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A Regge-pole model for inelastic electroproduction and Compton scattering is presented.
The coupling of the virtual photon to hadrons is assumed to be mediated by the known vector
mesons. An additional k2 dependence is postulated such that each Regge pole scales. The
electroproduction structure functions are then scale-invariant, and excellent fits to the
photon total cross section, Compton scattering, and inelastic-electroproduction data are
obtained. Vector-meson dominance of the electromagnetic current is formulated covariantly
in terms of the invariant amplitudes, and a central assumption of the model is that the in-
variant and helicity amplitudes continue smoothly to the gauge-invariant limit as the photon
mass goes to zero. The additional assumption of s-channel helicity conservation for Comp-
ton scattering leads to the prediction that the ratio of longitudinal to transverse virtual-
photon cross sections is —m2k /v . It is observed that if Regge poles dominate the electro-
production cross section for c.m. energies above 2 GeV, in the scaling limit nonleadipg
trajectories become important for small values of co. Such nonleading effects are shown to
be important for the fit to the ratio of electroproduction off neutrons and protons. For
larger values of cu, the model suggests that the cross section is predominantly diffractive,
so that vS'2 has essentially reached its asymptotic value by ~ = 20. The form of the scale-
invariance breaking for small ~k2) is correctly predicted, and it is found that the deviations
from scale invariance are not necessarily characterized by a small mass. Some points
relating to the interpretation of the results of the model are discussed.

I. INTRODUCTION

It is well known that the original vector-meson-
dominance (VMD) model proposed by Sakurai' for
deep-inelastic electroproduction is in complete
disagreement with the data. ' The scaling behavior
exhibited by this model arises from the dominance
of the longitudinal-virtual-photon contribution for
large values of -k', where k' is the mass of the
virtual photon exchanged between the electron and
the nucleon. The purely transverse-photon con-
tribution does not scale, and becomes unimportant
in the scaling region. The data on the other hand
indicate that the transverse photons dominate the
cross section, and present results are consistent
with a small constant or zero ratio of longitudinal-
to transverse-virtual-photon cross sections.
Nevertheless, the success of VMD at small k' en-
courages the belief that the photon does interact
with hadrons via an off-shell vector meson, and
it is difficult to understand how the nature of the
interaction can change dramatically by k'= -i
(GeV/c)' where scaling behavior sets in. It is of
some interest, therefore, to investigate the im-
plications of scaling behavior for a model in which
the photon couples to the hadrons via the vector-
meson propagator. In this paper we present such
a model in which the vector-meson-dominated
electromagnetic current couples to a scale-in-
variant Regge-pole amplitude. The electroproduc-
tion structure functions are then scale-invariant,

and the model gives a unified account of total cross
sections for real photons, Compton scattering,
and inelastic electroproduction for all spacelike
values of k'.

The main features of the deep-inelastic electro-
production cross section are now widely known.
The extensive experimental and theoretical activity
stimulated by the observation of scaling behavior
in this reaction has been reviewed several times. '
The structure functions for inelastic electropro-
duction are functions of v and k', and it was sug-
gested by Bjorken~ that when v and k' are much
larger than any characteristic mass in the prob-
lem, the structure functions depend only on the
ratio ~ = -2v jk . This scaling behavior finds its
most natural explanation in terms of a basic point-
like interaction, and there has been a great deal
of interest in parton ' models which incorporate
such a pointlike structure. "

Although parton models are attractive for their
simple account of scaling behavior, they have the
disadvantage that the prescription is rather differ-
ent from the Regge-pole ideas normally associated
with high-energy total cross sections. The work
of Bloom and Gilman' and Rittenberg and Rubin-
stein ' suggests that ideas familiar from purely
hadronic reactions may have application to inelas-
tic electroproduction. Qrdinary Regge-pole models
and Veneziano-like amplitudes have been consid-
ered by various authors, ' '" and the model we
shall present has some features in common with
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the recent work of Moffat and Snell." However,
we wish to make the continuity with purely had-
ronic interactions more explicit by incorporating
the concept of VMD. The simplest form of VMD
is expressed by the p-photon analogy in which the
hadronic interactions of the photon are mediated
by an off-shell vector meson. Usually it is as-
sumed that the corresponding vector-meson am-
plitude does not have any significant k' dependence,
so that the dominant variation of the amplitude
with k' comes from the vector-meson propagator.
For inelastic electroproduction, however, such a
model does not agree with the data, and it is es-
sential that the vector-meson amplitude has suf-
ficient k' dependence for the Regge-pole terms to
scale by themselves. It might be argued that the
introduction of such additional mass dependence
destroys the applicability of VMD, but we feel that
this is not necessarily the case. There are two
points that can be made. First, the virtual photon
is an external particle as far as the hadronic ver-
tex is concerned, so the k' dependence associated
with the electromagnetic current can be factored
out of the amplitude. Moreover, we know that the
electromagnetic current has a pole at the vector-
meson mass, and there is no obvious reason why
the effect of this pole should disappear for large
syacelike k'. Of course the simple propagator
could be modified by the presence of additional
contributions for timelike k', or by a new pointlike
component that becomes important at large space-
like O'. These possibilities have been investigated
by several authors recently, "but in this work we
shall use the concept of vector-meson dominance
in the original sense suggested by the field-cur-
rent identity, namely, that the electromagnetic
current is dominated by the known vector-meson
poles alone. The second important point to be
made concerns the mass dependence of the result-
ing vector-meson scattering amplitude. The field-
current identity itself tells us nothing about this
additional k' dependence, and it is the simplifying
assumption that the vector-meson amplitude does
not vary appreciably as we go off shell that gives
VMD its great predictive power. This assumption
is reasonably successful over a limited range of
k', but there is no reason in general for us to ex-
pect that a significant k' dependence may not be
observed when we consider asymptotic values of

The crucial yoint is that the mass dependence
of the external photon is completely independent
of the k' dependence of the vector-meson scattering
amplitude, and ii is perhaps unreasonable to throw
away the effect of the known vector poles simply
because they do not account for all the mass de-

pendencee.

In view of the failure of Sakurai's original model, '

a new understanding of the relevance of VMD for
inelastic electroyroduction is clearly necessary.
Some recent work" "on the application of VMD
at small ~k'~ has shown that it is advantageous to
formulate VMD covariantly in terms of invariant
amplitudes. The possibility of using more general
structure functions to incorporate VMD in deep-
inelastic electroproduction has been considered
previously by Tung, ' and in this paper we develop
this idea and apply the general approach of Ref.
15 to the elastic scattering of real and virtual pho-
tons. We consider the effect of the current con-
servation constraints as k'- 0, and by postulating
the minimal k' dependence consistent with a
smooth limit at k' =0, we obtain relations between
the real- and virtual-photon-invariant amplitudes.
In a recent payer Akiba et a/."investigate the k'
continuation in terms of helicity amplitudes. They
find that a smooth k - 0 limit is consistent with
the well-known singularity structure of the helicity
amplitudes for both the massive and massless
cases. Our approach is similar to theirs in some
respects, but by emphasizing the central role of
the invariant amplitudes, we are able to derive
explicit relations between the different sets of in-
variant amplitudes appropriate to the massive and
massless cases. The additional assumption of s-
channel helicity conservation then gives the result
o~ /vr = -m'k'/v' for the longitudinal to transverse
cross-section ratio, where v is related to the en-
ergy loss of the electron. This result is indepen-
dent of any particular assumption about VMD.

We then investigate the implications of scale in-
variance for a Regge-pole model for the invariant
amplitudes in the presence of the vector propa-
gator, and find that the additional k' dependence
required is similar to that required by traditional
scale-invariant Regge models. ' " In these mod-
els each Regge pole scales separately, so we
achieve a more general scale invariance than is
present in other VMD models, "where only the
asymptotic Pomeranchukon contribution scales.
The price we have to pay for this is contained in
the k' dependence of the off-shell vector-meson
scattering amplitude. However, it is possible to
look on inelastic electroproduction as the way in
which this mass dependence is to be measured in
the spacelike region. It is not necessary for the
k' dependence to be the same for k'& 0, but the
consequences of a simple continuation could be
tested by investigating the mass dependence of
photoproduced electron or muon pairs for instance.

Since our model gives a smooth k -0 limit, in
addition to obtaining excellent fits to the data both
in the scaling limit and at k'=0, we are able to
account for the scale-invariance breaking observed
at small k'. We find that the interpretation of the
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data provided by this model differs in some re-
spects from the results of other models. In par-
ticular the model gives Regge behavior for the
electroproduction structure functions for all ~,
as long as the c.m. energy is above 2 GeV. Fur-
thermore, the diffractive contribution dominates
the cross section for ~ 5 in the scaling limit. In
principle our model can be extended to inct.ude
vector-meson photoproduction and electroproduc-
tion, and vector-meson scattering on nucleons,
but this possibility is not followed up here.

