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The scattering matrices of field theories formulated in the light-front quantization of the
preceding paper are studied. Reduction formulas for scalar and Dirac particles are derived.
The scattering matrices in this new formulation are shown to give the same predictions as in
the equal-time formulation to all orders in perturbations. Second-order renormalization is
carried out and it gives well-known results. New Feynman rules of the perturbation theory
are given and their peculiarities are discussed.

I. INTRODUCTION

In the preceding paper ' we have studied the
quantization of interacting scalar and Dirac field
theories in an infinite-momentum frame. It was
shown that the formal structure is consistent with
Lorentz invariance, leads to sum rules for the
spectral functions of various Green's functions,
and provides current commutation relations on the
light front from which current-algebra sum rules
like those of Adler ' and Dashen, Gell-Mann, and
Fubini' can be derived without reference to the
infinite-momentum limit.

Qn the other hand, quantum field theories have
been traditionally formulated on equal-time sur-
faces, and the equal-time current algebra of Gell-
Mann 4 has played an essential role in the develop-
ment of particle physics. We may ask: Are the
light-front formulation and the equal-time formu-
lation of quantum field theories equivalent to each
other? In other words, do these two formulations
give the same scattering matrix for the same
physical processes? This is obviously a very im-
portant and interesting question. It has been par-
tially answered by Kogut and Sopor, ' and Bjorken,
Kogut, and Soper, ' who demonstrated that certain
classes of diagrams in quantum electrodynamics
give results identical to those in ordinary formu-
lation. The main purpose of this paper is to sup-
ply a formal proof of the equivalence of the S
matrices given by the two formulations to all or-
ders in perturbation. In the present paper we
shall consider only self-interacting scalar field
theories and coupled scalar-Dirac field theories.
Field theories involving spin-I particles will be
studied separately' as they are more complicated

and require special treatment. Qur proof is
based on the functional-derivative method due to
Schwinger ' which has been recently utilized by
Gerstein, Jackiw, Lee and Weinberg ' in their
study of nonlinear chiral Lagrangians.

In Sec. II we derive the reduction formulas for
both scalar and Dirac particles. In the case of
Dirac particles it is shown that either the full in-
field g (or P,„,) or its independent part g,'„" (or
g,"„I)can be used in these formulas. In Sec. III the
S matrix for a self-interacting scalar field theory
is studied in the interaction representation. In
this simple theory the interaction Hamiltonian and
the negative of the interaction Lagrangian are
identical and covariant; time-ordered products
and x'-ordered products are equivalent. The light-
front formulation of this theory and the equal-time
formulation are trivially equivalent. The S matrix
for a coupled scalar-Dirac field theory is con-
structed and studied in Secs. IV and V. The inter-
action Hamiltonian in this case is no longer co-
variant and is not simply related to the interaction
Lagrangian. Furthermore, the fermion propaga-
tor acquires a noncovariant term. In Sec. IV the
new Feynman rules are presented and applied to
the second-order expansion. It is demonstrated
to this order that the noncovariant terms in the
Hamiltonian and the fermion propagator explicitly
cancel each other. The resulting S matrix is co-
variant and the same as in the ordinary formula-
tion. Section V is devoted to the proof of the
equivalence of the light-front formulation of the
coupled scalar-Dirac system to the corresponding
equal-time formulation to all orders of perturba-
tion. Second-order renormalization for pseudo-
scalar coupling theory is carried out in Sec. VI,
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using the new Feynman rules. The well-known
renormalized Green's functions and vertex func-
tion of this theory are reproduced.

(P out~ o.', b in)

= (p —k out
~
n in)

II. REDUCTION FORMULAS
+ —d~x f~(x)(&'+ m')(p outing(x) ~c& in),

In this section reduction formulas for scalar and
Dirac particles will be derived. ' In the deriva-
tion it is assumed that all surface terms can be
ignored without any detailed justification. A
mathematically more rigorous derivation is cer-
tainly desirable.

As long as there are no massless particles, in-
states and out-states can be introduced just as in

the usual formulation. This follows from the fact
that free-particle states at t- ~ and t- -~ coin-
cide with free-particle states at x'-+ and
x'- -~. Even in the presence of massless parti. -
cles and as long as there is no in- and out-parti-
cles moving in the x direction, the asymptotic par-
ticle states can be defined as well. For simplicity,
however, we shall not discuss systems involving
massless particles.

For the derivation of the reduction formulas in-
volving scalar particles, the method given in a
standard textbook such as Bjorken and Drell goes
through. We shall not repeat the derivation here.
The result for reducing in one in-particle is given
by

where

1
e -ik'Z

f&i( ) [(2&i)$2'+]1/2

(2.1)

(2 2)

is the one-particle wave function in the light-front
formulation. The one-particle states are normal-
ized according to

(u'ia) =6 (a'-u")52(t —a') . (2 2)

This is precisely the well-known reduction formula
using a slightly different normalization condition.
Other reduction formulas involving scalar fields
can be obtained by a similar method.

