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We study the scaling behavior of the structure functions of both deep-inelastic electron-
proton scattering and inclusive electron-positron pair annihilation into a proton in a simple
gluon model in three dimensions. We find, firstly, that both sets of structure functions have
similar scaling properties, as expected on the basis of light-cone dominance, and that they
are simply related to one another. Secondly, we obtain nonvanishing longitudinal structure
functions in spite of the underlying bilinear fermion structure of the current. This confirms
a positivity constraint discussed earlier and implies that interactions alter the free light-cone
commutator structure. Thirdly, the transverse functions increase linearly with large ~,
again confirming the results of our earlier paper.

I. INTRODUCTION

In spite of the widespread interest in scaling
phenomena and light-cone physics, some ideas con-
necting the two have in general not been amenable
to discussion in perturbation theory, for the sim-
ple reason that the latter violates scaling at all
orders. In view of this difficulty, we propose to
study in this paper some of these ideas in a model
where scaling is indeed obeyed to (at least) the
first nontrivial order of the perturbation series.
This is a gluon model in a space of three dimen-
sions: one time and two space dimensions. We
consider a fermion field interacting via a Yukawa-
type interaction with a scalar field. The current
is bilinear in the fermion field and satisfies free-
field commutation relations analogous to its count-
erpart in four dimensions.

General belief has it that these commutation re-
lations (in particular the internal symmetry and
singularity structure on the light cone) survive all

interaction effects. This, of course, has many
consequences, the most direct of which is the iden-
tical vanishing of the longitudinal structure func-
tion I"~(ur) of deep-inelastic electron-hadron (pro-
ton) scattering [e+II(P)- e+X] in the scaling limit.
Fairly general assumptions would then also lead
to a similar vanishing of the corresponding longi-
tudinal structure function Ji~(&u) measured in the
inclusive annihilation process of an electron-posi-
tron pair into a hadron (proton) [e'+ e -II(P)+X].

Now whereas it is generally accepted that the
vanishing of E~(&u) is consistent with experimental
observation, little is known about E~(~).

On the other hand, we have recently shown' that
positivity and gauge invariance imply that E~(&u)
may not vanish identically, and that if it does the
transverse structure function Er(&u) must increase
at least linearly with co. We have also shown in
Ref. 1 that, under the fairly general assumptions
of light-cone dominance, the corresponding struc-
ture functions in the processes e+II(P) - e+X
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and e'+ e -II(P}+Xscale in a similar manner.
The nonvanishing of E~(~} implies of course

that the free light-cone singularity structure of
the current commutator is modified. The linear
increase in &u of Er(&u) implies that the bilocal op-
erator, whose matrix elements it measures, has
a short-distance singularity (as opposed to one
for lightlike distances) in it, contrary to general
assumptions.

In order to confirm the validity of the above re-
marks we calculate, in our three-dimensional
gluon model, the relevant structure functions to
the first nontrivial order of the perturbation series.
This is done exactly. Upon taking the scaling limit
we find the following results.

(1) The structure functions in both the annihila-
tion and scattering processes scale as expected
and in a similar way. This implies that the oper-
ator controlling this behavior has indeed only one
leading light-cone singularity, as assumed in Ref.
1 (see Sec. IV below).

(2) The structure functions are related to each
other simply:

E~(~) = -E~(-(u),

Fr(u)) = Er( &u) -. -
(3) The longitudinal structure functions do not

vanish identically, thus confirming the positivity
constraint of Ref. 1.

(4) The transverse structure functions increase
linearly with large cu, also confirming the positiv-
ity constraint of Ref. 1. This increase is not re-
quired if E~(&u) does not vanish but is only an al-
ternative. In this case we see, however, that both
alternatives are realized.

In order to perform our task, we have to study
first the structure of scalar and spinor fields in
three dimensions. This is done in Sec. II, with
most of the details left to Appendix A.

In Sec. III, the canonical light-cone structure
consistent with scale invariance is discussed. We
show in Appendix B how the equal-time limits are
to be calculated. "

In Sec. IV the scaling behavior expected on the
basis of the singularity structure of Sec. III is
presented.

The calculation of the structure functions is out-
lined in Sec. V, with some details left to Appendix
C. In Sec. VI we give some conclusions and dis-
cussion.

II. FREE FIELDS IN THREE DIMENSIONS

Quantization proceeds also along similar canonical
commutation or anticommutation relations. The
simplest cases are those of one- and two-compo-
nent fields. These are analogous to the ordinary
spin-0 and spin- —,

' Dirac fields, respectively. We
present in this section some general results for
these two cases, leaving more of the details to
Appendix A.