The paper is divided into six sections. In Sec.
II we discuss the notation we shall employ and de-
fine the eleetroproduction cross section and struc-
ture functions. The general invariant amplitudes
are introduced in Sec. III, and the continuation to
k' =0 is discussed. In Sec. IV the various points
bearing on the dynamical k' dependence necessary
for scaling behavior are considered, and we con-
struct a dynamical model for the invariant am-
plitudes. The fit to the data is presented in Sec. V
and various points in the interpretation of the re-
sults are raised. The final section (Sec. VI) is
given over to a summary and brief discussion of
the model.

= —4EE' sin'(-, 8), (2.5)

= m(E -Z'), (2 6)

where p„p,' are the initial and final electron mo-
menta, E, E' their energies, and 8 is the electron
scattering angle in the laboratory. The variable"
v is related to the c.m. energy of the hadronic sys-
tem by

2v =s —m' —k'. (2.'1)

Inelastic electroproduetion can be described in
terms of the spin-averaged forward amplitude

where W is the c.m. energy, W' =s. Once again,
for real photons at k' =0 only the transverse con-
tribution 0'~ survives. The superscript y will be
used throughout to distinguish the real photon am-
plitudes and cross section from those for virtual
photons.

For inelastic electroproduction e + p - 8 + anything,
we use the one-photon-exchange approximation and
define the variables

k2 —(p p&)2

II. NOTATION AND KINEMATICS W„„=— d4xe' '(pi[J~ (x), J„(0)]ip),
1

(2.8)

In general, virtual Compton scattering from nu-
cleons

r~(k)+&(p)- r„(k')+N(p') (2.1)

is described by 18 independent helicity amplitudes.
For elastic scattering, k' =k" and time-reversal
invariance reduces the number of independent am-
plitudes to 12. In the particular case of real
Compton scattering, the additional constraint of
gauge invariance eliminates the longitudinal po-
larization states of the photon and leaves only six
independent amplitudes. The differential cross
section is given by

(2 2)

where o is the number of initial spin states, and

ik, i
is the center-of-mass momentum.

In general the total absorption cross section con-
sists of two parts, 0'~ and o~, coming from longi-
tudinal and transverse photons, respectively. The
optical theorem relates the total cross section to
the imaginary part of the spin-averaged forward
amplitude:

where J„is the electromagnetic current. Conven-
tionally this amplitude is decomposed into two
structure functions,

k~k„
W~ = —gq —,W, (v, k)

1 p k P k+, pq —kq, p„-kq, W2(v, k') .
m

(2 9)

In this form the current conservation constraints
k~W'~~ =k"W~p

=0
are explicitly satisfied, but the structure functions
have kinematic zeros. In order that W„„remain
finite at k'=0, we must have

Wm-O(k ),
(2.10)

W~ + 2 2 W2 -0 k

as k'-0.
The electron scattering cross section is then

given by

I
oi = — - Im f, i, i (8 = 0 '),2k, w (2.3) d'0 4mB E'

dvdik'i m'k4 E

(8 =0'), (2 4)
1

C

&& [2sin'(-,'8)W, (v, k')+cos'(-,'8)W, (v, k')].
(2.11)
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(2.12)

where e is the polarization of the virtual photon,

2

e = 1+2 1 —--,
k2 tan'(20) (2.1S)

By convention, the flux factor for 0~ and o~ in Eq.
(2.12) is taken to be that for real photons, 2~%, ~W

=2v+k'. Comparing Eqs. (2.11) and (2.12) we im-
mediately obtain the relations

v + —,'k'
0

4m'~
(2.14)

W2= =4, .
~2 2 „2 O'I. +0'r ~

Sealing in the sense of Bjorken~ means that as
k' tends to infimty with the ratio co =-2vtk' fixed,
the structure functions W, and vW, jm' become
functions of (d alone:

lim 2W, (v, k)-E, (&u),

(2.15)

This scaling behavior has been observed in the
data, ' and determines many of the features of the
model we shall present.

This differential cross section can also be written
in terms of the total cross sections for virtual
photons v~ a,nd 0~:

III. INVARIANT AMPLITUDES AND THE
CONTINUATION TO k2 = 0

T = u(p')M~„e~(k)et'(k')u(p), (S 1)

It is well known that the helicity decomposition
of a massive vector particle is Lorentz-frame-
dependent and that this gives rise to a basic am-
biguity in the application of the hypothesis of vec-
tor-meson dominance. The longitudinal and trans-
verse virtual-photon cross sections in See. II re-
fer to the helieity frame, but in order to introduce
VMD in a covariant manner we shall follow the ap-
proach of Hefs. 14 and 15 and define invariant am-
plitudes for real and virtual Compton scattering.
Since we are interested only in total cross sec-
tions for virtual photons, we limit our discussion
to elastic scattering for which 0' =k". Time-re-
versal invariance then simplifies the problem con-
siderably.

We consider first the case k' 40. The same in-
variant amplitudes are applicable for both spaee-
like and timelike k', and we find that with the mo-
menta at our disposal we can construct 22 covari-
ants. Of these, however, eight involve terms like
k„e"(k), where e "(k) is the polarization vector for
the particle of momentum k. By current con-
serva, tion, such terms do not contribute to the
physical cross section. The two eovariants
(P~k„+k~P„)g and k~k„@, where P=——,'(p'+ p) and
Q ==-,' (k'+k), are eliminated by the equivalence the-
orems" given in the Appendix. This leaves the
required 12 invariant amplitudes that are free
from kinematic singularities and zeros (KSZF).
The set we choose can be defined in terms of the
V matr~,

where

Mq„=PqPqC, +PqP„gC, +kqkqCs+ (Pqkq+k~P„)C4+ gqqC, + gq„C, + (yqP +Pqy„)C, + (yak„+k~y„)C,

+ (Pyeyp+ y) e'p) Cg+ (yyak p+ kI ey„)Cyo+ (yy Yg
—

yp yy) C„+(yyeyp —ypi() yy) C,2 .

These invariant amplitudes are essentially the set given by Scadron and Jones."
It is rather more difficult to find a KSZF set of invariant amplitudes for Compton scattering. Because of

the gauge-invariance constraints, there are only six independent amplitudes, but introducing gauge in-
variance in any simple way also introduces kinematic singularities and zeros. We saw in Sec. II that the
standard gauge-invariant definition of 8; and W, leaves these quantities with constraints and zeros at k =0.
The problem ha, s, however, been solved and we shall use the amplitudes defined by

M~„--(k ~ k'gq„—krak„)A ~+[k k'PqPq —v(Pqkq+kIPq) +v~tyq]&2

+ [k k'(P, y„+y,P„) (kI,vy„+y&-k„) (2%+'~„-P~k&-kIP~)@~

+ [4p,p„g —»(p, y„+y,p„)—v(yA'y„- y, i()yg)]&4

+ [k k'(y~y„y„y~) k~-(fy„-y„P) --k„(yak'-it"yg) +4gg„(~@-v)]&5

+ [k k'(y, 4y„-y„@yg) -2@(Pxk, +k~P, )+2v(yxkp+k~yp)~&' (S.S)
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In general, for k'=k"

2v =2k ~ &
1—8 62 ~k +ptp

k k'=k2 —~t

(3.4)

(3.5)

and in Eqs. (2.7) and (3.3) we have the particular
cases t=0 and k =0, respectively. Once again for
Compton scattering there are two further covari-
ants that are eliminated by the equivalence the-
orems. Since these covariants are rather cumber-
some, they are defined in the Appendix together
with the appropriate equivalence theorems.

The invariant amplitudes defined by Eqs. (3.2)
and (3.3) form the basis for our argument con-
cerning the continuation in k', and it is of some
importance that the reasons for this particular
choice be understood. The most important con-
sideration is that these amplitudes are KSZF.
They have simple crossing properties, and are
not constrained at thresholds or the boundaries of
the physical region. Consequently the analytic
structure of the invariant amplitudes is entirely
determined by the dynamics, and we can write
simple dispersion relations for them. These prop-
erties are of particular importance in our work
where we require the k' continuation to be smooth,
with no discontinuities at k' =0. One can prove
that the amplitudes are free from singularities
and constraints by considering their relation to
helicity amplitudes. The singularities and con-
straints for helicity amplitudes are known, and it
is possible to check the KSZF structure of the in-
variant amplitudes explicitly. Alternatively, one
can follow Hearn ' and start from the fact that the
complete set of possible covariants and invariant
amplitudes cannot have singularities. Conse-
quently any nonredundant set will share this prop-
erty provided no singularities are introduced by
the reduction. This reduction involves equivalence
theorems such as those given in the Appendix, and
other simple relations arising from momentum
conservation and identities between y matrices.
Notice that the proof of KSZF structure for the C,.
is independent of k' except for the point k'=0.
Thus, with the possible exception of this point,
these amplitudes do not have singularities or zeros

in k'. We shall consider the structure of the C,. at
k2=0 in the latter part of this section.