The derivation for the reduction formula for
Dirac fields is more subtle. This is related to
the fact that not all components of a Dirac field P
are dynamical variables on the light front. Only
g"'—= —,(1+o.', )&ji and &ji"'t are independent fields.
Thus, &j~"' and p"'~ alone are associated with the
in- and out-particle states. They are related to
the corresponding creation and annihilation op-
erators through

(2.4)

u"'~(p, s')u"'(p, s) =-,'u(p, s')y'u(p, s)

d2pdp rn z/2

„"( )x=Q. " „, —, 9(p')[b. (p, s)u'"'(p, s)e '~'+d;t(p, s)v"'(p, s)e'~ "]'
s

and its Hermitian conjugate equation with similar equations for out-fields where u "'(p, s) -=—,(1+o.,)u(p, s)
and v"'(p, s) -=-,'(1+ n, )v(p, s) are projections of the usual spinor wave functions u and v into the upper
rapidity space defined by the eigenvalue a,' =1. The spinors u"' and v"' are normalized according to

P
2m

(2.5a)

&"t(p, s') "'(p, s) = P 5... , (2.5b)

while the creation and annihilation operators obey

(b (P s) b'(P' s')}=~..~(p'-P")~'(P-P')

(~;.(p, s), d;".(p', s')}=5..5(p' p")5'(p p'),-- (2.6a)

(2.6b)

(b[n & bin} =(din
& din} =(bin

& din} =(bin& did} = ' ' ' =0. (2.6c)

Equations similar to (2.6a)-(2.6c) hold for b,.i, bt&, d«&, and dt„&. Equation (2.4) can be inverted to give

eiP x m I. /2

b;„(p, s) =Jt d'xdx „, —, u"'~(p, s)q'"(x)

d'xdx U",'t x '" x, (2 'f)
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yg &/2

dt(p, s) =
Jl

d'xdx „, —, v "&'&(p, s)p('&(x)

r
d'xdx V( t(x)y(.'&(x), (2.8)

and similarly for b;~, d' bog) 50+) @out and d~„, , where

e-fPOX ~ 1/2

Up, (x) —(2, „—, u (p, s)
7T) P

=-,' (1+ n, )U~, (x), (2.9)

e t'P'x m 1/2

VI„(x)—,2,„, , v' '(p, s)
(277) p

= —,
'

(1 + o.s) V~, (x), (2.10)

and U~, (x) and V~, (x) are solutions of the free Dirac equation.
The simple reduction formula for removing a Dirac particle (p, s) from the in-state can be computed as

follows:

(p out~ (ps), o. in) =(p —(ps) out~ o.' in) + (p out~i&t(p, s) —b~„,(p, s)( o. in)

= (p —(ps ) out
~
o. in) +JI d'x dx (p out) (,"„'"(x) —g (:„&(t(x)

~

o in) U ('& (x)

=(p —(ps) outl o.'in) — d~x(p outls 4 ('»(x)U1

g2 4
(2.11)

By the use of the Dirac equation

(zP -m)U, .(x) =0,

we have

(2.12)

(2.13)

where

y(+& y(+&t 0

Substituting (2.13) into (2.11), we have the reduction formula

(2.14)

(&6 out((ps), n in) =(p —(ps) out~ n in) — d4x(p out~&I& "&(x)~n in)(-i&((-m)U~, (x) . (2.15)
Z2 4

At first sight, Eq. (2.15) does not appear to be the same as the usual one-particle reduction formula

(p out~ (ps), n in) =(p —(ps) out((&( in) —
J

d4x(p out(g(x)~min)(-ig-m)U~, (x) . (2.16)

However, a straightforward calculation extablishes that Eqs. (2.15) and (2.16) are actually the same.
The reduction formula for removing two or more particles from the in- and out-states can be worked

out in an analogous way. One can continue the reduction process until all particles are removed from the
state vectors. For a given process, the connected contribution is simply given by the product of individu-
al one-particle factors operating on the vacuum expectation value of fields

«IT'(~(x, ) C "&(S,) "y" (.,&) ~ ~)I0)~ ~ ~

We note in our formulation that (i) the field operators in the above vacuum expectation value are x'-or-
dered; (ii) one can use either g"' or g in the reduction formulas; (iii) the noncovariant term in the Wick's
contraction g'

T(&

' does not contribute at all in the reduction formula. "
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III. SCATTERING MATRIX OF SELF-INTERACTING SCALAR FIELD THEORY

The S matrix of the simpler case of a self-coupled scalar field theory will be studied in this section. It
will be established that the Feynman rules for computing the S matrix are the same in the light-front
formulation as in the conventional quantization.

The S-matrix can be computed with the help of the interaction representation and the Wick expansion.
The free and the perturbed Hamiltonian density in the interaction representation are

Kp —2 To

and

&[(f~)2+p2~2]

3C, = -Z, (y),

(3.1)

(3.2)

respectively, where in (3.1) and (3.2) y and Z~(y) are in terms of interaction representation field opera-
tors. Qf course, y obeys the equal-x' commutation relation of a free scalar field. The equal-x' com-
mutation relation for p, (3.1), and the Heisenberg equation of motion,

i[P, , p (x)] = & cp (x),

with

(3.3)

P, = ' d'xdx K, (x), (3.4)

are sufficient to establish that y(x) is in fact a free field operator.
The S matrix can be expressed simply by

8 =T'exp -i d'xR, (x), (3.5)

where T' stands for x' ordered-We can. evaluate the S matrix (3.5) by means of perturbation theory
through Wick's expansion. We then obtain a set of Feynman: rules for this perturbation theory: (1) The
vertex is given by Z~ just as in the conventional theory; (2) the propagator is given by

p (x)'p (0)' = T"(0i(y (x)p (0)) i 0)

-ikx + ~ 1 ik x
(2~)' 2ao, (2~)' 2ao (3.6)

J (21f) k —p +16 (3.7)

(3) one has to sum and integrate over all intermediate states. These Feynman rules are precisely the
ones which are obtained in the conventional theory. Thus, the two theories give rise to the same S matrix.