The Scalar Field Q(x).

The equation of motion for the scalar field is
the analog of the Klein-Gordon equation in three
dimensions, namely (h = c = 1)

where

Bxo Ox' Ox'

The canonical commutation relation is given by

(2)

b, (x —y) is an invariant singular function given by

b, (x-y)=-i, (e '"' " ' -e"'~" ').d k
(2m)'2&v,

In particular we have

= -i5'(x —y), (5)

Now Eq. (5}determines the physical dimension
(in units of mass or inverse length) of Q(x) to be —,'.
We shall show shortly that its canonical dimen-
sion under scale transformations is also —,'.

2. The Tgeo-ComPonent (Dirac) Field.

As shown in Appendix A, the simplest muliicom-
ponent field is a two-component spinor g(x) which
satisfies an equation of motion analogous to the
Dirac equation. It reads

where

a two-dimensional 6 function. The Feynman prop-
agator is found to be

The equations of motion for free fields in our
three-dimensional space (one time and two space
coordinates) may be constructed along analogous
procedures already known for four dimensions.
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and

(r„,r, ]= 2Z„, 1,

Let D be the generator of scale transformations.
Then the dimensions of the fields Q(x) and g(x)
are defined by

with a metric
[y(x), D]=i(d~+x ~ s)y(x),

[tI)(x), D] =i(d~ + x ~ s)p(x) .
Consider the Lagrangian density of Eq. (12) in
the massless limit. We have then

(13)

y'"'(x) =(u'"'(0)e '"~', 1
p

2

+1 r=1
-1, r=2

The solutions at rest are of the form [D, Zo(0)] = -idio(0)
= -i((2d, + 1)yy'y(0)

+ (2d q+ 2) [s„(j)(0)]'j. (14)

and

~(&) (Q) — ~(2) (Q)—
1 01
0 1& 5g, (x) = 5)).(d +x ~ 8)Z, (x) . (15)

Now, in general, under infinitesimal transforma-
tions I5A. we have

= iS„B(x—y) .
The Feynman propagator is then

iS„(p)=(p+m)/(p'-i)f'+ie).
At equal times we have

(9)

(10)

(4(», f), 0'(y, i)] = 5. 5'(x - y) (11)

This then fixes the physical dimension of ((x) at
unity. Let us show now that this agrees with its
canonical dimension under scale transformations.

The free Lagrangian density incorporating these
two fields takes the form

&= z[s„y(x)]' 2V'0'(x-)

+ y (x)(ig —M) q(x) . (12)

The solution with ~=1 is the positive-energy
solution, and that with ~=2 the negative-energy
solution. These also correspond to eigenvalues of
y =$3 of +1 and -1, respectively. Thus, only
one "spin" state occurs at rest for each solution
in contrast to the ordinary Dirac particle. The
single-particle wave functions and their properties
are given in Appendix A. Canonical quantization
is achieved by the anticommutation relation

(P„(x),$8(y)j= i(iP', + M) Ba(x —y)
dg =1, d@= —,', (i6)

which agree with the physical values determined
by the equal-time commutation relations of Eq.
(5) and Eq. (11).

The Lagrangian density of Eq. (12) leads to a
conserved vector current Z„(x) given by

&„(x)= y(x) 5„4(x)+ P(x), r„4(x)]. (17)

This current has then a dimension of two. Alter-
nately, if we assume that the constant "charge"
it defines is scale-invariant, we arrive at the val-
ues in Eq. (16) for the field dimensions.

Using the free-field canonical commutation-anti-
commutation rules of Eq. (3) and Eq. (9) we ob-
tain

If the Lagrangian, which is the integral over all
(three-dimensional) space of 2„ is to be invariant
then Mo(x) must be a total derivative. From Eq.
(15) we see that this is possible only if d=3. For
then we have

5Z, (x) = s)'[5)).x„Z,(x)].
Using d =3 in Eq. (14) we find that

[~„( ),x~„( )yl=i „"ssI &(x y)0(x)0(y)1 -Is)~(x y)][0—(x)r„r r-, y(y)+g(y)r, r r„N(x)]
+i1lfb. (x y)[k(x)r„r, k(y—)+7( ) yrr„0(x)] ~ (18)

The first term is due to the scalar-field part of the current, and the last two to the fermion-field part.
Equation (18) specifies the behavior of the free commutator everywhere, and in particular on the light

cone (x —y) =0. We shall investigate this behavior and its consequences in the following sections.