The other important consideration in our choice
of KSZF amplitudes is that they shouM be unique.
At first sight the amplitudes defined by Eqs. (3.2)
and (3.3) do not appear to be unique simply be-
cause any linear combination with constant numeri-
cal coefficients will have the same analytic prop-
erties. On the other hand, a linear transformation
with coefficients depending on the kinematic vari-
ables will introduce singularities whenever the
determinant of the transformation vanishes. But
if the determinant is a constant, the new set of
amplitudes provides a possible basis. If the linear
transformation connecting two possible sets of am-
plitudes is nonsingulai, the inverse transforma-
tion exists everywhere, and it is relatively simple
to show that in this case the different sets of am-
plitudes lead to equivalent physical results. This
follows from the fact that when reciprocal rela-
tions between the different sets of amplitudes are
uniquely defined everywhere, it is always possible
to translate from one set of amplitudes to the
other. It is only in the presence of kinematical
singularities, where the transformation is singu-
lar, that the physical results need not be equiv-
alent, and we consider this to be sufficient reason
for considering only KSZF amplitudes for which
unique results are possible.

It should be pointed out that the gauge-invariant
Compton amplitudes of Eq. (3.3) are KSZF for
k' =0 only. For k' different from zero we have the
weaker constraints of current conservation, and
the real Compton amplitudes develop kinematic
singularities. In general, the 12 non-gauge-in-
variant amplitudes are completely independent ex-
cept at k' =0 where they must assume gauge-in-
variant form. The central assumption of our use
of these amplitudes is that this transition to k' =-0

is smooth. The simplest way to implement this
assumption is to expand the amplitudes C, as a
power series in k'. The zeroth-order terms of
this expansion are given by the gauge-invariant
structure at k' =0, and these terms are readily ob-
tained by equating the M functions (3.2) and (3.3)
at k2 =-0.

This leads to

C =k. k'A

C, = -A, +2A„

Cs = k ' k Ai + v2A2 4vA5

C7 = k k'A3 —2vA4,

Cg ——2m(A, +2A,),
C„=-mv (A~+2A~) +k ~ y'A„

C2 =44~,

C~ = -vA2 -m(AB + 2A6) + 2A...
C, =2vA, +4mA„

Cs = 2vA3 - 2mA5

C,o
= -2A„

C„=-P'(A~+ 2A~) —vA4+k. O'A~,

(3.6)
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where/'= m'- —,'t. The invariants k k' and v in
Eq. (3.6) are at this stage to be evaluated at k' =0.

In order to say anything about the k' dependence
of the C,. we must look at other constraints on the
amplitudes. In the case of pion photo- and electro-
production it was found that the corresponding
zeroth-order expansion was all that was necessary. "
Current conservation imposes two constraints on
the eight non-gauge-invariant amplitudes intro-
duced by Ball." These constraints are linear in
k', and Cho and Sakurai' pointed out that the as-
sumption that the Ball amplitudes are independent
of k'- introduces only two further constraints.
These four constraints leave just four independent
amplitudes, which is the number required in the
gauge-invariant photoproduction limit. Equating
the Ball amplitudes to the gauge-invariant set at
k'=0 then imposes a structure for k' different
from zero such that the current conservation con-
straints are automatically satisfied for all k', and
the pion electroproduction helicity amplitudes con-
tinue smoothly to the corresponding photoproduc-
tion amplitudes as k'-0.

We now look at the implications of similar argu-
ments for real and virtual Compton scattering.
We can see immediately that the C, of Eq. (3.2)
cannot be independent of k'. There are 20 indepen-
dent amplitudes if we use the equivalence theor-
ems, but do not impose the Lorentz condition.
These amplitudes must satisfy eight current con-
servation constraints as expected. These con-
straints are again linear in k, so if we assume
that the C,. are independent of k', there are 16 con-
straints on the 20 amplitudes. Therefore, in ord-
er for there to be six independent amplitudes at
k' =0, we must allow the C, to contain terms at
least proportional to O'. Some information on
these terms can be obtained by considering the
helicity amplitudes. In addition to the requirement
that the invariant amplitudes continue smoothly to
k' =0, we demand that the helicity amplitudes also
are well behaved in this limit. In other words, the
longitudinal hellclty amplitudes fo) ogi O(k ) and

f»», -O((~k'~)"'), and the transverse amplitudes
must go over into the corresponding real Comp-
ton amplitudes.

We give the expansion of the s-channel helicity
amplitudes in terms of the invariant amplitudes
for both the real and virtual elastic processes in
the Appendix. By direct substitution of Eqs. (3.6)
into Eqs. (A9), we find that the transverse and

f,~,~, amplitudes continue as required when k'- 0,
but the longitudinal amplitudes f,~,~, do not vanish
as k'. It can be readily verified, however, that the
correct behavior is obtained if the kinematical fac-
tors k k'and v in Eqs. (3.6) are allowed the natu-
ral k' dependence of Eqs. (3.4) and (3.5). In fact,

Similarly, for real photons at t =0, the helicity
amplitudes are given from Eqs. (A10):

f,!,!= -(s -m')'( —,'mA, +A, -A4),

f, !, i =-(s -m')'(2mA, +A., +A~).
(3.8)

Notice that from a consideration of the forward di-
rection alone it would appear that the smoothness
constraints are much more easily satisfied. We
can obtain smooth relations between Eqs. (3.7) and
(3.8) for which the amplitudes C, do not depend on
k'. Because of this it is important to remember
that the k' continuation must hold for all t, and it
is unwise to draw conclusions from the k' depen-
dence of the forward helicity amplitudes by them-
selves.

The total absorption cross section for real pho-
tons is proportional to the imaginary part of

f,!,!+ f» !, i = - (s -m ')'(mA, + 2A, ) . (3.9)

From Eqs. (3.6) and (3.7), we can rewrite the for-
ward spin-averaged spacelike-photon amplitudes
in the form

f, ! 0! ——2mk'[A, + m(mA, +2AS)], (3.10)

f,i, , +f, !!,! = -4[mk'A, + v'(mA, + 2A, )],
(3.11)

which clearly satisfies the conditions that f i

vanishes as k', and f, !,! + f. . . ! reduces to Eq.
(3.9) at k' =0.

We now consider the asymptotic behavior of

inspection of the constraints shows that this is the
only allowed k' dependence that does not introduce
spurious singularities. There are no similar con-
straints on terms of O(k') and higher in the expan-
sion. Consequently, such terms are completely
arbitrary, and can be restricted only by physical
considerations. The approach of Ref. 15 was to
assume minimal k' dependence, and this approach
will be followed here. From. the above discussion
it follows that the minimal k' dependence of the C;
is given by Eqs. (3.6), together with (3.4) and (3.5).

If we now restrict ourselves to the forward di-
rection ( =0, we see from Eqs. (A9) that the sur-
viving helicity axnplitudes for spacelike virtual
photons are

f~i, !=-—
2 [~kc)'s(m C, +2C,)

+ v((kc('sC, —k'C, ) -mk'C, ],
2&2

f~ !»!= —(,),&, (~kc~'sC~+2vC„+2mk2C„),
(3.7)

f, i, !=-2[m(C, —2C„)+v(C, +2C»)],

f, , !=-2[m(C, +2C„)+v(C,-2C„)].
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these amplitudes. Regge theory predicts that he-
licity amplitudes -v" as v -~. This implies
A. ) 8 v

q A5 v ) andA23~ v . %e might
expect, therefore, that f, , is dominated by A, ,
but this leads to problems. Since A., enters Eqs.
(3.10) and (3.11) with opposite signs, the positivity
of the total cross section is not guaranteed when

A, dominates. This yroblem for the k' continuation
ha, s previously been noticed by Tung, "and he sug-
gested a solution that involved the introduction of
kinematical singularities far from the physical re-
gion. However, we know that by construction the
C, cannot have such singularities, and the sim
plest solution would seem to be to assume thai
terms of O(k ) in the continuation enter in such a
way that yositivity for the total cross section is
assured. It is easy to check that in any given case
it is possible to introduce a suitable k' dependence.
However, this destroys the concept of minimal k'
dependence for the invariant amplitudes and intro-
duces complete arbitrariness. If we wish to make
progress, it is necessary to find some physical
limitation on this freedom. Fortunately, the sim-
ple physical consideration of s -channel helicity
conservation suggests a more clearly defined pre-
scription for ensuring the positivity of the total
cross section. At sufficiently high energies, the
real Compton amplitudes simplify to

f,"i, i = -s'Q mA. , +A, -A~),

f» i, i =-s'(-,'mA, +A, +A~),

f =-'s'(-t )'"A

f.. .t = mtA„.
f, i, i = =~ (-t)'"(tA, + BsA, , +3mtA6),

f» i, i =-,'t(-t)'"(4, —3mA, ) .