IV. QI"Py THEORY, S MATRIX

For a theory involving fermions, the perturbation calculational procedure of the S matrix in the light-
front formulation is different from that of the usual formulation. We would like to point out that there is
no a priori reason why the S matrix computed from these two formulations should be the same. For in-
stance, one can never bring a spacelike surface into a light-front surface and vice versa by any finite Lo-
rentz transformation. This would seem to suggest that these two formulations might be intrinsically dif-
ferent. In fact, as we shall see, the interaction Hamiltonian and the fermion propagator obtained in the
light-front formulation are different from those obtained in the conventional formulation. It is therefore
rather remarkable to see that the S matrices computed in these two formulations can be brought into each
other after a regrouping of terms in the perturbation series.

Recently, Kogut and Soper have studied the S matrix of quantum electrodynamics in an infinite-momen-
tum frame choosing a special gauge A' =0. They have constructed the interaction Hamiltonian in this in-
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finite-momentum frame, and have analyzed the S matrix by means of the "old-fashioned" perturbation the-
ory. They have reached many conclusions simile, r to ours obtained in the (I'(y theory.

(a) Interaction representation. The Hamiltonian density of the interaction system in the Heisenberg
picture is given by (3.24) of paper I as

T+- ~ [(gy )2+ p2y 2] y j[y &+) ts-y(+) s q&-+)'&y&+) +/ &- ) 1' 8+(&-) s+y &-) tq &-)] (4.1)

where for clarity we denote all Heisenberg operators by a subscript H. For definiteness, we assume that
all field operators are normal-ordered. The Hamiltonian is obtained by integrating 2

T' over d'xdx,
giving

H=P

d xdx T

d'xdx [(vy~)'+ p'y„']

+-,' d'xdx
J

d'x'dx' („"' t(x)[-in v+y'II„(x)][in v'+y'K„(x')]g„"'(x')(-i)5'(x-x')e(x -x' ) (4.2)

where

0 ++int (4.3)

II„(x)=- m + gl'y„(x), (4 4)

H, &p„, &„"',&
„"'~) fd xd=x-', &('ip„)'+ g'rp„']

+ —,
' d'xdx d'x'dx' g„"'t(x)(-in %+yam)(in V'+yam)g„"'(x')(-i)5'(x -x')e (x -x' ),

and

(4.5)

H , (&pH, gz"', (z".'t) = —,'Jtd'xdx Jl
d'x'dx' [gz"'(x)ty'gl'yz(x)(in V'+yam)(z"'(x')

+(„"'(x) (-in ~ V+ y'm)y'gry„(x')q„"'(x')

+ g2(&"~ (x)p„(x)p„(x')y„"'(x')](-i)5'(x —x')e (x —x' ) . (4.6)

%e introduce the interaction representation by the standard method and denote every operator in the inter-
action picture by a subscript I. The field operators in the interaction representation are related to the
corresponding operators in the Heisenberg representation by a unitary transformation,

y (x) =U(x', 0)y„(x)U(x', 0) ',
g',"~(x) = U (x', 0)$„"'(x)U(x', 0)-'.

l

Among the many properties of y„g„and U in the interaction picture, we list the following: (i)
and g&z" t obey the Heisenberg equations of motion for II„

[Ps(x)i IIO(9'Ii 4s ~
4s" )] = is 0'r(x),

+'(x) H (y g&+' g&+)t)]= is g&"&(x)

and

(4.Va)

(4.Vb)

(+)
9'r~ 4r i

(4.8a)

(4.8b)

(4.8c)[q&+) 't
(x) II (y g{+) q&+)1')] is-y&+) $ (x)

where IIO(cpz, g'z", P'z" t) is the free Hamiltonian (4.5) in terms of the interaction representation operators.
(ii) cp~, P&,", and g&~" ~ satisfy the equal-x' (anti-) commutator relations,

i[(p, (x), y, (x')] =-,'6'(x —x')e (x -x' ),
fy'~" (x), y'i" (x')t} = —,'(1+ng)6'(x-x')5(x -x' ),

(4.9)

(4.10)
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=0

(iii) The U matrix is given by
x+

U (x', x")= 7 exp ("--,'i dx'(d (x'))
r+

and the S matrix is given by

d=U(, — )=T'e xp(--,'iJ dx'U~(x')}

(4.11)

(4.12a)

(4.12b)

where T' stands for x'-ordered. III has the same functional form as I;,t but is expressed as a function of
the interaction representation operators,

Hr=H (('pr 0r 0r ') (4.13)

Properties (i) and (ii) imply that (pr and g(r" obey the free-field equations. It is easy to see that this is
true for (pr . To show that g(r" leads to a free Dirac equation, we carry out (4.8b) and obtain

je-(t("(x)=-', (1+n,) d'x'dx' (in V+y'~ m)(=,'i)5'(x-x')e(x -x' )(in (d" +y'm)g(r" (x')

= (in V+y'm))I)(r '(x),

where ((r '(x) is defined by

p', '(x)-=f d'x'dx' (=,'i)e'(x-x')e (x -x' )(ie ~ p'+X'm)pte(x').