III. LIGHT-CONE EXPANSIONS OF OPERATOR PRODUCTS

We shall be interested mainly in the conserved vector current Z„(x) presented earlier. The free-field
expression in Eq. (18) above suggests that the current commutator on the light cone may be expressed as
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follows3:

[j„(x),Z„(0)]= (s„e„-ag„„)C,(x')R, (x, 0) + (g„,s„s,-g„„s,s„-g„„s,e„+g„„g» )C,(x')R,"'(x, 0),

where C, ,(x') are c-number singular functions
and R,(x, 0) and R,"8(x, 0) are, respectively, scalar
and symmetric second-rank tensor bilocal oper-
ators. The singularity of the commutator is as-
sumed to be defined completely by C, (x') and
C,(x'). The bilocal operators may then be ex-
panded in terms of an infinite set of local oper-
ators as follows:

R,(x, 0)= gx"& ~ ~ x"RR . . . „(0),
n=0

R", 8(x, 0) = Qx"}.~ ~ x" R "8 (0)
n=0

(20)

Current conservation is then explicit in E(I. (19).
The current Z„(x) has a dimension of two; hence
if E(I. (19) is scale-invariant, as we assume, one
must have

(21)

In a theory with only scalar fields the lowest-
dimensional scalar bilocal operator is Q(x)P(0)
of dimension one. The lowest-dimensional sym-
metric tensor is P(x)8"88$(0) with dimension three.

Thus, in scalar field theory,

c 1y dc 1 (22)

In a theory of Dirac fields g the lowest-dimen-
sional scalar bilocal is $(x)g(0) of dimension two,
and the lowest-dimensional symmetric tensor is

0( )r„s.0(y)+0( ) .s„t( )

of dimension three, leading to

dc =0 &c = (23)

Therefore in a mixed free theory the leading sin
gularity in C,(x') comes from scalar fields, and
that in C,(x') comes from both fields. We have in
general

C,(x ) = (x' —iexo) ci ' —(x'+ sexo)

C,(x')=(x'-s«, )
' 2" -(x'+i«, )

' &"

with dc =1 and dc =-1.
Cj C2

The expansion in E(I. (19) determines the short-
distance behavior and in particular the equal-time
limit. We show in Appendix 8 how the equal-time
limit should be calculated.

IV. SCALING AND CURRENT-COMMUTATOR SINGULARITIES ON THE LIGHT CONE

It is well known that the behavior near the light cone of the electromagnetic current commutator controls
the structure functions of deep-inelastic electron-hadron scattering in the Bjorken scaling limit. We have
also shown that under the assumption of light-cone dominance it also controls the scaling behavior of the
structure functions measured in the annihilation of an electron-position pair into a hadron plus anything.
In this section we wish to outline this relationship in three-dimensional space. The notation is the same
as in Ref. 1, and we shall have occasion to refer to some equations in this reference.

Deep-Inelastic Electron-HaChon Scattering.

It is well known that in the process e+II(p)- e+X [II(p) is a hadron of momentum p and mass M; X de-
notes "anything"] one is probing the structure of the absorptive part of the forward virtual Compton scat-
tering amplitude. We study (in three dimensions)

W„„(q,P) =
Jl

d'x e"'"(11(P)IS„(x)I X)&XI@„(0)Ill(P)&

2 gpv ~1 &u + p~ V—py V ~2q&V (25)

q' is the mass of the virtual photon, and u=q p its energy in the laboratory system. In the above process,
q'& 0 spacelike and u& 0. Thus W„„(q,P) may be written as in Ref. 1 in the form

W„,(q, p) = J) (f'x e" "A ' (x p)'
where

(26)

R~')(xd)= Jd Xdze'e''e ' ''R'R'(O(R(d (x);O(X)}R(d,(O) d"(z))(O). (27)
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It denotes the retarded product, and g)f', = s„s"+M' in three dimensions. In Eq. (27) the hadron was as-
sumed spinless.

A&„',)(x, p) is identical with

«(P) I I~„( ), ~.(0))Ill(P)&

(28)

for q'& 0, v&0, and hence must have at least the same singularity structure on the light cone. More sin-
gular terms may exist only for q & 0. However, in the spirit of light-cone dominance, one expects
4 („",(x, p) to have a single leading singularity which dominates at all q'.

Let us assume that the operator product A~„",(x, p) has the following decomposition in position space:

&'„".(x, p)=(s„&.-g„. )&,"(x', x p)+( P„P.-P &(p„s.+p, s„)+(p s)'g„.l&'."(x', x P).
Let us also assume, in view of the light-cone expansion of Eq. (19), that as x'-0 we have

a
g&'&(x', x p)-(, f (x', x p)+less-singular terms,

0

&t&' (x', x p)-(, f,(x, x p)+less-singular terms,
1 5

0

where a= —,
' and 6=-—,'.