(3.13)

Thus if we impose s-channel helicity conservation
(SCHC), the only invariant amplitudes to survive at
high energies are A, and A, . The evidence for
SCHC comes primarily from vector-meson photo-
production, "but the recent experiment of Busch-
horn et al. '~ on Compion scattering with polarized
yhotons is certainly consistent with the zero asym-
metry predicted by SCHC. Moreover, for Compton
scattering, zero asymmetry is an unambiguous
indication of SCHC, without the alternative explana-
tions of the density-matrix measurements possible
in vector photoproduction. "

In particular, SCHC implies that the amplitude g,
is small„and has an energy dependence one or two
powers of v below its possible v" form. Conse-
quently, the k' dependence necessary to maintain
yositivity is not important, and it is a reasonable
approximation io take A, =0. Furthermore, since
A.~ is dominated by unnatural-parity exchange, it

is a reasonable approximation to assume that it
vanishes as well. Provided A, =0, assuming that
only A, is nonzero does not lead to any loss of gen-
erality for the spin-averaged forward amplitude,
bui it is a stronger assumption away from the for-
ward direction where the pion contributes to A„
for instance. In this work, however, we shall use
the simplified model in which A, is the dominant
amplitude for all t. The virtual-photon total cross
sections can then be very simply written as

2m k
0'~ = —

1 2 ImAS yv+ —,k
(3.13)

2v
O = - --, 21mA3,

V+~k
(3.14)

where we have followed the convention of using the
flux factors appropriate for real photons. The
real photoabsorption cross section becomes, from
Eq. (3.14),

o»~ = (s -m') lmA, . (3.15)

An immediate consequence of Eqs. (3.13}and

(3.14) is that the ratio of longitudinal to transverse
cross sections for virtual photons is

p=~ (3.16)
0'~ V

This result is independent of any considerations of
vector dominance, and is a direct consequence of
our assumptions of s-channel helicity conservation
for Compton scattering and minimal k' dependence
of the C, The form (3.16) for A is equivalent to
the statement that the matrix elements for trans-
verse and longitudinal yhotons are equal, and it is
perfectly consistent with the present data on deey-
inelastic electroproduction. It is a natural con-
sequence of the present approach to the k' con-
tinuation, whereas such a form for B is difficult
to understand in terms of parton models, and
Moffat and Snell" for instance, have to assume
this result before they ca,n relate Compton scat-
tering to inelastic electroproduction.

A further consequence of the relation (3.6) be-
tween the real and virtual Compton amplitudes is
the prediction that the Pomeranchukon deeouples
from longitudinal vector mesons. Since Eqs. (3.6)
hold for positive as well as negative values of k',
the result Eq. (3.16) applies also to vector-meson
cross sections, and the longitudinal to transverse
ratio for pN scattering, for instance, will go down
like m2m '/v'. This contradicts spin independence
at high energies, and it would be of some interest
to check experimentally whether the observed
dominance of the transverse cross section for
spacelike k' holds at the vector-meson mass also.
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v k'v

m
—,-W, = —,ImA. 3.

27' Q
(4 2)

IV. THE DYNAMKAL MODEL

So far we have been primarily concerned with
the kinematic structure of the invariant ampli-
tudes; with the introduction of dynamical concepts
such Rs SCHC only insofar as was necessary to
limit kinematic fleedoIQ. However, the 1nvRl lant
amplitudes can have additional k' dependence
arising from the dynamics, and we shall investi-
gate this in terms of a particular Regge-pole
model.

From Eqs. (2.14), (3.13), and (3.14) we obtain
the relations between tee scRLB-lnvRI'1Rnt electro-
production structure functions and A, ,

v 2
8' = ——,—ImA.2''" A

Since we are interested in the large spacelike k'
region, we are a long way from the vector-meson
poles, and it might be expected in general that
this propagator could be modified by timelike
states of mass higher than the p. Even if there
are no vector-meson poles above the p, ar, and (1)

states, nonresonant continuum contributions may
be important. The simplest possibility is to allow
t)t(t 111 Eq. (4.3) 'to varyt but we follnd ill fRc't that
these effects are not very important, and perfectly
adequate fits to the data were obtained with m~
= m . We have used the approximation m = m„,
and have neglected the small P contribution. Since
we do not go to the vector-meson pole, the direct
p-y coupling does not enter„and the relative nor-
malization of the Compton and electroproduction
results are fixed in the scaling limit by m~ and the
Hegge sca~e factor.

A. Vector-Meson Dominance

In the vector-dominance model, the hadronic in-
teractions of the photon are identified with the in-
teractions of an off-shell vector meson. For gen-
eral Compton scattering, the field-current identity
gives the relation

m2 2.4 (k') = —,~—, 6"(k"),m~' -k (4 3)

where m, , is the vector mass, and A~ is the arn-
plitude for elastic scattering of vector mesons '

from nucleons. As we discussed in the Introduc-
tion,. we depart from the strict vector-dominance
approach by allowing the vector-meson amplitude
to depend on O'. The importance of Eq. (4.3) is
that it accounts for the factorizable k' dependence
of the vector-meson propagator, present when the
photon coupling to hadrons is dominated by the
known vector mesons, and reproduces the pole at

The k' dependence of A~ allows us to
wl'1'te Eq. (4.3) either fo'1' the I'eRl Colnptoll invRrl-
ant amplitudes A, , or for the vector-meson am-
plitudes C, The remaining k' dependence of these
amplitudes is to be determined by the requirement
Gf scR16 1nvarlance 1n Qle deep-lnelast1c reg1GQ.

The amplitude A, receives contributions from the
natural-parity t-channel exchanges P, f, and A2.
The pion trajectory can also be exchanged, and
this contributes to the amplitude Ae. The coupling
7t'- yy is smaIl compared with the Pomeranchukon
coupling implied by the total photoabsorption cross
section, however, and we shall not consider this
unimportant contribution to the Compton differen-
t1Rl cross section further. There Rre sevel Rl 1n-
dependent points to be considered in connection
with the form of NB Regge amplitude, and we shall
deal. with them in turn.

——2W2-4 2~- ~lmA2(), k'),m' ' 4m'n (4 4)

where A, is the amplitude with the vector propa-
gator taken out. Hence if vS', is to exhibit scaling
behavior, ImA, must scale by itself. A standard
even-signature Regge contribution to A3 will have
the form

P(~ O2) 1 ++ im~(t) g+ t(t)--2t

I"((2(t)) sin)(n(f. )

(4.5)

where the residue p and the scale factor v, may in
general depend on O'. In order for ImA2(v, k') to
show scaling behavior at low energies where the
f and A2 trajectories contribute in addition to the
Pomeranchukon, each contribution of the form
(4.5) must scale by itself. This conclusion is
further supported by the observation that the dif-
ference between vW, and vs,", which is g1ven by
the A.,-exchange contr 1bution, also scales. Since
a(0) =1 for the Pomeranchukon and o. (0) =-,' for the
f and A2, the simplest way in which to implement
scaling behavior is to include a, factor
(I,'-k')' "' for each Regge pole. Thi' can be
achieved either by assuming such a k' dependence
for the residue function P (t, k'), or equivalently,
by assuming a k'-independent residue and taking
the scaling parameter v, to have the form

v = no '-k'
0 0

In each case m, ' is R free parameter that sets the

B. Implications of Scale Invariance

It was pointed Gut in the Introduction that Regge
models do not predict scale invariance. We must
use the fact of scale invariance as exhibited by the
data to determine the form of Regge exchange for
variable O'. From Eqs. (4.2) and (4.3) we find that
as k'- -~
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Regge scale for k'=0, but is unimportant for large

For each Regge exchange, therefore, we take

(4.6)

where we have introduced some simplifications
that are valid for small ~t~ . Our model is in fact
equivalent to the conventional scale-invariant
Regge approach io, x2 for large -k2 when the vector-
meson propagator is taken into account in the full
amplitude. As s -~ at fixed k', Eq. (4.6) exhibits
the standard Regge behavior (s/v, )""' '. The
variable u&'=2v/(m, ' —k') reduces to the usual
scaling variable ~ as ~k'~ -~, and at k' =0 we have
ar'= (s -m')/m, '. The mass m, ' thus determines
the Regge scale for real photons and contributes
to the electroproduetion scale-invariance breaking
for small ~k'~ . The magnitude of m, ' is of some
importance for the determination of the realm of
applicability of Regge ideas to deep-inelastic elec-
troproduction. In Regge models it is common
practice to take a scale factor of about 1 GeV',
which for photoproduction implies m, ' = 1 QeV'.
On the other hand, Close and Qunion" have sug-
gested m, =0.22 GeV, which implies that Regge be-
havior for inelastic electroproduction sets in only
for large values of ~. At k' =0, E~, = &um, '/2m so
that ~ =10 corresponds to E,~b = 0.26 GeV which is
in the first resonance region. For m, =1 GeV, the
corresponding result is E,~„=5.3 GeV, and Regge
poles might reasonably be expected to dominate.
The relevance of this comparison is not clear,
however, Since the electroproduction data we con-
sider are for c.m. energies S'~ 2 QeV, we might
expect Regge behavior for all k' and ~. This is
certainly the case if we fix the Regge scale at 1
GeV say, and absorb the (m, '-k')' ""'factor into
the residue function, for then cosL9, is effectively
asymptotic for all k'. The ambiguity in the region
of applicability of Regge poles to inelastic electro-
produetion is similar to the well-known problem
in VMD of the meaning of the constraint s+ t+ u
= gm, ' for variable mass. It is not clear a priori
what variable is to be considered as fixed for the
comparisons at different k'. In the present case
we presume that t must be fixed since we consider
the forward direction both on and off shell. The
question about the onset of Regge dynamics is ba-
sically a question of whether cu, v, or s is to be
held constant. This can best be settled by physical
considerations. Duality for instance would suggest
that the Regge explanation is valid above the region
of prominent resonances, i.e., above W=2 GeV,
and this could be taken to mean that we should
consider fixed s for comparisons at different val-
ues of k'. In our data fitting we treat m, as a free