Equation (4.15) implies

i 8'q(r ' (x) = (in V + y'm)q(r') (x) .

Introducing

gr(x) =-y(r') (x) + q(r '(x),

and combining (4.14) and (4.16), we obtain the free Dirac equation

(i}I-m)gr(x) =0

as desired.
In terms of P'," and finally gr(x), we can rewrite Hr as

(4.14)

(4.15)

(4.16)

(4.1V)

H grjt d'xdx T()(r)xI'g (r)x (p(rx)--,'ig'
(

d'xdx d'x'dx' ((r ) t(x)cpr(x) (pr(x')((r+) (x')5'(x -x')e (x -x' ) . (4.19)

Note that due to the presence of the second term,

Hre-jl d'xdx 2 (((pr 4r Crt) ~' (4.20)

No such additional term appears in the conventional formulation of the T()l gy theory. This additional term
makes the comparison between the two formulations rather complicated. Previous experiences based on
the derivative coupling ggy" (B„rp and the charged-vector-meson theory suggest that the contribution to the
S matrix due to this additional term in HI may be canceled by a corresponding noncovariant term in the
fermion propagator. In the rest of this section and the next section, we shall concentrate on these nonco-
variant terms and the cancellation of these additional terms in the S matrix. For notational simplicity,
we shall now omit the subscript I in the interaction representation operators. Unless stated otherwise,
all field operators in the remaining part of this paper are in the interaction representation.
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(5) Wick's exPansion and Eeynman rules . We know from (S.V) that the Wick contraction between two
x'-ordered scalar fields indeed leads to the covariant propagator,

y(x)'y(0)' =T'&0~(y(x)y(0))IO& = i& (x)

(2m)' k' —p, '+ ie '

Now, we investigate the contraction between a g and a g,
iS (x) -=g(x)')l)(0)' =T"&Oi(g(x)fr(0))i0&

-=8( ')&Oly( )y(0)IO& —8&- ')&014(ON ( ) IO& ~

Note &at only one-particle intermediate states contribute to (4.22). Making use of

X/2

&Olt(x)l p, s& =

j./2

)p, ~l) )0)lo) =( . , a(), s),

etc. , we have

3

iS~(x) =8(x')p „—,u(p, s)u(p, s)e ' "—8('-x')g „—,v(p, s)v(p, s) ' '

(4.21)

(4.22)

(4.23b)

" d2pdp' d *d
=8(x') p, , (p+ m)e '~"+8(-x'), , (-p'+m)e' '* .

„2&2&)sp . 2(2v)'p'

in deriving (4.24), we have used the fact that

(4.24)

Qu(p, s)u(p, s) =
S 2m

(4.25a)

v(P, s)v (P, s) = +m
2m

(4.25b)

Of course, ~e momentum p" appearing in (4.24)-(4.25) obeys the mass-shell relation

p' ™
or

p- = (p'+ m')/p' .
(4.26)

We now try to relate (4.24) as a four-dimensional Fourier transform of the fermion propagator
j/(p -m+ ie). It is now important to distinguish the on-shell momentum from a general 4-momentum p".
We introduce the on-shell momentum p~ for an arbitrary momentum p" through

p p

P' =P' (i =1, 2),
(4.2V)

and

p =(p'+m')/p'&p

Then, Eq. (4.24) can be written as

. t'd/, ~.„8(p') p+ m 8(-p')
J (27))' p' p -p +is -p'

"d4P,~., i(p'+m), . y'. (2)))' p'-m'+ic ' p'

=iS~(x) —~y'5 (x')5'(x)e (x ) .

p+m
-p +p +zE

(4.28)

(4.29)

Indeed, the x' contraction between a ))) and a T)) leads to a noncovariant term in addition to the usual covari
ant propagator function iS~(x).
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Now we can apply the Wick expansion to the
Dyson formula (4.12). This leads to the following
Feynman rules for the vertices and the propaga-
tors:

(i) There are two types of vertex contribution.
We associate a factor -igI' for each regular tri-

(o)
linear (I'(q) vertex, and a factor —,'(-ig)'y'5'(x —x')
xq(x —x' ) for each noncovariant, nonlocal
(qq)(x))(q)g(x')) vertex. As we shall see, the ap-
pearance of this noncovariance nonlocal interac-
tion is only superficial; it will be canceled by a
similar nonlocal term in the propagator.

(ii) A factor in.~(x -y) for each internal boson line connecting the points x and y.
(iii) A factor

(b)

FIG. 1. {a) A regular trilinear f j. gcpvertex; {b) a
noncovariant 4-point {gp){yg) vertex.

iS~(x -y) =sS~(x-y) --,'y'5(x'-y')()'(x-y)e (x -y )

(~) =
'()( -I + (a ) ')

for each internal fermion line directed from y to x. In addition, there are the usual kinematical factors,
loop integrals, and the sign conventions.