Here f»(x', x ~ p) are assumed to be nonsingular as x' (but not necessarily x) approaches zero. As is
well known, the expressions of Eq. (19) determine the behavior of the structure functions W, (q', v) and
W, (q', v) in the Bjorken scaling limit (B): v-~, q'- -~, and (t) =-q'/2v fixed. We wish to exhibit this
relationship here, as it is slightly different than in four-dimensional space.

Define

(29)

g, (n)= —. d(x P)e ' "'P f, (O, x P), .
1 i=1 2 (30)

From Eqs. (15) and (16) we then have

2

W, (q', v)+ —,W', (v, q') = -q' dng, (n)A(a) „, , ,)(, „)„,q2 2 ) 1 [ ~q+ Zp)2+ iZ(q+ Zp~o (~ 2 )) 2

W, = -q' dng, (n)K tp [-(q+ np) +(f(q+&np) j

where

A(a) = 2' ggw"'r"'(-,'(3 —2a))I'(a) .

If we take the scaling limit (B) of the integrals ia Eq. (21), we find

V
W, (q', v)+ —,W, (v, q') ~

( )„, , K(a) dng, (n)( . )„, , ~ (2v)' "'E~(co),

W, (q', v) ~, „„,K(b) dng, (n), . „„,~ (2v)' "'E,(&) .
((d —N + ZE)

(32)

A positivity requirement exists' such that 0 ~ W, ~ (1 —v'/q')W, . From Eq. (32) we then conclude that
b~ a —1.

Comparing Eq. (29) with Eqs. (18), (19), and (21), we find for free fields the leading singularity to be
that of A(x) in three dimensions. b, (x) has dimension unity so it behaves as

-X + gEXO

as x'-0. Thus, a = —,', b = -—,', and it follows that

(
V2

W, + —,W, ~ E(~),
q

(2vW, )~ E,((d),
B

and hence
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W, ~ F, ((d})
B

just as in the four-dimensional case.
From Eq. (15), and using well-known techniques, ' we notice that in the absence of scalar fields F~(&u) =0,

while in the absence of Dirac fields F,(~) =-0. These results are similar to the four-dimensional case, and
follow if the commutator structure near the light cone is not altered by interactions.

Z. The Annihilation Process e'e -II(P)+X.
To the order that this process is mediated by a single timelike photon one may summarize the hadron

structure being probed by

Iqe. (q;q)= f d ee"'(q)d*„(e)III(q)X}(IqII(q)(J„(D)10)

3
—g~p W~ q)v + P~ —v 2 pp —v —g'2 q) p (34)

where the physical region is for v& 0 and q' ~ 2v
timelike. As pointed out in Ref. 1, the behavior
of W„,(q, P) in the scaling limit is also controlled
by the light-cone singularity of A~„'„)(x,p), for we
have

I

a in Eq. (29) is less than —,'. For details of the der-
ivation of the positivity constraint we refer the
reader to Ref. 1. The same steps follow in three
dimensions without any essential alterations.

Iqv„(q (1)=f dec "'*dI'I(e q) (35)
V. SCALING IN A SIMPLE GLUON MODEL

(
2

Iq, (q', v}+—Iq, (v, q')) (qv)' "q~(a),

W2(V ") (2 v) F~(&)
(36)

and hence

If AI&'„)(x, p) has only one leading light-cone sin-
gularity as specified in Eq. (28) and Eq. (29), then
we must have

We turn now to the study of the scaling behavior
and various positivity constraints of Ref. 1, pre-
sented in the previous section, in a simple gluon
model to the first nontrivial order in perturbation
theory. We do this by calculating W„,(q, p) of Eq.
(25) and W„„(q,p) of Eq. (34) directly with an in-
termediate state of one nucleon and one meson
and to lowest order in perturbation theory.

The current is taken to be bilocal in the field
(t)(x), namely,

W, (q', v) ~F,((u).
B Z„(x) =T((x)y„y(x) . (38)

For a = &, 6 =-~ we get the expected scaling be-
havior familiar in four dimensions. We also have
in general

7~(a) = te(q(e)f dad (a)

E (tv)=tvqe(d)f dad (a)(
(3'I)

The latter follows from a necessary singularity
in f,(0, x p) as x-0 of the form 5"(x ~ p) in case

The positivity requirements discussed in Ref. 1
lead to restrictions on the short-distance behavior
of A(„'„)(x,p). These, as shown in Ref. I, lead to
either or both of two results. The first is the non-
vanishing of the longitudinal structure function
F~(~), and the second, in case the first does not
hold, is that

F,((u) & c(v.