parameter and find that in general m, = 1 Qe7 is
preferred. We shall return to this point in our
discussion of the fit to the data in Sec. V. The
large value of m, lends support to the hypothesis
of Regge dominance for all ~ in the scaling limit.

In our approach to inelastic electroproduction,
the k' dependence of the Regge term (4.6) is in
fact the off-shell mass dependence of the elastic
vector-meson scattering amplitude. If Eq. (4.6)
describes this process for all k', then the Pomer-
anchukon contribution has a zero at k' = m, ' =1
GeV', and the other Regge poles have correspond. -
ing branch points. Asymptotically, 0»-k' as
~k'

~

-~, since we know that the total amplitude
-1/k' as k'- -~. It should be pointed out, how-
ever, that we have no a prior knowledge of this
k' dependence, and the form (4.6) is only that sug-
gested by the spacelike k' data, %e have no reason
to expect the same form to be valid in the timelike
region, where the only information we have is of
the existence of the vector-meson poles, and these
have been explicitly included in the total amplitude.
In our phenomenological approach, any additional
k' dependence must be determined by the data.
The most direct way of investigating the timelike
k' region is given by the photoproduction of elec-
tron or muon pairs, which does not involve the
crossing necessary for comparison with e'e an-
nihilation experiments. The only experiments to
date have concentrated on the p region, and it is
of some interest that the cross section for vector-
meson photoproduction is lower than that predicted
by conventional VMD." This could be interpreted
as evidence for a k' dependence similar to that
given by Eq. (4.6), and together with the measured
total VN cross sections, it should be possible to
make some more detailed comment on the possible
timelike k variation. However, this question is
more appropriate to the detailed application of our
model to vector-meson photoproduction, which we
do not undertake here.

C. Threshold Behavior

One of the most striking features of the SLAC
results is the rapid decrease of vW, /m' as &u-1.
From Eq. (2.V) we see that ~- I corresponds to
s-m', or to the limit of ejastic ep scattering.
The kinematics of our model are those of elastic
"y"N scattering, and the yNN vertex is not a limit
of this process. Consequently we do not get this
threshold behavior automatically.

It has been argued ""that the threshold behav-
ior of 8;, as ~-1 is related to the large -k' be-
havior of the elastic form factors. In particular,
if the form factor G (k') - 1/k' as ~k'

~
-, then

W, - (&u -1)' as &u-1. We take this effect into ac-
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count by including a factor suggested by Moffat and
Snel] ~2

( -) (4 7)

D. Model for the Invariant Amplitudes

We can summarize these various considerations
in our model for the invariant amplitudes. If we
neglect the small unnatural-parity contributions
and assume leading order s-channel helicity con-
servation, only A, survives. Our Regge vector-
dominance model then gives

which -(~ —1)' as &d -1. The parameter ~, is deter-
mined by the fit to 5', for small ~.

Although this threshold behavior has to be im-
posed by hand on a simple Regge model, it is in-
teresting to observe that from Eq. (4.6) for large
~k'~ each Regge pole -id" '. Thus as cu-1, all
values of n enter. As we go to threshold we would
expect the daughter trajectories to be just as im-
portant as the leading terms considered at larger
values of ~. In this way we can interpret the
threshold behavior in a Regge model as a result
of the interference of the infinite sequence of
daughter poles. Furthermore, there is no reason
to suppose that the even G -parity daughters (P,f )
behave in the same way as those of odd G-parity
(A, ), so the threshold behavior of the deuterium to
hydrogen ratio for electroproduction can be quite
different from the low-energy behavior of the ratio
o'~"/c'i' for real photons.

Since we are using a phenomenological Regge
model which includes leading singularities only,
we do not have a prescription for the sequence of
daughter trajectories, and the required threshold
behavior must be imposed by hand. This is easily
achieved by a factor such as the expression (4.V),
but by itself this does not allow for differences be-
tween the f and A, daughter structure. The differ-
ence between 0& and o~" indicates a small A, con-
tribution, whereas the inelastic electroproduction
ratio (D/H -1)&0.4 for small cd requires a con-
siderably larger admixture of isovector exchange.
Thus we expect different daughter effects for the

f and A, . In order to allow for this in our phenom-
enological parametrization, we include the first
daughter of the A, . The possible importance of
nonleading trajectories in deep-inelastic electro-
production has been suggested by Close and
Qunion' in a slightly different context. In our ap-
proach the importance of nonleading trajectories
is a direct consequence of our assumption of Regge
behavior for small ~.

n„(t) =1+0.5t,

n&(t) =0.5+0.9t,
(4 9)

n„(t) = 0.3 + 0.9t,
n+(t) = n„,(t) —1.

The P and f trajectories and the A, slope were
fixed from fits to other reactions. The intercept
of the A, trajectory is somewhat less well deter-
mined. For example, in a recent fit to the total
photoabsorption cross section" it was found that
the effective f -A, intercept could vary between
0.2 & n, ff 0.6. Thus the 0~~ data are not sensitive
to n„(0), but the discussion of the electroproduc-
tion D/H ratio at small &u given above sugges'ts
that this ratio is more sensitive to this parameter.
Because of possible daughter effects, however,
n„(0) is still not well determined. In our fits we
treated the A, -A,' combination as an effective pa-
rametrization of the more complex situation, and
allowed n„(0) to vary over a limited range. The
result n„(0)=0.3 is not necessarily the best value,
but it does lead to acceptable fits to the available
data.

Since the Pomeranchukon couples to a double-
helicity-flip amplitude in the f channel, there must
be a nonsense wrong-signature fixed pole at I; =0
to prevent the Pomeranchukon from decoupling in
the forward direction. General theoretical consid-
erations" show that this fixed pole is allowed, and
we assume that it is present. The possibility of a
right-signature fixed pole at J =0 has been sug-
gested on the basis of sum-rule analyses, "and the
form of this pole for 02&0 has been investi-
gated. ""Since this is a small effect, however,
it is unlikely to be significant for data fitting, and
we do not consider fixed poles further at present.

The electroproduction structure functions for
nonasymptotic values of k' are given by Eqs. (4.1)
and (4.2). In the scaling limit these expressions
simplify to

V mp4 ~2-1
m 4 n cu +u 0

x (p +p igPf ~y p iii~A2-i yp, ~~As 2)

(4.10)

(4.11)

2V 0(&(t)
x g p shits-iwui(t)/2 (4 8)

m 2 $2
0

where the sum is over the P, f, A„and A,' tra-
jectories, and the factor exp(b,.t) allows for some
t dependence in the Regge residues. We use the
Regge trajectories

3 ~2 ~ 2 2 p2 where P, =P, sin(—,'iin, ), and the + signs refer to
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P+=0.075 GeV ', P+=-0.23 GeV ~,

b =1.76 GeV-', m, =1.0 Gev,

+0 = 0.8.

(4.12)

The mass in the vector propagator was fixed to
m =0.765 GeV. The fits to the data are discussed
in Sec. V.

V. THE FIT TO THE DATA

A. Photoabsorption Cross Section

There have been several experiments measuring
the total absorption cross section for photons on
both protons and neutrons. ' ~ In addition, Bloom
et al."have given values for o)~ from the extrapo-
lation of electroproduction cross sections to k' =0.
%e included all this data in our fits, and in Fig. 1
we give the fit to both the proton and neutron pho-
toabsorption cross sections. For clarity we have
plotted the data of Ref. 33 only. The accurate data
of Armstrong et al. '~ extend only to E& = 4.2 GeV,
and are consistent with the other data in this en-
ergy range. Unfortunately the higher-energy data
are not very accurate, and considerable flexibility

proton and neutron targets, respectively.
For simplicity in the fit to the Compton scatter-

ing differential cross section we assumed that the
f and A, residues were constant, but we did allow
an exponential t dependence in the Pomeranchukon
residue. The fitted values of the parameters are

P =0.25 GeV ~, P&=0.23 GeV 4,

is possible in the fitted parameters. " The situa-
tion is worse for the neutron data, and the A, -
exchange contribution is not fixed with any accu-
racy. Nevertheless, in conjunction with the elec-
troproduction data, 0&~" provides a useful con-
straint on the possible form of the A, daughter se-
quence.