These rules can be translated easily to the momentum space, giving the following:
(i) For a vertex such as in Fig. 1(a), we associate a factor -igl . For the noncovariant 4-point vertex

in Fig. 1(b), we associate a factor -ig'y'/2p'.
(ii) A factor i/(q' —g'+ ie) for each internal boson line.
(iii) A factor

+m—2 2
P —Sl + 2E

for each fermion line.
As in the coordinate space, there are the usual rules for internal loop integrations, sign conventions,

and other kinematical factors.
Even though these rules look quite different from the usual Feynman rules, we shall demonstrate that

they lead to results which are identical to those obtained from the conventional rules.
Instead of using Wick contractions as described above, one can also directly expand the x'-ordered per-

turbation series analogous to the "old-fashioned" time-ordered perturbation expansion. Here one has p
denominators rather than energy denominators. Conservation of p" s implies that each intermediate par-
ticle can only have positive p' less than the total p' of the system since the expansions of field operators
(2.1) and (2.10) contain only p'&0. These rules are Weinberg's prescription for infinite-momentum-frame
calculations using "old-fashioned" time-ordered perturbation diagrams. These same remarks apply to
the self-interacting scalar field theory discussed in Sec. III.

t'e) Second order expa-nsion. To understand the mechanism of detailed cancellation of the noncovariant
terms, we work out the Wick's expansion to order g' explicitly. From (4.12) and (4.19), we find that the
second-order expansion of the S matrix is

T'—,
' (-ig)'Jt d~xd~x' [:T() (x)I'g (x)q) (x)::7() (x') I g (x')q) (x'):

+-,':q)(x)P(x)y'P(x')q)(x'): 5(x'-x")5'(x-x')e(x -x' )] . (4.30)

We have put in:: explicitly in (4.30) to indicate the normal-ordering of the products. For a properly re-
normalized theory, we can replace (4.30) by

+ & .' q) (x)T)) (x):y': g (x')q) (x'): 5 (x' —x")5' (x —x')e (x —x' )], (4.31)
where the factors q)T() and ())q) in the second term are x'-ordered before we average over the limits x'-x"
+0. Note that the difference between the integrands in (4.31) and in (4.30) consists of only the contraction
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terms,

—,'p (x)'cp (x')': q (x)y'q (x'):6(x'- x")5'(x —x')c (x —x'-),
--,' Tr(y(x')' y(x)'y'):y(x)y (x'):5(x'-x")5'(x -x')e (x -x' ),

(4.32a)

(4.32b)

=,' »(((x')'g(x)'y')y(x)" y(x')"&(x'-x")5'(x -x')e (x -x' ) . (4.32c)

The first two terms (4.32a) and (4.32b) lead only to a fermion and a meson self ene-rgy contribution. , A
simple power counting indicates that both expressions lead to divergent results. However, these divergent
terms can be readily removed after proper renormalizations, and the remaining terms are found to vanish
identically (see Sec. VI). Expression (4.32c) contributes only to the vacuum amplitude, and will not lead
to any observable effect either.

Knowing that we can replace (4.30) by (4.31), it is straightforward to see the cancellation of noncovariant
terms from (4.31) explicitly. Let us concentrate on the various amplitudes in the integrand of (4.31.):

(i) AmPlitude uith no contraction. This is given by:g(x)l g(x)y(x)g(x')I g(x')y(x'): which involves no
noncovariant term and hence is already the correct answer.

(ii) Amplitude with a single gg contraction. The amplitude is

2: g(x)I'y(x)' g(x')'I'((x')y(x)y (x'):+—,':g ( x) y'g ( x)y(x)y ( x): 5( x'-x") '5( x-x')e (x -x' )

=2:q(x)r[iSr(x-x') --,'y'5(x'-x")6'(x-x')e(x -x' )]Iq(x')y(x)y(x')

+-,':y(x)y'q(x')q&(x)y(x'): 5(x'-x")5'(x-x')e (x -x' )

=2.:g(x)I'iS (x -x')I'g(x')cp (x)y(x'):

as required. The factors 2 in (4.33) account for the two ways of making the g contraction.
(iii) Amplitude with two g( contractions. This amplitude leads to

y(x)'I'y (x)"
Tt

(x')"I'y (x')': y (x)y (x'): +2 q (x)'y'y (x)': p(x)(p (x'):
= (-1)Tr([iSr(x —x') ——,'y'5(x" -x")5'(x -x')e (x -x' )]I'

x[iS (x'-x)--,'y'5(x"-x')6'(x'-x)e(x' -x ]r):y(x)y(x'):

(4.33)

+ —,'(-1)Tr([iSr(x' —x) ——,'y'5(x"-x')5'(x'-x)e(x' -x )]y'): y(x)P(x'):~(x'-x")5 (x-x')e(x -x' ).