The interaction Lagrangian density is of the form

Z~ =g$(x)(l)(x)(p(x) . (39)

This interaction Lagrangian density has dimen-
sion 2-,' under scale transformations and hence
violates scale invariance of the Lagrangian. A
scale-invariant interaction is of the form g'P(l)(I)

and contributes to the three-particle intermediate
state. Needless to say, the calculation in this
latter case is doable but considerably more in-
volved than the one at hand. Since our aim is to
demonstrate the validity of very general and mod-
el-independent results, we shall be satisfied with
the simple model at hand. We shall refer to the
particle described by the field (t) as the "fermion"
and that by the field (P as the "meson. "

The results of a similar calculation in four di-
mensions show a nonvanishing longitudinal struc-
ture function F~((d)) and a violation of scaling by
logarithmic factors in vW, (v, q'),
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vw, ~ (In q')E, ((u) .
B

(40)

In view of the fermion field structure for the
current, the nonvanishing of Ei(&v) is contrary to

"folklore" and expectations based on the free-
field light-cone structure for the commutator
given in Eq. (18), namely (fermion part only),

[~„(x),~.(X)1= -L&~&(x S)]—[%(xb„r'r„g(X)+V(X)r.r'r „0(x)]+iM&(x —y) LV(xb„w. k(y) +@(y)r.r „W(x)].

(41)

It is argued, however, that the nonvanishing of Ei(&u) is not to be taken seriously in view of the fact that
also scaling for vW, is violated; in other words that perturbation calculations are not a good laboratory
for studying scaling phenomena.

Now the gluon model in three dimensions (at least to the first nontrivial order in perturbation theory)
indeed exhibits nonvanishing longitudinal structure functions E(&u) and E(~), where'as W, and W, (con-
sequently then vW, and vW, ) scale as expected, thus confirming the results of Ref. 1 and removing the ob-
jection to the four-dimensional calculation. Gauge invariance and positivity play an important role in the
derivation of the results of Ref. 1, and we make sure here to satisfy them explicitly. We proceed now to
present some aspects of the calculation, leaving more of the details to Appendix C.

I. DeeP-Inelastic Scattering e+II(P) e+X.

We calculate W„,(q, p) by calculating to lowest order the gauge-invariant expression for the matrix ele-
ment

&„(x)=(11(P,) I &„(x)I 11(P,)»,
where II(P, ) is a "nucleon" on the mass shell, with momentum P, and mass M and with 0 the momentum
of an on-mass-shell meson with mass p. . We then have

(42)

W»(q, P) =]t d'xe"" ]t d'k 5(P,2 - M')5(k2 —p. ') g(PO- M) g(ko - V, )5(q+P —k —P|)T„(x)T,'(0)].

To lowest order T„receives contributions from the two graphs of Fig. 1:

T~ =B~+C~ .
The current with momentum q couples with a vertex -icy„ to the fermion line, and the meson is emitted
off this line with strength g; the sum T„of the two graphs in. Fig. 1 is explicitly gauge-invariant. The re-
sulting expression for W&, is given in Appendix C.

The aim of the calculation is an expression for the structure functions in Eq. (33). These may be pro-
jected from 8'„„as follows. Consider the longitudinal spacelike vector gi with the properties

gJ g jf 1 q„g~l' = 0. (44)

g~ may be represented by

n&= (III, q'q),
q

where q is a unit vector in the direction of the two-vector q. We then have

(45)

(46)

Comparing to Eq. (33), we see that in the scaling limit

W~~ Ei((u) .
B

Similarly, consider the transverse timelike vector g~ with the properties

r]~pi „=0,
'gz 7)2 ~

=+ iq

g~l'q„= 0 .

(47)

(48)
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-ieYp.

q
ie~Y

q+p g p,

FIG. 1. T& =8 &+ C&. Graphs contributing to the
structure functions Wz and 8& of deep-inelastic electron-
proton scattering.

FIG. 2. 7.'& =B&+ C. Graphs contributing to the
structure functions Tz and W& of the inclusive annihil-
ation of an electron-positron pair into a proton.