The lack of marked energy dependence in o ~ for
E» 6 GeV indicates Pomeranchukon dominance of
the imaginary part of the forward amplitude. In
our fit by F. ~ = 20 GeV, o ~ is within a few micro-
barns of its asymptotic value. The cross-section
data alone can be fitted over a range of the param-
eters, but Pomeranchukon dominance is charac-
teristic of any such fit. This has important im-
plications for the large ~ behavior of vW, .

B. The Compton Differential Cross Section

There are now good Compton differential cross-
section data available over a wide range of ener-
gies." In the forward direction these data are
consistent with o~~ and the optical theorem, so they
do not provide significant additional constraints
on the magnitude of the residues. The differential
cross section serves to determine the I; depen-
dence of the residues, however, and we found good
fits with an exponential factor in the Pomeran-
chukon residue only.

Our fit to the data of Ref. 36 is shown in Fig. 2.
The model predicts a slight shrinkage as is ex-
pected from a model without cut effects, and the
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FIG. 1. The fit to the total photoabsorption cross section for E& & 2 GeV. The data are taken from Ref. 33.
Notice the different scales for the proton and neutron data.
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I IG. 3. The scaling-limit curve for vW2/m from our
model plotted against data from Ref. 2 with W ~ 2 GeV
and B= 0.18. Only points for —k~ & 1 (GeV/c) are shown.

FIG. 2. The Compton differential cross section between
3 and 17 GeV. The data are taken from Ref. 36. %%ere
data from different experiments differ only slightly in
energy they have been plotted together, and the central
energy quoted.

fit to the wider angle data at high energies is not
perfect. Some improvement would be possible
with a P residue of the form exp(bt+ct'), but in
the interests of simplicity we did not include a
quadratic term. The over-all fit is good, and pro-
vides further justification for our assumption that
Compton scattering is dominated by the inva, riant
amplitude A„since if the other amplitudes were
present, they might be expected to become rela-
tively more important as ttt increases.

C. Inelastic Electroproduction Structure Functions

Our fits to the inelastic electroproduction struc-
ture function vW2/m' is shown in Fig. 3. Some
comment is necessary to explain the exact signifi-
cance of thi. s fit. In order to determine the param-
eters of our model as reliably as possible, we
fitted the structure functions vW, /m' ealeulated
from the electroproduction cross sections of Ref.
2 using the ratio R = e'~ /e'r = -m'k'/v' rather than
the more usual constant value of R =0.18. As we
demonstrated in See. III, the variable R of Eq.
(3.16) is a natural feature of our model, and is
quite consistent with the direct determination of
R from experiment. ' In Fig. 3, however, we plot
our result against the data for 8 = 0.18 in order to
facilitate comparison with other models. The dif-

ference between these data and those we actually
fitted is slight, except for the larger values of ~
where R = -m'k'/v' gives a value of vW, /m2 ap-
proximately 5% smaller. Thus the fit is slightly
better than is indicated by the figure.

We used data for W& 2 GeV and -k'&1 (GeV/c)'
only, and fitted with the exact expression (4.8)
rather than the scaling limit form of Eq. (4.10).
The smooth curve plotted is, however, the result
for k' = -~. For -k'& 1 (Gev/c)', the scaling
curve differs only marginally from the exact form,
as we shall see when we discuss scale-invariance
breaking. Since our model predicts R = -m'k'/v2,

W, also scales, and we have 2W, = ~(vW, /m').
This relation is perfectly consistent with the avail-
able data, so the fit to W, does not add anything
new, and we mill not consider 8', further.

Several important features emerge in the present
model. Firstly, our fit to vW, is Pomeranchukon
dominated for ~& 10. Thus we would agree with
Harari' s" suggestion that deep-inelastic electro-
production is primarily diffractive and not with
models '" "which suggest that a large part of the
cross section is nondiffractive in origin. OrQy ex-
periment can determine whether the present model
is correct. We predict that by &u = 20, vW, /m 2 has
essentially reached its constant limit, and at
~ =100 it has fallen only to vW, /m'= 0.31. The
scanty data for ~ & 20 appears to indicate a smaller
asymptotic limit, but these values of (d are attained
only for -k'&0.8 (GeV/c)', and Eq. (4.2) clearly
demonstrates the kinematic suppression of vR', for
small tk't related to the fact that vW, must vanish
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and

o ~r = 389.39m 0'13 gb (5.1)

V PR~
m2 2 4~2~ ~P '

at k' =0 [Eq. (2.10]. It is unwise to fit the scaling
limit curve to such data, and we suggest that the
leveling of vW, /m' for &u& 5 is strongly indicative
of Pomeranchukon dominance. At least the data
are consistent with this model, and there are not
enough points to fit only for ~&12, say."

We further remark that the relative normaliza-
tion of o~ and vR', in our model is determined by
the Regge scale parameter m, and the vector-
meson mass m~ of the propagator (4.3). Asymp-
totically,

ground, nondiffractive-resonance duality, since
these lower trajectories must interfere with the
Pomeranchukon in order to produce the correct
threshoM behavior. The Rittenberg and Rubin-
stein ' scaling variable &o~ = (2v + M')/(m, ' —k')
may be significant for the dual interpretation of
the present approach, however, since this is just
the variable needed to prevent the daughter series
from diverging at threshold for k =0. For M = mo,
the threshold behavior of the extrapolated Regge
terms in Compton scattering is precisely that of
vR', . In any case, the importance of low-lying
trajectories even for high energies occasioned by
the k' dependence in inelastic electroproduction
obscures the simple Harari-Freund 3' dual inter-
pretation.

Although m~ was fixed to m =0.765 GeV in the final
fit, we tested the dependence of the result on m~
by doing an independent fit with m„as a parameter.
From a wide range of starting values for both m

and m~, the values (4.12) were always reproduced
with m~ changing to perhaps 0.78 GeV, and m,
correspondingly slightly above 1 GeV. It seemed
reasonable, therefore, to fix these parameters at
their quoted values.

The nonleading A,' trajectory is unimportant in
the fit to vW, and o~~. Its absence would be readily
accommodated by a slight adjustment of the other
residues. Its importance is felt only for the fit to
the neutron to proton ratio discussed in Sec. VD.
In this connection we refer to the discussion of
small ~ behavior in Sec. IVC. Since we perform
our k' continuation at fixed s and I;, we expect
Regge behavior down to threshold in the scaling
limit. The fact thatm, =l GeV is preferred by
our fit lends further support to this idea. We sug-
gest that the observed (&o-I)' threshold behavior
is in fact the effect of lower-lying trajectories
that become important as ~-1. Since we have
imposed this threshold behavior by hand, the ef-
fective A, -A,' complex serves only to distinguish
different isospin exchanges, and does not affeCt
this behavior. The detailed interpretation of the
threshold behavior is unfortunately outside the
scope of our simple model, and we merely note
that our phenomenological expression (4. 1) works
perfectly.

The present model suggests a rather different
interpretation of the data to that proposed by
Bloom and Gilman. ' For moderate values of ~k'~,
8'&2 GeV corresponds to small ~, and the fact
that the scaling limit curve for large W averages
the resonances for small S' does not have an ob-
vious interpretation in terms of duality. The im-
portance of low-lying trajectories for small ~
can completely mask the Pomeranchukon-back-

D. The Neutron to Proton Ratio

Much of the difficulty in the interpretation of the
electroproduction data stems from the observed
small ratio of the cross section off neutrons to
that off protons at small v. The data are shown
in Fig. 4, and a reasonable extrapolation would

give II'-=(0/H -1){&u=1)=0.3. If we ignore the A,'

contribution, a Regge fit to a ~ would predict
8' (~ =1)= 0.74, whereas with an effective A,' tra-
jectory, our model gives R'(&u =1)=0.26. The
data from Ref. 2 are not corrected for deuterium
effects, and we simply fitted the data as shown
with the full expression for W2/W~2. In Fig. 4 we
have plotted the scaling limit curve, and find sat-
isfactory agreement with the data. Certainly, a
reasonable fit for &v &4 is impossible without the
A,' contribution. Any attempt at such a fit forces
a considerably different interpretation on the rest
of the data. In the absence of an A2, the ratio for
small & can be lowered only by reducing the I
and f terms in inelastic electroproduction, and to
maintain the fit to the Compton data, we must re-
duce both m, and m~. This obscures the meaning

l.4
)

I.O

4 5 6 7 B9IO

FIG. 4. The Qt to the neutron to proton ratio. The data
from Ref. 2 have not been corrected for deuterium effects.
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of a Regge fit for small ur, and the over-all quality
of the fit is considerably reduced.