One immediately sees from (4.34) that the contribution from the crossed terms in the first trace cancels
the contribution from the iS~ term in the second trace,

2&&-,
' Tr(is, (x'-x)ry'I) --,' Tr(iS, (x'-x)y') =0. (4.35)

A factor 2 is included in (4.35) because there are two crossed terms. The remaining (y')' terms in (4.34)
also drop out owing to the identity (y+)'=0. Thus (4.34) reduces to

(-1)Tr(iS~(x -x')I'iS~(x'- x)I ) (4.36)

as given by the conventional second-order perturbation theory.
We can show that further contractions on y's cannot introduce any discrepancy between the two formula-

tions. This follows from the simple fact that the yy contractions are the same in both formulations. Thus,
to establish the equivalence of these two formulations, we only need to show that the various g contrac-
tions in both formulations give rise to the same result to all orders in g.

V. EQUIVALENCE THEOREM

In Sec. IV we have demonstrated to second order that the noncovariant term in the interaction Hamil-
tonian of the light-front formulation cancels that of the fermion propagator in all possible matrix elements.
The final results are covariant and identical to those found in the ordinary formulation. We would like
now to establish that this cancellation occurs to all orders in the perturbation, leading to a covariant scat-
tering matrix equivalent to the one in conventional theory. We conclude, at least formally, that the two
formulations give the same physical predictions.
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Our proof is based on the functional-derivative method developed by Schwinger. The technique suitable
for our application was illustrated in a recent paper by Gerstein, Jackiw, Lee, and 'Qfeinberg.

The S matrix computed in the light-front formulation is given by Dyson's formula

S = T'exp ——,'i dx'H x'

=T+exp -i d4xd~x' x H x, x' x' (5.1)

with

H(x, x') =gi'y5~(x -x') -4ig'y'y(x)p(x')5(x'-x")5'(x -x')e (x -x' ) . (5.2)

Strictly speaking, all operators in H, should be normal-ordered. As we have demonstrated in the previous
subsection, we can assume HI to be x'-ordered without affecting the xenoxnzalized scattering amplitudes.

The presence of an explicit nilpotent factor y [(y')' =0] in the second term of (5.2) greatly simplifies our
calculation. In particular, the inverse H(x, x'), which is defined by

= 5'(x -x'),

is given simply by

H(x, x') ' = (gl'qr) '5'(x-x')+-,'iy'5(x'-x")5'(x-x')e(x -x' ) .

As mentioned earlier, we denote the. noncovariant fermion propagator by

iS~(x -x') =iS~(x -x') --,'y'5(x' —x")5'(x -x')e (x -x'-) .

(5.3)

(5.4)

(5.5)

Note that the noncovariant term in H ' matches with the noncovariant term in S~ .
Now, we consider all possible contractions g of internal fermion lines in the S matrix. According to

Schwinger 's formalism, this can be taken care of systematically by replacing the T'-ordered equation by

S=:exp -i d'xd'x' T()(x) iS~r -H(x, x') p(x')+iSi„ (5.6a)

.—q 5=:exp -i T() -iS r —H T()+iS =
5g ~

5T()
(5.6b)

with iS~ r 5/5g (x) being the shorthand for tives 5S/5( are defined through the change of S
due to a variation of (I),

5$=5$ ' = " 5(J(.
5S 5S
5p 5g

(5 7)

etc., and S~„8r(x -y) =S~s„(y-x). In (5.6) the nota-
tion:: stands for the normal-ordered among the
fermion fields g, (1) only. " The meson field opera-
tors are still in their properly defined T'-ordered
form. Unless stated'otherwise, all the subsequent
equations in this section are assumed to be or-
dered as stated above. Equation (5.6b) is a ma-
trix representation of (5.6a). The integrations
over x and x' are now understood as matrix mul-
tiplications. It is not difficult to convince oneself
by working out a few lower-order expansions ex-
plicitly that E(I. (5.6) gives rise to the correct
Dyson-Wick expansion.

Since (1) is an anticommuting field, it is neces-
sary to distinguish between a left and a right func-
tional derivative. The left and the right deriva-

Then, we obtain from (5.6)

=i q-iS ' I HS,E

6 S .— .— 6,iH g+ iS~='-S, (5.9)

and

5p
= iy(H-' -S,)-'S (5.10)

5T()
=-i(H-'-S, )-'qS, (5.11)

where in (5.8) and (5.9) we interpret T(), H, and g
as matrices in the space of x and x'. Equations
(5.8) and (5.9) can be rewritten as
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respectively. Equations (5.10) and (5.11) can be
integrated readily, giving

S=C:e~[-zq(H-' —S )-'q]:, (5.12)

where we have suppressed the x integrations and
interpreted (5.12) as a matrix equation.

The constant C can be determined through

5C 58
5II

lt) g
—P

and by (5.6)

neously HI by the covariant interaction Hamilto-
nian

S=T*exp -i d'xg I (5.23)

H~=-) d'xdx Z;„,

and i' by the covariant contraction (0~&*(gg)~0)
= iS~. Therefore the S matrix in the light-front
formulation can be reduced to

6C, , 5—
-Z~~-iS~~ —S~= S

5H

=-S~rC —Srr(H ~ —Sr) ~srC

=-(S~ '-H) 'C.

One further integration leads to

C =det(1 —S~),
and consequently

(5.14)

(5.15)

where T* stands for the covariant x'-ordering.
Equation (5.23) is precisely the S matrix obtained
in the conventional theory.

We conclude this section by mentioning that with
very little effort the above equivalence theorem
can be extended to include the isospin-symmetric
interaction

(5.24)

as well.