Then

qr(' = i(0, a), a (I = 0.
Using q~ we find

(49)

which with E(I. (46) gives an expression for vW, . In Appendix C we describe the steps in the calculation of

W~ and S'~. In the scaling limit we then obtain

g'e' 32m(1 —~)' 1 1 —CL)

I,( )= —
4 (2 ) g 8(1 )

[M (1 —2 )+ P, —t(. ] —g + g7l(2 )A)2 )

Fr(u)) = ( (-M'(u+ 2M' [(1 —(()') —4(u'(1 —(d)]+ t(, '[(8(u' —4(u —1)(l —(u)' —8(()(1 —u))]].
4M (2g)"'

where

(50)

(51)

f =M' —(1-&u)(M -t(, ')+2p, 'uF, (52)

and 0& ~ = -q'/2v& 1 in the physical region.
These expressions are the result of an exact calculation of W~(v, q') and Wr(v, q') followed by the scaling

limit v-~, q'- —~, with cu =-q'/2v fixed. Note that for large (d (outside the physical region) Fr((d)-C(d, as
pointed out in Ref. 1.

Z. The Annihilation Process e'+e -II(P)+X.
We calculate W„,(q, p) in a similar manner to the above by calculating to lowest order the gauge-invari-

ant expression for the matrix element

T„(x)=(Ol ~,(~)111(P)II(P)h) .
We then have

(53)

W„„(q,p)= Jd'x e"'*J( d p f Hk5(p —AP)il(k —p')8(p —M )9(k —g)()(q —p —k —p)T~(x)T~(0) .

To lowest order T„receives contributions from the two graphs of Fig. 2

T„=B„+Cq.
The sum T„of the two graphs in Fig. 2 is explicitly gauge-invariant. The resulting expression for

W„, is given in Appendix C. Using the vectors q~ and q~ we define

(54)

Wq = W~ = -g~~q ~W ~„.
(55)

Upon comparing the resulting expression for W„,(q, P) and W„„(q,p) we find that they are related by the
relation

W„,(q P)=-W„.(q, -P) (56)
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Thus we obtain that the annihilation structure functions are the same as deep-inelastic ones with the re-
placement of -~ for ~. The physical region for ~ in this process, however, is -& ~& -1. W'e thus have

F~(~) =+ —— „, — --—[i)s'(1+2(u) -3(u)), ' —p, ']+,'&iVI' -+ Ti4 2g 1/2 (5'l)

2'
Fr(&u) = — „,fM'(u + 2&VI'[(1 —(u') —4(u'(1+ &d) J+ p, '[(8(u + 4(u —1)(1+~d)'+ 8(u(1+ &d) JJ (58)

g = M' —(1+(d)(M' —i), ') + 2)i'~'

and -~ & &u =-q'/2u & -1 in the physical region. Note here again that for ~-~, F (g)-g&d as expected
from positivity and gauge invariance in Ref. 1.

VI. CONCLUSIONS AND DISCUSSION

The main purpose of the above discussion has
been to investigate in a simple model the validity
of the general results obtained in Ref. 1. The cal.—

culation confirms the result that W„S"~ and S'„
k~ scale in a similar fashion. To this order one
finds also that they are simply related to each
other as functions of cu.

More importantly one finds nonvanishing longi-
tudinal structure functions and transverse func-
tions that increase linearly with large ~. This
confirms these results as obtained in Ref. 1 from
positivity gauge invariance and light-cone domi-
nance. The nonvanishing of E~(&u) and I ~(w) im- ~

plies that the free-field current commutator on the
light cone has been altered by interaction. The
linear increase with large ~ of I' r(&u) and I" r(id)
implies a short-distance singularity of the form
5" ())) in f,(0, ))) of Eil. (29) and Zq. (28) as ex-
plained in Ref. 1. Thus the bilocal operator lead-
ing to f,(x', x p) seems to be singular at short
distances, contrary to "canonical" expectations.
It of course is not singular for ljghtlike separa-
tions, and hence the expected scaling with 6 = -—,

'
is not affected.

Naturally many other connections between the
light cone and scaling, such as a large number of
sum rules, may be investigated in our model.
This however is beyond the scope of the present
paper and is deferred to a separate publication.
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(Al)

y(x, i) = —

~ [a(k)e ""+at(k)e"''"],

where

cu, = fkf'+).i'

(A2)

v'2~k a(k) f
k') =(2n)'2~k5'(k -k')

f 0) .

Quantization is expressed by

or

leading to

[y(x) y( )J (e-ik ~ (x-y) eik (x-y))y —
(2 )22

(2)i)'

=in(x -y) .

d 0—e"' )') simu (x -y )
Gd

(A3)

4(x —y) may be written as

dsk
&(x —y) =-i 5(k~ —g )e(k )e 'k'&"

(2)) )'

( )
+1, ko&0
-1, k, &0

It follows then that

The momentum-space decomposition of p(x) is

APPENDIX A

1. Scalar Field P(x)

The real scalar field p(x) satisfies the Klein-
Gordon equation of motion in three dimensions

(& "s„+)i')a(x —y) = 0,
~(x —y) =-~(y —x).

