension +4, the matrix element has dimension +2. I.orentz
covariance then implies

(5 9)

where B, is a dimensionless constant. Thus A'~ is purely transverse in the limit p -~. The Callan-Gross
sum rule then implies a purely transverse electroproduction cross section for the interactions and cur-
rents being considered here, in accord with the direct calculation of the light-cone commutators in Sec. IV.

VI. CONCLUSIONS

In this paper we have attempted to realize the
formal structure of the Fritzsch-Qell-Mann light-
cone algebra for deep-inelastic lepton scattering
without the introduction of physical quark fields.

I

To achieve this we have made use of a set of mod-
ified field-current-identity currents which arose
naturally in the intermediate-energy region from
the principles of scale invariance and scale break-
ing. The primary constituents of the j.a-piet of
chiral U(3) xU(3) currents are the nonets of vector
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and axial-vector mesons as in the low-energy vec-
tor-dominance currents. However, the scale-
breaking conditions of the intermediate-energy
domain produce an additional dilaton (e-meson)
"clothing" factor which automatically give the cur-
rents a scale dimension three. Thus the currents
used here have the same scale dimension as the
quark currents (though of very different physical
nature) as is necessary if Bjorken scaling is to be
achieved. Qur procedure then was to set up an ef-
fective Lagrangian whose scale-invariant interac-
tions were chosen to produce the same effects for
deep-inelastic lepton scattering as the Fritzsch-
Qell-Mann algebra does. The situation is similar
here to the approach adopted in the low-energy
domain. There too, the equal-time SU(3) xSU(3)
algebra, first derived on the basis of the quark
model, was adopted as a principle to determine in-
teractions governing low-energy phenomenology
without any further reference to physical quarks.

The Fritzsch-Qell-Mann algebra strongly re-
stricts the type of interactions that can occur. The
asymptotic chiral invariance which gives rise to
the conservation of the currents is most directly
achieved by assuming that the couplings involve
only the vector-meson field strengths p„„,= ~„p„
—B„p„,. For inelastic lepton scattering, the cou-
pling must be bilinear in the p„„. The simplest
way of achieving the light-cone algebra then turns
out to involve coupling the p„„,to a scalar field
f„ the latter then coupling directly to the nucle-
ons. (The f, are scalar functions of other had-
ron fields. ) The light-cone algebra requires that
the p-p- f interaction contain at least two deriv-
atives of the fields. This is one derivative higher
than the usual smoothness assumptions of low-
energy current algebra. This higher momentum
dependence distinguishes the interactions in the
asymptotic high-energy region from those used in
the low- and intermediate-energy region. The f,
may be thought of in some sense as representing
"partons, " for the nucleons "emit" the f, fields
and the p mesons (and hence the photons) are scat-
tered by the f, fields rather than directly by the
nucleons.

In the quark model, the structure functions are
determined from nucleon matrix elements of the
bilocal currents. The detailed properties of the
structure functions then depend on the detailed
nature of the gluon coupling structure assumed.

Similarly in the present model, the structure func-
tions are determined by the nucleon matrix ele-
ment involving the dilaton and "parton" field f, .
Again, the detailed properties of the structure
function depend upon the interactions between the
dilaton and f, fields and their interactions with the
nucleons. The light-cone algebra does, however,
put constraints on these interactions. Thus only
the f, couples directly to the nucleons and the dila-
ton must couple to an even number of f, fields. .
Aside from these conditions, we have purposely
not specified the details of the dilaton and f, inter-
actions to illustrate the minimum number of as-
sumptions necessary to achieve the light-cone al-
gebra. However, the fact that experimentally'
structure functions can be expressed as a low-
order polynomial in n==1/&u —= -q'/2q P suggests
that it should be possible to construct simple in-
teractions that yield the experimental results.

In Sec. IV, it was seen that the effective Lagran-
gian approach can recover the full content of the
Fritzsch-Qell-Mann light-cone algebra for the in-
elastic lepton scattering. Thus, as in the quark
model, we also predict the vanishing of q'0~ for
deep-inelastic electroproduction, a result that ap-
pears to be in approximate agreement with present
data. Further, we also recover the various parton
formulas relating the neutrino and electron struc-
ture functions. Qne difference, however, does
exist between the present model of this paper and
the quark model. It is possible to relax the van-
ishing of the longitudinal part of the cross section
for neutrino scattering processes (though not for
electroproduction) by an appropriate choice of the

f, and dilaton couplings. Thus should future data
indicate the existence of a longitudinal part to neu-
trino cross sections, the present model could ac-
commodate it, though the quark model could not.

Finally, we mention that the formalism devel-
oped here can be extended to the calculation of
higher multiple light-cone commutators (e.g. , the
analog of the bilocal algebra in the quark madel).
To obtain the higher commutators, one must add
terms cubic and higher in the p fields to the effec-
tive Lagrangian, and require that the light-cone
algebra be satisfied to higher order. The situation
is similar to the treatment of the equal-time cur-
rent algebra, where the effective Lagrangian for
the matrix element of n. currents is a polynomial
of order n in the fields.

APPENDIX

In this Appendix we verify the theorem quoted in Eq, (4.9) that one may calculate the W,"» replacing the
&,",', and p," of Eqs. (4.5) by 6t';, and pt',.„provided one inserts the projection operators P"" and P8" (which
guarantee the CVC conditions).

From the discussion at the beginning of Sec. IV, one must calculate the currents to first order in p. (y)
—= A.(y) —1. The quantity depending on A. in V,"&» of Eq. (4.7b) is the factor" A(x)b, ,",&(x —x'). Using Eq. (4.5b)



LIGHT-CONE ALGEBRA, FIELD- CURRENT IDENTITY, AND DEEP -. . . 120'7

and expanding to first order in p, (y) gives

X(x)L~;, (x —x') =~~;, (x-x')+]~d'x" [q& 5'(x—x") -m, '~1,'„(x—x")])i(x")~„;„(x"—x'). (A1)

q"" —m 'E""(q)=q"~-m '(n~~+q"q" /m ')(q'+m ') '

In the q'- ~ limit this term becomes P""(q).
The Ps" (q) factor of Eq. (4.9) arises similarly when one expands V,"&0)(y) in Eq. (4.8) to first order in

p, (y). Thus using Eq. (4.5a) and the definition of V, «& of Eq. (4.7a), one finds for the parts linear in )i(y)
the structure

(A2)

The zeroth-order term, 6"„'„corresponds to using a current with no dilaton clothing, and hence produces
no contribution in the deep-inelastic limit. When the second term of Eq. (A. 1) is inserted into Eq. (4.7b),
the commutator of Eq. (4.8) taken, and the matrix element W,",' of Eq. (3.2) computed, the bracket pro-
duces simply the factor

(A3)

Again, when this structure is inserted into the commutator and the Fourier transform taken, the extra fac-
tor in the bracket produces the Ps (q) term of Eq. (4.9) in the scaling limit. The nucleon matrix elements
that remain after the commutator is taken are of the form of Eq. (4.15) with A. (y) replaced now by )i(y).
However, in the scaling limit these structures become the same, as p(rp) h. as scale dimension two and is
the leading term of A(y).
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