H(x -x') = gl'(p5'(x -x')

and Sz(x-x'), we find

(5.17)

H ~ -S~= H x —Sp.

Similarly, we have

det(1 —S~)= det(H —S~)detH

=det(H ' -Sr) detH

(5.18)

S=det(1 —S~):exp[-iq(H ' —Sr) 'q]: . (5.16)

In terms of the covariant interaction Hamiltonian
and the covariant propagator

VI. SECOND-ORDER CALCULATIONS

In this section, we shall test the light-front
Feynman rules by calculating the lowest-order
contributions of the fermion and the meson self-
energy diagrams, and of the gi"gy vertex correc-
tions. For a specific example, we consider the
neutral psuedoscalar-pseudoscalar theory with
I' = iy5.

(a) Fermion self-energy diagram. According
to our new rules, the self-energy contribution cor-
responding to Fig. 2 is

and

=det(1 —S~)det(HH ')

=det(1 —S~) exp[-lndet(HH ')]

(5.19)

"d4q .— i
-i&(P)=;.gy, is, (p e)gy, -

27i') q -p, +ie

(6.1)

with

lndet(HH ') = Tr ln(1+i ', y'eH)—
= Tr(i-,'y'eH)

=0 (5.20)

In (5.20), e stands for 5(x' —x")5'(x-x')&(x- x'-),
and we have used the fact that (y')' = Try'=0.
Thus, we have the interesting result

Sr(P -q) =((8 4()+m)l[(p --e)'-m'+ie].

The 4-vector (p -q)i' is given by

(F -~)'=(P-~)* (i=1, 2),

and

det(1 —S~)= det(1 —S~) (5.21)

S =det(1 —S~):exp[-ig(H ~ —Sz) 'g]: . (5.22)

Equation (5.22) is precisely (5.16) with the sub-
stitution S~- S~ and H-H. In other words, the
S matrix will be the same if we replace simulta-

p

FIG. 2. Second-order fermion self-energy diagram
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(p -q) =[(p -q)'+ m']/(p -q)'

[This on-shell 4-vector should be represented by
a bar over the entire vector p -q. For typo-
graphical reasons, we denote it throughout this
paper by(P -q).]
Note that the noncovariant g' term in II, does not
contribute because the field operators are normal-
ordered. One can see by direct comparison that
the unrenormalized amplitude (6.1) is in fact dif-
ferent from the corresponding second-order self-
energy contribution in the usual formulation be-
cause of S~ cS„. As we have pointed out in Sec.
IV, however, the difference between these two un-
renormalized amplitudes is a p-independent (but
infinite) constant, and can be removed by the
mass and wave-function renormalizations. Hence,
we expect that the renormalized amplitudes cal-

culated from both formulations should give the
same answer.

Simple power counting reveals that Z(p) di-
verges linearly. To separate out the divergent
part, we follow the standard regulator method by
introducing a cutoff covariantly. The regulated
self-energy part Z" (p) is given by

(62)Z (p)=Z(p) —~[c;Z(p, - p, ;)],
1

where Z(p, - p, ,) is the self-energy part associated
with a "heavy" pion with mass p, &. The coefficients
c,.'s and the regulator masses p, are chosen to
make the q integration in Z (p) absolutely con-
vergent.

Since there is no q factor in the numerator
function, it is convenient to evaluate the q inte-
gral first. As it was pointed out in Ref. 13, the
remaining q' integral will have a finite integration
range which can be associated with the usual
Feynman-parameter integral. Explicit q integra-
tion leads to

d'
Z'(P) = z'j

1 1
&& ((P'-0') —m)~ )+ + —

( 2+ 2)/ + [( )2+m2]/(p+ q+) ~,~-

Introducing

q+=xP

q q ++pr

we can rewrite (6.3) as

I' d'q' (1 —x)P'-m
Z ~p =-g ' dx~

2(2m)2 q" +xm'+ (1 —x)p2 —x(1 -x)p' -ie
d'q' y' q" + m' 1-g'

2(2 ), 2, 1
—P' -„,

(1 ), (1 ), —. —regulator terms.
0

(6.3)

(6 4)

(6.5)

It is straightforward to see that the second term (i.e., the noncovariant term) in (6.5) drops out after x
and q' integrations if the regulator masses are chosen to satisfy

c~ =1,

Zcc&i (6.6)

2inp 2 p2h p2

The remaining terms in (6.5) can be integrated readily, giving

Zs(p) =—,dx[(1 -x)p -m] ln, , , —regulator terms16m xm + (1 —x)p —x 1 —x)p + i6 (6.7)

where A is a cutoff on the q' integration. These lnA terms will be canceled out after the contributions
from the regulator terms are included.
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Given the regulated (finite) part, we can recover the original amplitude easily as

(6.8)

where a and b are infinite but p-independent constants. As is well known, these infinite constants can be
absorbed into the mass and wave-function renormalization constants. Equations (6.7) and (6.8) are indeed
what one finds by using the conventional Feynman technique. We would like to mention that (6.8) can be
obtained by using other cutoff methods as well. For instance, we can obtain (6.8) from (6.1) by first mak-
ing a Taylor' expansion around p = m and then carrying out the q and q integrals for terms of order
(p' -m)' or higher.