E. Scale-Invariance Breakiog

In Fig. 5 we plot our model predictions for
vW, /m' at small ~k'~ and fixed ~. The data are
taken from Ref. 2 with the fixed value of o~/or
=0.18. Since vS', is constrained to vanish at k'=0,
the data must show deviations from scaling be-
havior for small ~k""~. We can see from Pig. 5

that our model describes this fall off for ~k'j & I
(GeV/c)' very well. It should be pointed out that
at no stage of our fitting procedure did we actually
fit this data, so the curves of Fig. 5 represent an
absolute prediction of our model in terms of the
parameters determined by the fit to the other data.

It is interesting to observe that the model pre-
dicts approximate scaling to lower values of ~k'~

for small ru. This should not be taken too serious-
ly, because for fixed &u, small ~k'~ corresponds to
small W, and for ~=5 for instance, 8'=2 GeV for
k'= -0.8 (GeV/c)'. Nonleading effects become im-
portant for small ~k'~ and &u, and a Regge model
is unreliable below ~k'~ = 0.8 (GeV/c)' in Fig. 5(a).
It is important to notice, however, that the scale-
invariance breaking is not necessarily charac-
terized by a small mass. In our model the scale
breaking depends on m, =1 GeV and m =0.765 GeV.
In spite of this, we essentially reach the scaling
limit by k'= -I (GeV/c)'.

VI. DISCUSSION

The excellent fits that we have obtained clearly
demonstrate that the elastic scattering of both
real and virtual photons from nucleons can be
understood in terms of the same dynamical model.
An important feature of the model is the inclusion
of the vector-meson propagator to describe the
factorizable k' dependence of the virtual photon.
This provides a connection between the low k' re-
gion where conventional VMD is expected to be
reliable, and a scale-invariant Regge model for
the large spacelike k' region. By requiring that
the continuation to 0' -- 0 from spac elike values of

be smooth, we have been able to relate deep-
inelastic electroproduction to Compton scattering.
Since the continuation is specified in terms of in-
variant amplitudes, there is no ambiguity associ-
ated with the Lorentz frame dependence of the
longitudinal-transverse decomposition of the vir-
tual photon. In order to make definite predictions,
it is necessary to make the further assumptions
of minimal k' dependence of the invariant ampli-
tudes and leading-order s-channel helicity con-
servation for Compton scattering. These are rea-
sonable assumptions, and they lead directly to the
prediction o~ /vr = -m'k'/v'. This prediction is a
central feature of our model, and highlights the
difference between our formulation of VMD and
the more usual approach of Sakurai. ' The assump-

0.4,-

0.3
v%2

lTl 0.2

0

I
(o)

f I

2 3 4
—k {GeV/c)

0.4

0.3-

Q.2

0 I

8&u~l2

2 3 4
—k ~ {GeV/c}

0.3

02

0
0

!2&~&la

I 2 3 4
—k

~ {GeV/c)

04 (a)
0.4

R= QIB
~ =IO

0.3
p 0/~

N 02
II

0 L

Q I

16&~&24

2 3 4 5

{GeV/c)~

03

0.2

Q
0

24&~&36

2 3 4
C

-k~ {GeV/c) ~

FIG. 5. The plot of vW~ /mt against )k2j for various values of cu. The data are again taken from Ref. 2, and illustrate
the scale-invariance breaking for small ~kt) predicted by our model.
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tion of minimal k' dependence is also supported
by the data, since terms of O(k~) in the C, would
destroy the scale invariance of the model.

It, should be pointed out that our model requires
the invariant amplitudes to be Reggeized directly
or via the singularity-free f-channel helicity am-
plitudes. If we Reggeize the forward s-channel
helicity amplitude for Compton scattering f~i, i
+ f, i, t, the transformation to the invariant am-
plitudes necessary for the 0' continuation intro-
duces a factor I/(s -m')'. lt is easy to verify that
in this case vS', will scale only if the vector propa-
gator is absent. %e get instead a factor

V i
(s-m')' 4 e-I

which diverges at threshold, but can readily be
accommodated by modifying the phenomenological
threshold factor (4.7). This gives a model very
similar to that of Moffat and Snell." %e consider
such an approach to be somewhat artificial, how-
ever. After all, Regge poles are t-channel objects
and since the forward t-channel helicity amplitude
has double helicity flip, it is characterized by the
v" behavior of the invariant amplitude A3 The
forward s-channel helicity amplitude -v, but it
has double zero at s = m'. This singularity is un-
important for large s, but in principle it should
be removed, especially if one wishes to look at
the amplitude near threshold. The 4' continuation
singles out the invariant amplitudes as the basic
dynamical objects, and Regge theory tells us that
these should be parametrized via t-channel helicity
amplitudes. Our direct parametrization of A, is
entirely equivalent to the t-channel approach, but
not to the s-channel parametrization. Since the
incorporation of VMD is a basic feature of our
model, it is of some importance that this distinc-
tion between the s- and t-channels be understood.

Our approach to the data is of necessity phenom-
enological, but we feel that by taking scaling be-
havior as a fact to be understood rather than pre-
dicted, our detailed fit to the data leads to some
new understanding of deep-inelastic electroproduc-
tion. In the first place our model demonstrates
that inelastic electroproduction for large lk'l is
consistent with the Compton data at k' = 0 within
the fraxnework of vector-meson dominance of the
electromagnetic current. %e use the same simp). e
generalization of VMD that has been successfully
applied to other processes, "and it is of some in-
terest that we find that the additional O' dependence
of the off-shell vector-meson scattering amplitude
necessary in the presence of the vector propagator
is simply given by replacing the energy variable
v/vo by &u as in conventional scale-invariant Regge
models. Since our amplitude has the explicit vec-

1.-000.
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a 0.'l00-
)k )

5.0

5 0.010.

2.0
't. 5
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0. 5
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$.0

FIG. 6. Differential cross section for virtual Compton
scattering ccy~pp ~ icy~pp. The variable@2 js gjven j
units of (GeV/c)2, and in order to display the change in
slope, the inessential k2 dependence of the forward cross
section has been divided out.

tor-meson poles, it would be possible to study
vector-meson photoproduction, electroproduction,
and vector-meson-nucleon scattering by taking the
residues of these poles. To investigate these pro-
cesses, however, the kinematical analysis must
be extended to include the extra amplitudes pres-
ent for inelastic scattering.

There has been some interest recently 3 in the
k' dependence of the diffraction slope which can be
studied in vector-meson electroproduction. This
has bearing on the question of the size of the pho-
ton in the spacelike region, and since the photon
interacts with hadrons via an off-shell vector
meson in our model, we would not expect the rapid
onset of pointlike behavior. The experimental
situation of po electroproduction is not clear, 3' and
the question of whether the interaction radius
changes with k' has not been resolved. Although
our present kinematical analysis does not allow us
to consider p electroproduction, we can investi-
gate elastic virtual Compton scattering where k2

=0"&0. This process is not experimenta1ly ac-
cessible, but it is in fact a more direct measure
of the interaction radius than p' electroproduction
since both photons are off shell. ' Vfith our model
amplitude, and the parameters determined in the
fit described above, it is straightforward to pre-
dict the differential cross section for "y"p -'"y"p,
where "y" is a spacelike photon. In Fig. 6 we plot
our predictions for this reaction at a fixed value
of & = 6 GeV and 0 - l~'I- 5 (GeV/c)'. The diffrac-
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tion slope changes by more than a factor of 2 in
this range, from exp(6t) at k' =0 to exp(2. 5t) at
k'=-5. At fixed v the main effect comes from the
Regge shrinkage, since 2v/(m, '-k') decreases as
~k'~ increases, but a similar change in the slope
is observed if we plot do/dt for fixed W. For very
large c.m. energies, the k' dependence arising
from the nonleading amplitudes becomes unimpor-
tant, but the effect persists at fixed v or fixed S'
simply because of this Regge shrinkage. Thus a
change in the diffraction slope of the order of that
shown in Fig. 6 can be simply interpreted in terms
of the well-known fact that for Regge poles at fixed
k', the radius of the interaction increases as the
energy increases. Similar considerations will
clearly apply to the observable p' electroproduc-
tion process.