One also has

(A5)
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a(x-y, o) =0, (A6) then the algebra of Eq. (A11) becomes

leading, by Lorentz covariance, to

A(x —y) = 0, (x —y)' & 0 .

One also has

s.&(x —y) I 0 =,o = -6'(~ —y) (A7)

(A8)

2. Dirac Field Q(x)

The Feynman propagator is finally found to be

y "y'+ y'r" = 2r"'1, g=0, 1, 2

o 0)g""= 0 -1 0
0 0-lj

and y, is then defined by

y" =z'"'y, .

The equation of motion now reads

where the metric tensor is given by

(A14)

(A15)

(A16)

For a multicomponent field we assume an equa-
tion of the form

(A9)

where II is the Hamiltonian; o.„o.„Pare Hermi-
tian matrices; and g is a multicomponent spinor.
In order that the correct energy-momentum rela-
tion emerge from Eq. (A9) we must have

(A10)

tn, , o,}=25,, , i, j=1, 2

{o.„Pj=o.
(A11)

From Eq. (All) we can immediately conclude
that the n,. are traceless and have eigenvalues of
+1. This implies that they are matrices of even

dl mens 1 on.
The simplest solution to Eq. (A11) is provided

by the two-dimensional Pauli matrices and is
given by

where
82 02

Q2 +
Bx Bx1 2

Squaring Eq. (A9) and comparing with Eq. (Alo)
one immediately obtains the following familiar
conditions on the matrices o.„n„and P:

2 p2 1

o,.= 2f(r „,r.) . (A18)

Consequently Eq. (12) is found to be covariant.
If we define

g(x) =y (x)r',

we can then show that g(|( is a scalar, pr "P is a
vector, and (I(v""g is an antisymmetric second-
rank tensor under Lorentz transformations in

three dimensions. It may be easily shown that
y'y'y'= -i and therefore that there is no independent
matrix analogous to y, in three dimensions.

The free single-particle wave functions may be
obtained by finding them first for particles at rest
and then boosting to arbitrary momentum. Vfe

thus first solve

, 8i—= PM/, (A20)

and find two solutions

y&'(x) = ~ ~ (0)e ( o" ~ ' r = ], 2

(Al't)

in analogy with the Dirac equation except that g
=0, 1, 2, r" are two-by-two matrices, and g(x) is
a two-spinor.

In analogy with the four-dimensional case one
can show that in the space of these spinors the
generators of Lorentz transformations J„,may
be represented using

in this case is a two-component spinor.
If we now define the y matrices by

(A12)

(A13}

~'&(o)=( ) ~&'&(o)=( ),
+1,

1 r-2
The solution with r =1 is the positive-energy solu-
tion, and that with ~ =2 the negative-energy solu-
tion. These also correspond to eigenvalues of

r =P =o» -—S, of +1 and -1, respectively. Thus

only one "spin" state occurs for each solution in

contrast to the ordinary Dirac particle.
The general free wave function may then be
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found by boosting P"(x) to some arbitrary momen-
tum p. Taking p to lie along the x, direction we
have

-XO

X

&(x)(P) e-i(e'2) ()o~i( ))(0)

where

K = —tanh (5/c) q

e is the speed of the particle. We thus have

FIG. 3. Contour for the integral in Eg. (B5).

The momentum-space expansion of the free field
is

q(i)(x) e iP x-'
coshgKI-tanh —,'K

e-{P' x~(1)(P)

(()("(x)= e"'"+ . .„-tanh —,'K
coshpK1

1

e+ iP ' x(d (2) ( P)

where

-tanh-, K = pc
E+Mc' '

+d'(P) V(P)e""],
(A27)

with E=(lpl'+M')'". b(P) is a destruction oper-
ator of a particle and d(P) that of the antiparticle.
The normalization of states is such that

V 2Z b(P) I P'& = (2~)'(2Z)b'(0 -I)')
l 0& .

Quantization is implemented by

Z+ wc'
CoSh-, K =

P = lpl, and E is the energy of the particle.
If p'=P "y„we also have

(b(P), b'(P')) =()'(p -p'),
Id(P), d'(P')l = b'(p —p'),

or equivalently

Q„(x, t), $8(x', i)j=6'(x —x'){)„8.