(b) Meson seLf-energy diagram. The lowest-order meson self-energy diagram is given by Fig. 3.
According to our new rules, the amplitude of this diagram is

d4p Tr[y, (P + m)y, ((P' -g) + m)]
(2m)' (p' -m'+ ie)[(p -q)' -m'+ ie] ' (6 9)

where p and (p -q) are on-shell 4-vectors. Just as the fermion self-energy part, the unrenormalized II (q')
is different from that of the conventional theory. However, the difference can be removed by renormaliza-
tions, and consequently both theories should lead to the same finite answer.

Taking the trace and carrying out the p integration, we can reduce (6.9) to

e' ~ d 1
2(2m)' ' p'(q'-p')[q —(p'+m')/p'-[(q-p)'+m']/(q'-p')+ iej

(6.10)

The d p integral diverges quadratically. We can remove the divergence by introducing a set of regulators,
leading to the regulated amplitude,

Ã(q') =11(q') -~c,ll(m -M, ) .

As usual, c, and M, are chosen to make II" finite. To evaluate II"(q'), we define

(6.11)

p —= xg

and obtain

p =p +xq~ (6.12)

"d2p' 2(p" + m') 1
II (q') = -g'j~ dx

( ), (1 )
„,

( ), . —regulator terms

rX
dxq' ln 2 . —regulator terms

8m'&, „m'-x 1-xq'-ie (6.13)

The original divergent meson self-energy amplitude can be recovered as

g2 pl m'-x(1 -x)p, '
ll(q') = aq'+5 —,dx ln8m,dp vl —x(1 —x jg —zc

(6.14)

where a and b are q'-independent infinite constants. That Eqs. (6.13)-(6.14) are indeed the correct answer

can be verified by direct calculation.
(c) Vertex correction As a fi.nal example, we write down the second-order correction to a y, vertex,

as given in Figs. 4(a)-4(c). The contributions from Figs. 4(a)-4(c) are given, respectively, by

I &a&
Z Sy' Zy' Z

(2m)' ' p'-$-m+ie 2(p'-q)+ ~ ' p g m i& 2(p q)+ ~y q' p'+ ip'

(6.15a)

and

„(2m)' '2(p'-q)' p' —g-m +i& 2(p -q)' 'q' —p'+i& ' (6.15b)
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+ +

(2w)4 ' p'-g-m +is 2(p'-q)' 2(p -q)' q' —y. '+ ic

Using the fact that (y')' =y'y, y' =0, we indeed have

(6.15c)

I (a)+I (b)~I (c) 2

(2 ) 'P'-g-m+ is 'p -g-m +i@ ' q' —g'+i@ (6.16)

as given by the usual Feynman rules. Unlike the
lowest-order self-energy diagrams, the lowest-
order vertex contribution obtained from the light-
front perturbation theory agrees exactly with that
of the usual theory even before the renormaliza-
tions. As we have shown in Sec. V, this is actually
the rule rather than an exception. The lowest-
order self-energy diagrams given in Figs. 2 and
3 are the only amplitudes where the renormaliza-
tions are needed to prove the equivalence of the
present theory and the usual perturbation calcula-
tion.

VII. DISCUSSION

The S matrix in the light-front formulation of
quantum field theories involving scalar and Dirac
systems is studied in this paper. The new S ma-
trix is shown formally to give the same predic-
tions as in the ordinary formulation. Taking to-
gether the conclusions reached in paper I and
this one, we should conclude that the light-front
formulation can replace the conventional equal-
time formulation as the formal basis of quantum
field theories, at least for scalar and Dirac fields.
Furthermore, there are certain advantages of us-
ing this new formulation to derive current-algebra
sum rules and to study deep-inelastic processes
induced by leptons as discussed in paper I.

Nevertheless, this formulation has its own
subtleties some of which are already mentioned
in paper I. Here we would like to make a, remark
in connection with practical perturbation calcula-
tions. A light front (x'=constant) contains a line
on the light cone. Two space-time points on such
a line (b.x"= 0, b,x = 0, and Ax arbitrary) are not
kinematically independent, since information can
reach one point from the other by a particle with
infinite p or very small p'. As a result, there

are singularities in matrix elements as p'- 0.
These singularities arise from the noncovariant
terms in the Hamiltonian and the fermion propa-
gator. If covariant perturbation theory is em-
ployed these singularities explicitly cancel in
pairs and no difficulty arises. On the other hand,
if noncovariant perturbation theory is used (i.e.,
p integrations are carried out first) the cancel-
lation of these singularities is no longer apparent
and the resulting momentum integrals are not
well-defined. This difficulty is reflected in the
calculation of self-energy diagrams of fermions
and mesons of Sec. VI. There a regularization
method very different from the ordinary one has to
be applied in order to reproduce the known re-
sults. It must be remembered, however, a simi-
lar situation already exists in the equal-time for-
mulation where a consistent renormalization pro-
gram based on old-fashioned time-ordered per-
turbation theory is also lacking. Whenever am-
biguities in certain diagrams arise, they must be
defined in terms of covariant Feynman diagrams.

After this paper was written, we received a re-
port from Bouchiat, Fayet, and Sourlas, "which
also confirmed that the light-front formulation
possesses a consistent regularization prescrip-
tion for low-order diagrams.
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