Other interesting features of our model are the

prediction of Pomeranchukon dominance of vW, (~),
and the possible importance of nonleading Regge
trajectories for small ~. These predictions are
most easily tested by accurate high-energy photo-
absorption cross sections for both protons and
neutrons, and more directly by the measurement
of vW, for large ~ and ~k'~ & I (GeV/c)'. If vW, re-
mains approximately constant above ~= 6, then it
would seem that the scaling region is predomi-
nantly diffractive, and current duality arguments
may require reformulation.
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APPENDIX

We use units such that 0 = c = 1, and our metric is g~ =-g,-,. = I so that k' is negative for spacelike mo-
menta. States are normalized by

(p'$) = 2E (2w)'5"'(p'-p),

and spinors are normalized to uu =2m.
Invariant amplitudes are defined in terms of the T matrix

T = u (p')M~„e ~ (k)e "(k')u(p)

M =- M~,e ~a" = g K,.C, . (A2)

The amplitudes for virtual-photon elastic scattering are defined in Eq. (3.2), and the two redundant co-
variants are elixninated by the equivalence theorems

(P~kq+ kI Pq) $ = mK~+ vK8 —2mK~+ m vKu +P K~2,

mk~k„@ = (v + ,' t)K, + (v —Q')K—4+m Q'K, —2vK, —,'tK» + (v'+ —,tQ'—)K» + mvK» .
Similarly, the invariant amplitudes for on-shell Compton scattering are defined in Eq. (3.3) by

6
M= gK,'a, . (A5)

Again there are two equivalence theorems which read

2m'(k k'g&„-k&k„)g =2mvK~~--,'-mtK~~+vKt, (A6)

2m[k k'(P~@y„+yi@P ) -v(k~@y„+y~gk„)+2vg~„(mg -v) ——,'@'(P~k„+k~P„)+vk~k„]=mvK5~+P'K6~.

Notice that for Compton scattering we get additional relations like

It is straightforward but tedious to derive the relations between the invariant and helicity ampkitudes.
Since we need these expressions for our work, we give them here in full. For these relations we use the
slightly different notation K = (k„k) for the virtual-photon four-momentum, and put k =-[k ~. The c.m. nu-
cleon energy is E, and



COMPTON SCATTERING AND DEEP-INELASTIC. . .

s+ m'-K'

s -rn'+K'
0 2'

4sk' =[Sr' —(W+ m)'] [@'—(W -m}'],
where s —=8"', and m is the nucleon mass.

The s-channel h'elicity amplitudes for the elastic scattering of virtual photons on nucleons are
1

f,i, i =, , ~'
—(k'[E +k, cos'(-,'8)]'[mC, + (k'+Eko)C, ] + 4mk'k, ' sin'( —,'8)(C, —C4 —C, + 2C„)~K'

+ (k' -k,' cos8) [mC, + (k'+Ek, )C,]

+4mk'k, W sin'( —,'8)(C~+ C,)+2k'W[E+k, cos'(28)]C,

+ 4k'k, W sin'( —,'8)C, + 4mk, ' sin'(-, 8)C» —4K 'k, E sin'(-, 8)C»],

f, =-
~ ~

fk [E +k cos (—8)] (EC, + mk, C,)+4k'k, 'Esin'(-,'8)(C, —C, —C, +2C„)

~ (k' -k,'cos8) (EC, i mk, C,) + 4k'k, WE sin'(-,'8)(C, + C,)
~2mk'[E+k„cos'(-,'8) JC, +4mk'k, sin'(-,'8)C, —2k'k, W[E +k, cos'(-,'8)]C,
—4k'k, 'W sin'(-,'8)C„-4k, [k'+Ek, cos'(-,'8)]C„+4m% 'k, cos'(2 8)C»),

foi, i = f, i, i — »'» (k'[E+k, cos'(—,'8)]C, +2k2kosin'( —,'8)CS+2mkoC» —2ko[Eko+k'cos2( —,'8)]C~J,
2&2sin(-,'8)

fo i„ i = 2,q2 cos'(—,8)(-k'[E+kocos'(28)][mC, + (k'+Eko)C, ]+4mk'kosin'(28)(CS —C4 —Cg+2C, O)

+2mk'W(C~+ C,)+2mk, (C, +2C»)+2k, (k'+Ek, )(C, -2C») —k'W(C, -2C, —2C»)],

foi, i = »~', sin'(-,'8)(k'[E+k, cos'(—,8)](EC,+ mk, C, ) -4k'kQ sin'( —,'8)(C, —C» —C, +2C„)
~2 cos (-,'8)

-2k'EW (C~+ C,) -2k+ (C, +2C») —2mk, '(C, -2C»)
+mk'(C, -2C, -2C„) k'k, W(C, 2C„)f,

f . ..=-f. . .+ „[k'k W sin'( —,'8)(C, 2C,O) -kW'C —2-(k'+Ek )C»+2m''C„],2&2 cos (—,
' 8)

f, i, i ——f, i, i -4cos(~8)[k'sin'( —,'8)(C, —2C, —2C„)-2mC„+2(k'+Eko)C, 2],

f, i, i =-coss(-,'8)(k' sin'( —,'8)[mC, + (k'+Ek, )C ]+4mk' sin'(2 8)(C, —C, —C, +2C«)

+ 2m(C, + 2C„)+ 2(k'+Eko) (C6- 2C„)],
f... i =sin(-,'8) cos'(—'. 8)[k' sin'( —,'8)(EC, + mk, C,)+4k'E sin'( —,'8)(C, —C4 —C, +2C„)

+ 2E (C, + 2C,z) + 2mko(C6 -2C„)+ 2k'W(C~ —2C,O)],

f, i ~, i =sin'(-,'8) cos(-.'. 8)(k'cos'(-,'8)[m C, + (k'+Ek, )C,]+4mk'cos'$8)(C, —C, -C,+2C„)

-2m(C, +2C„)-2(k2+Ek, )(C, -2C»)+2k (C, -2C8-2C»)),

f, i, i =-f, i, i —4 sin( —,'8)[k'Wcos'( —,'8)(C, -2C„)+2EC» —2mkoC„],

f, , i =sin'( —,'8)[k'cos'( —,'8)(EC, + mk, C,)+4k'Ecos'(-,'8)(C, —C -C,+2C„)-2E(C,+2C„)-2mk, (C, -2C„)].
The s-channel helicity amplitudes for on-shell Compton scattering are simpler, and with the same nota-

tion as before, but withe'=0,

f~i, i = -2k'cos(-,'8) (ms cos'(-,'8)A, +2[s -m' sin'(-,'8)]A, —2[s + m'sin'(-, '8)]A,),
f~ i, i =-2k'scos'$8)(mA, +2A, +2A4),
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f »&, » =2k'W sing 8) eos'(—,'8)[EWA, +2m(A, + A4)],
(A10)

f»i~, » = -4k' sin'( —,
' 8) e os (—,

'
8 )[m(A, + ,' P'A—,+ mA, + 2A, ) +EWA4],

f»i, i =4k'sin(-,'8)(E sin'( —,'8)(A, + ,'PA—,+ mA3)-W[2 —sin'( —,'8)](mA~+2A, )+ mk sin'( —,'8)(A~+2A6)]. ,

f» i, i =-4k'sin'( —,'8)[E(A, +—,'p'A, + mA, )+ m(EA~ —2kA, ) —2(k —E)A,] .
These relations are equivalent to those given by Jones and Scadron" for instance.
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The distribution in transverse momentum of particles produced in very high-energy had-
ronic collisions is studied using a general class of Gaussian models. The models are exact-
ly soluble and readily compared with experiment, given the lowest moments of single-particle
and two-particle distributions. Perhaps most important, they provide a simple framework
for prototypes of specific dynamical schemes, such as multiperipheral or statistical models,
in which the general trends and signatures of these schemes are readily apparent.

I. INTRODUCTION

In a high-energy collision of two hadrons there
are two immediately noticeable features in general.
One is the presence of many secondary particles
and the other is the extremely limited transverse
momentum of all particles. ' It is the latter feature
we wish to discuss here within a class of phenom-
enological models.

Consider a collision in which exactly N hadrons
are produced in the final state and all final-state
momenta are measured. Because the transverse
momenta are usually small we choose to describe
the momentum P" of each particle by its trans-
verse momentum P =(P„,P, ) and by its rapidity

8 = —,
' ln[(Z+ P.)/(Z —P.)].

The momenta P,", P2I', . . . , P„" are labeled according
to the order of particles in rapidity: 8, ~ 8, & 8„.
Thus p„ is the transverse momentum of the leading
fragment of the incident particle, p, is transverse
momentum of the most backward fragment of the
target particle, and so forth. The object to be dis-
cussed is the distribution of the transverse mo-

menta,

1 der„

o~ dpi'' ' ' dp~

Oar 8,-&0,+~

dG~

Ed/ dp dg dp

Implicit in the assertion that the transverse-mo-
mentum distribution (1) is a useful object to study
is the assumption that the transverse momenta are
weakly correlated with the rapidities. We expect
that it may be important to distinguish the parti-
cles by their order in rapidity, but that the precise
values of the rapidities do not have much influence
on the transverse-momentum distributions. This
assumption is not wholly without foundation. Be-
cause of the transverse damping and because the
average number of particles produced, (N), is
small compared to E/m „(typically (N) - lnE), '
where E is the total center-of-mass energy, little
correlation is introduced by over-all energy con-
servation. Furthermore, the absence of strong
correlations is kinematically suggested in any sys-