(A28)

(A29)

(P' —Me„)(u " (P) = 0.
One may also demonstrate easily that

(A24) From E{ls. (A27) and (A28) and using Eq. (A3) we
then find

g e,~'."'(P)~'8'(P) =b.8.
r=1 2

If we define

~(P) =~'"(P), I'(P) =~")(P)

we then find the energy projection operators

(A25)

(A26)

l()) „(x),Ti),(x')) =i(i {i'+J)f) „,S(x- x')

= -iS „i)(x—x') .
The Feynman propagator then takes the form

i(p+m)
P' -M'+i~

Some trace theorems and y identities are
()(d'= a',
tr{{(g= 2a b,

trs, d, {((,g'4=2(a, ~ a,a, a,
—a, a,a, a4+a, a,a, .a,),

(A30)

(A31)

and the trace of an odd number of y's vanishes.

APPENDIX 8

We discuss in this appendix the calculation of equal-time commutators from short-distance expansions
in three dimensions.

If C„(x) is the singular c-number function, then using the definition of the () function we have

C„(x)= E„(x')5'(x)+ F„(x') ~ A(x) + ~ ~ ~,

with

x„(x') =f 4'x c„(x',x},

i„(x')= fd'xxC„(x', x), -
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etc. In the limit x'-0, E„(xo) and F„(x2) give, respectively, the regular part and the Schwinger term of
the equal-time commutator.

In evaluating integrals of the form given in E(I. (B2) we are usually faced with expressions of the form

(B3)

If the x„ factors are such that any component of x is left unsquared, the integral is zero from rotational
invariance. Using polar coordinates one then first performs the angular integration and is left with

Do 1
(B4)

In the complex r plane and for arbitrary p the integrand displays cuts from x to +~ and -x to -. The
integral in E(I. (B4) is then given by

1

C

(B5)

where c is the contour shown in Fig. 3.
For integer p one uses the residue theorem, and for noninteger e one integrates the discontinuity across

the cut from x=xo to x=~.

APPENDIX C

The contribution of the single-particle intermediate-state Born term to 8'„„and 8'„„is well known and
will not be reproduced here. Its relevance to the results of Ref. 1 is discussed in Appendix B of that arti-
cle and the reader is referred to it for details.

The calculation of the two-particle intermediate-state contributions is tedious but straightforward and
proceeds as follows.

1. Calculation of W»

Upon referring to Fig. 1 we may then write down the explicitly gauge-invariant expression

w„, =g'e' —
o d'P, d'&& &' —p'& P,'-~'& q+P-&-P, ~&'- p ~ P

where

I 2~,„-~~„2P„~„it 2P, „—~,(f' 2
q' —2q p1+ie q'+2q p+ie ' q' —2q P, —ie q'+2q P -ie

q"A„, =0, and q "A„,=0 explicitly. Using the vectors q~ and q~ we define

A~ =g~g~A„„,

A =g~q~A„, .

The trace is then taken with simplifications occurring due to the properties of the vectors g~ and q~.
We first then perform the k integration, getting an integral of the form

(31&II3,II f ae J d/,'&((q+P)'-3/, (q+u&+as'-p')
0 0 N

(cs)

(c4
q —2q P~y

We choose a frame such that q+p =0. Then the P,' and
~ p, ~

integrations become trivial. One is finally left
with integrals of the form

F(cos8, sin8)~

~

~

(o. + cos8)"
One finds that n& -1 for 0& ~& 1, and the integrals are well known. One obtains factors of the form

1 1
(~2 I)3/2 r (~2 I)1/2

(c5)

(c6)
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multiplying functions of v and q . The evaluation is then done exactly. The scaling limit is now taken.
The only point to watch for at this stage is that

a 1
n ~]+—+0

V V
(C7)

and hence that the factors in (C5) contribute factors of v to the scaling limit. This is also why one should
not take this limit inside the integrals of (C5) as n- -1 and one may not be able to keep track of the prop-
er factors of v.

The final expressions for W~ and Wr are not simple and are not illuminating enough to justify writing
them in detail here. The resulting scaling functions are reproduced in the text.

Referring to Fig. 2 we may write

2. Calculation of W»

=g'e' — d'p d'k6 k —p,
' 6 P —~ & q-P —&-P 0 k —p 0 p -M A

(C8)

where

1 „(~ )
2Pq —4W„-2PI +rqg ~ )

2P „-y„g -2P, +gY,
(C8)4~2 q2 —2q ~ p+iq q —2q ~ p+ je q —2q P —jq q —2q 'P —ge

Comparing Eq. (C9) with Eq. (C2) we see that

A„.(e,P, P) = A„.( e, P, -P-)-
%e then find that

thus leading to

&„.(e, P) =-&„.(e, -P) .
Thus

&,(~) = -&,(~),
F,(~) = -&&(-~)

We then have the results given in the text in Eqs. (57) and (58).

(C10)

(C11)

(C12)

(C13)
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